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Several interactive schemes for solving multicriteria discrete programming 
problems are developed under a dynamic programming framework. It is assumed 
that the decision maker’s preference structure satisfies the conditions of transitivity, 
monotonicity, and nonsatiation. Hybrid procedures are also structured by including 
branch and bound ideas into the recursions. Initial computational results are 
offered. 

INTRODUCTION 

The development of interactive procedures for solving multicriteria 
programming problems has received much attention. Among the many 
algorithms suggested are those due to Benayoum et al. [2], Geoffrion et al. 
171, Dyer 141, Chankong and Haimes [3], Zionts [21], Zionts and Wallenius 
1221, Villarreal and Karwan [ 191, and Lee [8]. Even though the research 
done in this area has been very productive, only the schemes suggested by 
Zionts [ 211, Lee [8], and Villarreal et al. [ 191 can be applied to solve 
(mixed) integer programming problems. This paper deals with the 
development of initial theoretical results and methodologies for solving 
multicriteria discrete programming problems, under a dynamic programming 
approach. One can view these schemes as extensions of the recursions 
developed by Villarreal and Karwan [ 16-181 for determining the efficient set 
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of solutions for multicriteria discrete programming problems. They can also 
be viewed as special applications of the general interactive procedure 
suggested by Mitten [ 121. 

The problem of concern is that of finding the policy, (x, ,..., x,), among a 
set of alternative policies defined by the set of constraints 

where a” = (a ],, ,..., am,,)l and X denotes a set of discrete values for x, such 
that it satisfies the decision maker’s preferences over the values of a set of 
criteria or attributes defined by 

G 6 (R,(x,), . . . . R.&.v)L 

where R,(x,) = (T,,,(x~),..., r,,(x,,))’ denotes a p-dimensional vector of finite 
functions of x,. 

The general process to be developed consists of interactively selecting best 
subpolicies (or partial policies) at each (or after several) stage(s) for each 
state vector. Then, at the final stage (N), the decision maker selects the 
policy that best suits his preferences among those most preferred policies 
obtained for each state vector Y, (< b). 

Let the operators > and - denote preference and indifference, respectively. 
It will be assumed that the decision maker’s preference structure is such that 
these operators satisfy the following conditions.’ 

(1) Both operators are transitive, i.e., 

(i) If a > b and b > c then a > c. 

(ii) If a > b and b - c then a > c. 

(iii) If a - b and b > c then a > c. 
(iv) Ifu- b and b - c then u - c. 

(2) The operator - is reflexive and symmetric, i.e., if u - b, a is 
preferred as much as 6, then b - a. 

(3) The operator > is assymetric and irreflexive, i.e., if a > b then 
b $ a, or b is not as preferred as a. 

(4) Both operators are complete, i.e., for all alternatives, a and b. 
possible. either a > b, b > a, or a - b (b-u). 

(5) Consider the feasible policies a, b, and c. The relationship 
(a and c) > (b and c) (or (a and c) - (b and c)) is satisfied if and only if 
a > b (a - 6). This property will be regarded as the monotonicity property. 

’ See Fishburn 15 1. 
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1. DEVELOPMENT OF THE GENERAL PROCEDURE 

It can be shown (see also Bellman [ I] and Nemhauser [ 15 J) that the set of 
constraints that define the various alternate policies available to the decision 
maker, S, can be equivalently imposed by the following set of constraints 
which are appealing for a dynamic programming recursive approach 

Y n-1 = Y, - a”x, (n = 2,..., N) 

SD4 
Y,<b 

Y,< Y, -a’x, 

x E x. 

Therefore, the problem reduces to finding the decision maker’s preferred 
policy with relation to the criteria set, G, and subject to the constraint set SD. 
The following result will enable one to structure the general interactive 
scheme. 

THEOREM 1. Consider the vector of resources Y,,, available at stage m. 
The decision maker’s preferred (partial) policy (XT,..., xll;) must be a feasible 
policy such that (XT ,..., xz _, ) is the preferred partial policy for stage (m - 1) 

and the vector of resources Y,,, _ , = Y,,, - a”‘$. 

Proof Let (xf,..., x:-J be the preferred policy at stage (m - 1) for the 
vector of resources Y, _, = Y,,, - a”‘xz. Assume that (xl ,..., x,,,-, , xf) is the 
preferred policy at stage m, for vector of resources Y,,, , with (xl ,..., x,,- r) # 
(x;,..., x;- ,). By the monotonicity assumption, if (x ,,..., x,,-,, xz) > 
(XT,..., x;-, , x;) then (x ,,..., x,,-,) > (XT ,..., x2-,). But this is a 
contradiction of the initial assumption. Q.E.D. 

Remark. This result assumes that the decision maker can identify a 
preferred partial policy and was not indifferent to choosing several alternate 
possibilities. In the case in which he is indeed indifferent to a set of partial 
policies for a given state vector of resources, then the theorem should be 
modified so as to allow for the possibility that the partial policy 
(XT,..., x:-, ) is part of the set of indifferent policies. The proof of the 
modified theorem can be similarly constructed via contradiction. The proof 
follows because any partial policy not a member of this set will not be 
preferred to any other. 

Using these results in a stagewise process leads one to consider only the 
best (preferred) policy(ies) at the final stage for each of the possible state 
vectors (resource vectors) of values. Thus, the decision maker would elect 
the desired or preferred policy among them. The general scheme of the 
process is presented below, but first, the following notation is introduced. 



INTERACTIVE DYNAMIC PROGRAMMING 527 

Let p(Y,) represent the set of criteria vectors associated with the most 
preferred partial policy(ies) at stage m for a given vector of resources Y,. 
Also. let 

W* = u PO--,). i.mCb 
Step 0. Let p( Y,) for all Y,, and I,U~ be empty sets. Set m = 1. 

Step 1. Construct the set of partial policies at stage m employing x, and 
(s , . . . . . x, , ) such that (x ,,..., x,)EX and (x,~....x,+,)E v/~-,. 

Step 2. Delete all infeasible partial policies (those not satisfying the 
resource constraints). 

Step 3. For each state vector (resource vector) Y,(< b) present the 
feasible (partial) policies to the decision maker for selection purposes, and 
form the set vm. 

Step 4. Set m = m + 1. If m > N go to step 5. Otherwise, go to step 1. 

Step 5. Present the set v,% to the decision maker for purposes of 
choosing the preferred policy. 

Notice that steps 1 and 2 are equivalent to constructing the sets of feasible 
partial policies for each vector of resources Y, (< 6) at each stage. The 
scheme can be modified to determine the preferred policy(ies) for any vector 
of resources Y,, (< b). The change would consist of imposing the constraint 
set 

.v 
S a*x, < Y,v 
“=I 

at step 5. and considering the feasible policies for selection purposes. 

2. NONSATIATED PREFERENCE PROCEDURES 

In this section, it is assumed that the G is of the form 

where A denotes a vector of monotonic operators and the functions included 
In G satisfy the conditions of separability and monotonicity given by Mitten 
) 11 1 and extended to a multicriteria framework in Villarreal and 
Karwan I16 \. 

A particular case of interest is that in which the decision maker would like 
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to have as much from each criterion as is feasible. Hence, if there exist two 
feasible policies, x and x*, such that 

P(x;)d *** dR’(x~)>R”(x,)d -** dR’(x,) 

with at least one strict inequality, the decision maker would prefer x* to x. 
The following result is a direct consequence of this new assumption. 

THEOREM 2. Consider a vector of resources Y,,, at stage m. The 
preferred (partial) policy (XT,..., x2) is among the set of eflcient’ (partial) 
policies, A’( Y,,,). 

Combining this result and Theorem 1 gives one the flexibility to set up 
various strategies that could be incorporated into the interactive process of 
Section 1. Before describing a possible scheme consider the following results. 

Let A(Y,) represent the set of policies such that (XT,..., x:) is the preferred 
policy for Y, = Y,,, - J$!!,+, a’xj* and (XT ,..., xz) is an efficient policy for the 
vector of resources Y,. A direct consequence of this definition is the 
following result. 

LEMMA 1. The set a(Y,) c A’(Y,,,). 

Further, from the nonsatiation, transitivity, and monotonicity properties, 
the following result holds. 

THEOREM 3. Consider a vector of resources Y,,, at stage m. The set 

PVnJ 52 4L). 

From this result, it follows that the decision maker’s most preferred policy 
is among the set of efftcient policies remaining at stage N for Y, = b. 

The success of various schemes that one may suggest depends upon the 
size of the sets of efficient policites for each state vector. These sets would be 
presented for selection purposes instead of the sets suggested in step 3 of the 
procedure of Section 1. One would want to have as small a set as possible. 
ObviousEy, a better set to present would be a subset of A’(Y,), say, d(Y,). 
This implies that prior sets of questions were posed to the decision maker in 
previous stages. Also, one may employ questioning sessions in a stagewise 
continuous or intermittent fashion. Even though the stagewise continuous 
interaction with the decision maker would lead to the smallest set, a(.), 
possible in subsequent stages, it also implies a thorough questioning. Thus, it 
seems reasonable that a better strategy would be to question the decision 
maker intermittently. Possible rules could be devised using either a maximum 

’ An eficient policy, x, is such that there is no other feasible policy, 1, satisfying the 
expression R\‘(.<,,) A . . AR ‘(2,) > RN(&) A . . AR ‘(x,) with at least one strict inequality. 
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number of efficient policies per state vector of values or a certain number of 
stages, or both. The outline of one procedure is described below. Let EFF 
and STAG denote numbers of efficient partial policies per state vector and 
stages, respectively. Let also CARD(.) denote the current number of efficient 
partial policies. 

Step 0. Let p( YO) and a(Y,) be empty sets, and CARD(A( Y,,)) = 0 for 
all Y,(< b). Set m = I = 1. 

Step 1. For each state vector Y,(< 6), construct the set of all possible 
partial policies with x, and (x, ,..., x,,- ,) E A(Y,,- , = Y, - umx,) such that 
(I, . . . . . .Ym) E x. 

Step 2. Delete the infeasible partial policies for each associated vector 
of resources Y, (< b). 

Step 3. For each vector of resources Y, (< b), obtain the set a(Y,) via 
pairwise comparisons. If If STAG and CARD(A(y,)) < EFF go to step 5. 
Otherwise. go to step 4. 

Step 4. Present the set A(Y,) to the decision maker for selection 
purposes. If I= STAG set I = 0. 

Step 5. If m = N go to step 6. Otherwise set m = m + 1, I= I + 1. and 
go to step 1. 

Step 6. Present the sets A(Y,,,); YN ,< b, to the decision maker for 
selecting the policy he prefers the most. 

This interactive scheme can also be modified to include bound ideas with 
the intention of reducing the sizes of the sets a(~,). 

3. AN INTERACTIVE HYBRID PROCEDURE 

Bounding and fathoming criteria can be incorporated into the interactive 
procedure. Since the decision maker’s preferred policy is among the set of 
effkient policies of the problem, one may employ sets of bounds such as 
those described in Villarreal and Karwan [ 171 to devise schemes aimed to 
eliminate partial policies not leading to efficient policies. They give the 
following definitions for the set of upper and lower bounds of an efficient set. 

DEFINITION 1. A set of upper bounds to the solution of a multicriteria 
programming problem is a set of points that satisfy the following conditions: 

(I) Each element is either efficient or dominates at least one of the 
efficient solutions of the problem. 
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(2) Each efficient solution of the problem is dominated by at least one 
member of the set or is a member of the set. 

DEFINITION 2. A set of lower bounds to the set of efficient solutions of a 
multicriteria programming problem is a set of points such that each element 
is either efficient or is dominated by at least one efficient solution of the 
problem. 

Suppose that the solution to the following problem (to be denoted as the 
mth stage problem) is available at stage m. 

H,(Y,) = u-max(Rm(x,) d . . . dR’(x,)}, 

St: ;: a” 7 L x, < y,, x, ,.a-, x, E x. 
tl=l 

Denote as the residual problem of this mth stage problem the one defined as 
follows. 

u-max(P(x,)d ..a dR”+‘(x,+,)} 
N 

st: C an‘ X,#(b- Y,), x, + , ?...) x, E x. 
n=m+l 

The solution to this problem would be the best one could achieve effkient- 
wise with the remaining resources (b - Y,). 

Let LB denote a set of lower bounds for the efficient set of solutions for 
the original problem (considering all the variables and the vector of resour- 
ces 6). Let also UB,, i( Y,) denote the set of upper bounds for the set of 
efficient solutions of the residual problem for the previously given m-stage 
problem. Given these concepts, Villarreal and Karwan [ 171 prove the 
following result. 

THEOREM 4. Let an eficient subpolicy for the m th stage problem with 
vector of resources Y,, say, x, be available. Let its p-dimensional return 
function values be denoted by H,,,,. If for every element g, E H,,,, 0 
LIB,+ ,(Y,,,) there exists an element LB,(k) E LB such that 

gk < LB,(k) (1) 

with at least one strict inequality, then the subpolicy x cannot be part of an 
efJcient or preferred policy. 

@ means that the operator A is performed with each member of the set 
H m.x and each member of UB,+,(Y,,,). If H,,,= {(i),(i)), CJB,+,(Y,,,)= 
I(~),(:)},andA=(f),then (H,.,OUB,.,(Y,)}=1(P,),(~),(,7,), (I%,>/. 

Using this result and the previous concepts, Villarreal and Karwan [ 171 
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developed several fathoming schemes, and suggested various sets of bounds 
for an efficient set of solutions. Any of these schemes or sets of bounds may 
be incorporated into the previous scheme of Section 2 to structure hybrid 
procedures. The modifications required to include these ideas into the 
previous interactive scheme are the following. 

(1) Include the determination of the set of lower bounds in step 0. 

(2) Introduce in step 3 a counter of stages to decide when to compute 
sets of upper bounds and use a fathoming scheme. If the same counter is 
employed for deciding when to utilize questioning sessions, one would first 
use the fathoming scheme, and then, question the decision maker. 

(3) Insert an additional step in which the computation of sets of upper 
bounds and the use of a fathoming scheme are performed. This would be 
executed whenever any of the rules is satisfied. If the number of stages is 
used for deciding when to question, and the critical number of reached, then 
the fathoming step is always performed prior to the questioning sessions. 

(4) If desired, one may try to improve the set of lower bounds by 
computing new feasible solutions in the additional step just described. 

The resulting hybrid preference procedure would use the concept of 
dominance, bounding and fathoming criteria, and questioning sessions to 
move towards the determination of the most preferred policy. The main 
problem of using this procedure is that of dimensionality. An increase in the 
number of constraints will lead to storage problems as well as to an increase 
in the number of questions required since the state vectors of values per stage 
increases. A desirable approach to alleviate the increases in the storage 
requirements is the imbedded state approach as suggested in Morin and 
Esogbue ] 14) and Villarreal and Karwan [ 161. 

4. AN IMBEDDED STATE PREFERENCE PROCEDURE 

The problem of large storage requirements caused by the dimensionality of 
the state vector Y,,, can be alleviated in a fashion similar to that for finding 
the efficient set of policies for multicriteria discrete programming problems, 
i.e., by using the concept of resource-efficient policies defined. in Villarreal 
and Karwan [ 16, 17].4 This concept will let one obtain the sets of efficient 
policies for each vector of resources Y,,, without having to identify each of 

’ A resource-efficient policy, x, is such that there is no other policy, x’. such that 
R’(x;) A AR ‘(x;) > R”(x,,,) A . AR ‘(xl) andrz=, a”.~; < ~~~., ~7” X, with at least one 
strict inequality in the first expression. 
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them with the corresponding vector. From Theorem 6 of Villarreal and 
Karwan [ 161, one has that 

AO(Ym) E #“, for all Y, (< b), 

where #” denotes the set of resource-efficient partial policies at stage m. This 
relationship and Lemma 1 imply that 

4 Y,) G d”, for all Y, (( b). 

Since one uses the sets a(Y,) instead of A”(Ym), the set of resource- 
efficient partial policies obtained at each stage will be a subset, say, cm, of 
4”. In order to include the resource efficiency concept into the working 
procedure, one must discard the rule used to decide when to use questioning 
sessions on the basis of the current number of efficient policies per state 
vector. One could instead use a similar rule based upon the cardinality of the 
sets $“. Let CARD(m) denote such number and MEFF represent a number 
such that if CARD(m) > MEFF, questioning sessions would be called for. 
Before outlining a scheme that uses these concepts, the following helpful 
results are developed. 

Let Forw~ be a set such that, for a given x E X, any element z E F(,,,, is 
such that z E X, 

and 

Rrn(x,)Ll *** dR’(x,)~RR”(z,)Ll *-* dR’(z,) 

Ax<Az=Z. 

LEMMA 2. Let a solution x E X and its associated set Ftmqx, be given. If 

for z E F(,,,, y z E X, x is preferred to z, discard z from further consideration 
in the procedure. 

Proof: Suppose that x E A’(Z). Then, 

(1) Let z E A’(Z). One can discard z from further consideration if it is 
not included in any other set of efficient policies, or it is not preferred in any 
of the sets in which it is included. In the first case, the result follows from 
Theorem 3. In the second case, one has that if z E AyRj then 

Ax<Az<R. 

But, 

(i) If .Y E A&, , Theorem 3 applies. 
(ii) If x GJ A&,, then there exists another policy, y, that 

dominates x, and so, y > (x > ) z. 
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(2) Let z 6? A’(Z). Then, it would not be a member of any set of 
efficient policies since for any L < Z, it is infeasible, and for L >, Z, there is 
a 1’ E A’(Z) that dominates it. Now, assume that x & A’(Z). 

(i) Let z CA’(Z). Obviously, there is a YEA’(Z) that 
dominates x, and so, J’ > (x >) z. 

(ii) Let z @ A’(Z). Then, the previous case 2 applies. Q.E.D. 

The point, x, will be called the generator of the set F,,.,,. The previous 
scheme of Section 2 will now be adapted to incorporate the concept of 
resource efficiency. This is outlined as follows: 

Step 0. Let @’ be empty and set CARD(O) = 0, and m = I = 1. 

Step 1. Obtain the possible partial policies (x, ,..., x,) with x, such that 
(S , . . . . . x,) E X, and (x, ,..., x,,~ ,) E P-I. 

Step 2. Delete the infeasible partial policies (those not satisfying the 
resource contraints). 

Step 3. Obtain the set Jrn via pairwise comparisons. If If STAG and 
CARD(m) = MEFF go to step 5. Otherwise, go to step 4. 

Step 4. Obtain the sets A^(Y,) or F,,,. ,. Present those with cardinality 
greater than one to the decision maker for selection purposes, and discard 
those that satisfy Theorem 3 or Lemma 2. If I = STAG, set 1= 0. 

Step 5. If m = N go to step 6. Otherwise, set m = m + 1, I = I+ 1, and 
go to step I. 

Step 6. For the required vector of resources Y, (< b), present the set of 
efficient policies a(~,,,) (G p) to the decision maker for choosing his 
preferred policy. 

Notice that whenever one fathoms or eliminates a policy x by preference, 
one would not consider it as part of any other set a(,,) or F,,.., . If there is 

a set hn.s, then, one would not consider the whole set. Even though this 
outline does not include the use of bounding and fathoming criteria. one can 
easily modify it to include them as in Section 3. 

4. I. The Linear Utility Function Case 

A special case of interest is that in which it is assumed that the decision 
maker’s utility function is linearly additive, i.e., 

A( R”(x,\J d ,...,dR’(x,)}, 

where J E R p denotes a vector of preference weights assigned by the decision 
maker to the criteria set. One can show that the linear additive utility 
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function satisfies the transitivity and monotonicity properties of the 
prefeience structure assumed previously. Assume that d is a vector of 
addition operators and 

Then, 

rij(xj) = cij * xi (i = I,...) p) (j = l)...) N). 

~(RN(XN)d,...,dR’(Xl)} = 5 fJ ljCijXj* 
i=l /=I 

The exploration of the preference structure of the decision maker under an 
interactive framework would be accomplished by an exploration for the 
appropriate set of preference weights assigned to each criterion or attribute. 
Under the dynamic programming approach, this can be achieved in a 
stagewise manner using the responses of the decision maker to the peference 
questions posed to him during the procedure. For example, if one has the 
resource effhzient policies x, y,z E RN, and x > y, x - z, then, 

and 

A’CX > nty 

A’CX = A’CZ, 

where 1’ = (2 1 ,..., A,) denotes the true values of the vector of weights 1, and 
C is a p x N matrix of objective coefficients. By constructing these 
inequalities, one will be able to obtain approximate values for the true set of 
weights. Let 1’ denote the constraint set obtained from the responses of the 
decision maker. This set of constraints may be employed to eliminate 
(partial) resource-efficient policies that will not (lead or) be (to the) preferred 
(policy). This can be accomplished by solving the following subproblems. 
Let x and y be two resource-efficient policies with criteria Cx and Cy, respec- 
tively. The first subproblem is the following. 

z” = min{lC(x - y)),’ 

st: 1 E A”, 

/I 2 0. 

If z” > 0, one has Acx > Acy, and x > y. This is true since any set, 2, that 
satisfies the constraint set will also satisfy the telationship. 

X(x - y) > z”. 

’ Note that if x(y) dominates y(x) then z” > 0 (z’ > 0). 
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Since the true set of preference weights is contained in the set, A”, the 
previous relationship also holds for their values. In case that z” < 0, one 
would solve a second problem defined as 

z’ = min(AC(y -z)}.’ 

St: 1 E A”, 

/I 2 0. 

Of course, if z’ > 0 then y > x’. If z” d 0 and z’ d 0, one would assess the 
decision maker’s preferences via a questioning session. The set, A’, may be 
updated after each session of questions. 

5. AN ALTERNATIVE VIEW OF THE IMBEDDED STATE PROCEDURE 

The previously outlined scheme has been regarded as a dynamic 
programming algorithm that uses bounding and fathoming ideas as well as 
preference questioning in its search towards the preferred policy. Recall that 
the use of bounds came about because of the fact that the decision maker’s 
preferred policy (under nonsatiation) is among the set of efficient policies. 

One could also interpret this scheme as an interactive branch and bound 
procedure. In this case, the branching and bounding strategies employed are 
based upon the works of Villarreal and Karwan [ 171, Marsten and Morin 
1101, and Morin and Marsten [ 131. These are of different structure to those 
commonly used in standard branch and bound algorithms (see Garfinkel and 
Nemhauser 161, or Zionts [20], for example). In this scheme, branching and 
bounding are heavily controlled and dictated by the dynamic programming 
framework. Branching is always performed in the next (stage) variable of the 
problem. Thus, it leaves very little flexibility to decide where and in what 
variable to branch on. The computation of bounds can be devised in a very 
effective manner. Due to the dynamic programming structure, several types 
of bounds can be shared among all the nodes of the particular branching 
level. Various fathoming schemes (see Villarreal and Karwan [ 171) that are 
based on these bounds can be structured for fathoming purposes at each of 
the nodes. A further modification of the scheme of Section 4 that can be 
interpreted as an interactive implicit enumeration scheme is possible. 

Let FIF,.,, be a set of policies such that for x E X and any z E FFm,,,, the 
following relationships are satisfied. 

Cz 3 Cx or cz < cx 

and 

AZ > Ax, 
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with at least one inequality. Then, if Cz 2 Cx and AZ >Ax are satisfied 

z E Fwl,x, * If Cz < Cx and AZ > Ax, z & 4” and must be eliminated. Using 
this last set of policies will enable on to determine to set of policies that are 
not part of the set of resource efficient policies as well as to construct the 

sets Ftm,xj in the same step. It can be seen that 

FVILX, z F&,x,* 

Obviously, any policy z 66 F(,,,, n F&,x, but such that z E Frm,x, will be 
eliminated by preference since it is a dominated solution. Since all the points 
that are dominated will be eliminated, the resulting set of (partial) policies at 
the end of stage m will correspond to 6’“. An algorithm based upon the use 
of the sets just described is outlined below. 

Step 0. Let 6” be empty and set m = 1. 

Step 1. Obtain the possible partial policies such that 
(x ,,..., x,,,-,)E@“~’ and (x ,,..., x,)EX. 

Step 2. Delete the infeasible partial policies (those not satisfying the 
resource constraints). 

Step 3.’ Obtain the sets F&, .). Present those with cardinality greater 
than one to the decision maker for choosing purposes, and discard those that 
are dominated or satisfy Lemma 2,. The resulting set is @“. 

Step 4. If m = N go to step 5. Otherwise, set m = m + 1 and go to 
step 1. 

Step 5. Obtain the set of (partial) policies contained in p that are 
feasible for specific vector of resources -vN (< 6). Present these to the decision 
maker ,for selection purposes. 

Additional bounding and fathoming tests can be incorporated by including 
sets of lower and upper bounds in the scheme such as those described in 
Section 3. The changes to be made in the prior procedure are the following. 

(1) Determine a set of lower bounds for the problem at step 0. 

(2) Compute sets of upper bounds after step 2 and use them to 
eliminate policies employing Theorem 4. 

(3) If desired, one may include another step to try to improve upon 
the set of lower bounds at each stage. This can be accomplished in the same 
step in which the set of upper bounds are computed. 
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6. CONCLUSIONS AND COMPUTATIONAL RESULTS 

The computational feasibility of the schemes previously outlined in prior 
sections depends upon the size of the sets Ftm,x,, Ft,,,,, or A,.,. A large 
cardinality of these sets would imply that many questions would be posed to 
the decision maker. However, it also implies that the decrease of the sizes of 
subsequent sets (in later stages) will be of relevance. If a linear additive 
utility function is assumed, the performance of the procedure can be 
improved by the use of the subproblems suggested in Section 4.1. Their effec- 
tiveness is of great interest because one can use them to avoid questions to 
the decision maker, i.e., if any of the conditions given in Section 4.1 are met. 
one will be able to eliminate policies not leading to the preferred solution 
without asking the decision maker. 

In order to obtain evidence about the computational possibility of the 
algorithm suggested, a sample of ten O-l bicriterion multidimensional 
knapsack problems was solved using the dynamic programming recursions 
to obtain sets of efficient solutions given in Villarreal and Karwan 117). It 
was assumed that monotonicity, transitivy, and nonsatiation are charac- 
teristics of the decision maker’s preference structure. All the problems consist 
of ten constraints, values of b equal to 0.75 times the sum of the associated 
row coefficients, and a density of 0.90. The size of the sets F(,,.,, 
m = l,..., 10, was determined, as well as the specific points contained in such 
sets. The size is per stage, and it is assumed that no previous questions were 
asked. Given this information, the maximum and minimum number of 
questions that could be asked to the decision maker to eliminate resource- 
efficient policies were computed. The maximum number of points that would 
be eliminated corresponds to the minimum number of questions. This infor- 
mation is shown in Table 1. Observe that the size of the minimum number of 
questions becomes relevant in later stages. This indicates the possibility for 
eliminating a significant number of elements of the sets via questioning 
sessions or (if a linear utility function is assumed) the subproblems suggested 
in Section 4.1. Table II illustrates the percentage mean and range of the 
number of (partial) policies that could be eliminated per stage. As previously 
pointed out, this becomes significant in later stages. 

On the basis of the results of Tables I and II, it was decided to program 
the interactive scheme of Section 5 to solve multicriterion linear integer 
programming problems in which X = {xl 0 < x, < k,, x, integer, 
t1 = 1 ,..., NJ. The scheme is employed (in all the results of this section) to 
interactively use the response of the decision maker to preference questions, 
to eliminate resource-efficient partial policies not leading to the preferred 
policy(ies). At the final stage, one will have a subset of efficient policies to 
present to the decision maker for selection purposes. The procedure is based 
on the use of the sets F$,,.,, and it is assumed that the decision maker’s 



TA
BL

E 
I 

illu
st

ra
tio

n 
of

 th
e 

M
ax

im
um

 
Nu

m
be

r 
of

 Q
ue

st
io

ns
 

an
d 

So
lu

tio
ns

 
to

 P
os

e 
an

d 
El

im
in

at
e,

 
R

es
pe

ct
iv

el
y 

St
ag

e 
nu

m
be

r 
d 

PR
OB

 
4 

5 
6 

7 
8 

9 
P 

10
 

NO
. 

F 
M 

m
 

EF
 

M 
m

 
EF

 
M

 
m

 
EF

 
M

 
m

 
EF

 
M

 
m

 
EF

 
M 

EF
 

M 
m

 
EF

 
1 

4 
3 

16
 

9 
6 

32
 

48
 

22
 

64
 

20
0 

63
 

12
4 

34
1 

88
 

17
3 

40
3 

17
8 

20
6 

18
04

 
26

8 
39

0 
g $ 

2 
95

 
16

 
58

 
17

 
32

 
16

 
17

 
40

 
24

 
9 

32
 

11
8 

24
 

60
 

40
1 

60
 

10
4 

12
21

 
11

1 
16

3 
p 

3 
32

 
16

 
28

 
10

 
32

 
95

 
24

 
62

 
29

4 
47

 
88

 
41

8 
59

 
10

5 
84

5 
10

3 
15

5 
24

67
 

15
7 

22
3 

4 
0 

0 
16

 
1 

1 
32

 
84

 
22

 
64

 
30

4 
53

 
12

8 
14

59
 

13
6 

23
3 

- 
_ 

- 
- 

- 
- 

5 
5 

0 
0 

12
 

1 
1 

19
 

5 
4 

36
 

55
 

20
 

68
 

18
1 

45
 

11
1 

13
0 

10
0 

11
1 

23
11

 
21

4 
31

3 
6 

43
 

16
 

13
 

I 
32

 
25

 
13

 
56

 
12

 
30

 
94

 
49

2 
97

 
16

7 
10

12
 

14
6 

24
6 

14
41

 
17

6 
29

1 
2 

7 
1 

1 
16

 
12

 
6 

32
 

53
 

20
 

62
. 

49
8 

64
 

11
6 

14
34

 
12

7 
19

4 
- 

- 
- 

- 
- 

- 
2 

8 
22

 
16

 
14

 
8 

32
 

44
 

21
 

61
 

16
6 

49
 

10
6 

78
3 

11
1 

17
6 

17
04

 
19

2 
27

3 
- 

- 
- 

%
 

9 
4 

3 
16

 
7 

23
 

23
 

21
 

10
 

35
 

87
 

27
 

66
 

10
1 

29
 

83
 

47
 

18
 

70
 

95
 

38
 

10
9 

10
 

1 
1 

13
 

I 
1 

18
 

18
 

9 
26

 
33

 
16

 
38

 
83

 
24

 
38

 
15

1 
29

 
48

 
28

2 
41

 
63

 

N
o/

e.
 

M
-M

ax
im

um
 

nu
m

be
r 

of
 q

ue
st

io
ns

; 
m

-M
in

im
um

 
nu

m
be

r 
of

 q
ue

st
io

ns
 =

 n
um

be
r 

of
 p

oi
nt

s 
th

at
 c

ou
ld

 
be

 e
lim

in
at

ed
; 

EF
-C

ar
di

na
lit

y 
of

 
re

so
ur

ce
 e

ffi
ci

en
t 

se
t o

f 
po

in
ts

. 



INTERACTIVE DYNAMIC PROGRAMMING 539 

TABLE II 

Percentages of Points to Eliminate Per Stage 

Stage Mean Range 

4 0.1264 0.000S0.1875 
5 0.1978 0.0312-0.5312 
6 0.3141 0.111 l-0.4250 
7 0.4194 0.2941-0.5517 
8 0.5306 0.3493-0.6546 
9 0.5671 0.257 lbO.7032 

10 0.6211 0.3486-0.7040 

utility function is linear and additive. The scheme includes the use of the 
subproblems suggested in Section 4.1 to simulate responses of the decision 
maker, and it also employs sets of lower and upper bounds for the set of 
efficient policies. The sets of lower bounds are composed of feasible solutions 
obtained by using the heuristic of Loulou and Michaelides 19 j for O-l 
problems, and the sets of upper bounds are formed by setting the remaining 
variables to their upper bound (at each stage). All the problems are O-l 
bicriterion multidimensional knapsack problems. Table III illustrates the 
behavior of the sets of resource-efficient policies using the hybrid dynamic 
programming recursions developed in Villarreal and Karwan [ 17 1 and the 
interactive procedure with questioning sessions each three and four stages. A 
maximum of questions was prespecified. These are 15 and 25 questions in 
total. Obseve that the use of one more session resulted in more policies 
eliminated. Also, notice that at each of the stages at which questioning 
sessions are employed, the size of the set of resource-efficient policies 
becomes relatively small compared to what it would have been if no 
interactive sessions were used. This decrease is not as important in the early 
stages (3,4, and 6) compared to that achieved in stages 8 and 9. No 
difference in the performance of the interactive algorithm is shown with the 
increase in the number of questions from 15 to 25. 

As pointed out, in the last sample of problems, the preference problem 
used to simulate responses is employed only after 3 and 4 stages. In order to 
see the effect of using it more often, a sample of four problems was solved 
with the interactive procedure previously and the hybrid dynamic 
programming scheme of Villarreal and Karwan [ 171. All the problems have 
four constraints, fifteen variables, and are O-1 bicriterion multidimensional 
knapsack problems with b values of 0.50 the sum of the associated row coef- 
ficients. In eah problem, the interactive sessions are simulated at stages 3, 6, 
and 9 to 15. Table IV shows that the sets of resource efficient policies are 
decreased significantly after stage 9. In all the problems, the subsets of 
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TABLE III 

Illustration of the Sizes of the Subsets of Resource Efficient Policies 
under Various Approaches 

Stage number 

Problem number 
3 4 6 8 9 EFP FATH questions 

1 IBB3 8 15 42 155 97 5 135 15 
IBB3 8 15 42 155 97 5 135 25 
IBB4 8 14 49 79 120 5 99 15 
HDP 8 14 44 93 113 5 - - 

2 IBB3 6 11 22 47 43 4 33 15 
IBB3 6 11 22 47 40 4 36 25 
IBB4 8 8 28 40 55 4 24 15 
HDP 6 8 23 42 50 4 - - 

3 IBB3 7 13 36 120 122 IO 108 15 
IBB3 7 13 36 120 121 10 109 25 
IBB4 8 II 40 79 146 IO 54 15 
HDP 7 13 44 110 167 10 - - 

Note. EFP-number of eficient points; FATH-number of points eliminated by 
preference; IBB3-interactive branch and bound with sessions each 3 stages; IBB4-in- 
teractive branch and bound with sessions each 4 stages; HDP-hybrid dynamic programming 
procedure. 

resource-efficient policies surpassed a maximum level prespecified a priori of 
2000 elements, before reaching stage 15, when the hybrid dynamic 
programming method is used. This illustrates that using the interactive 
procedure in a manner in which the preference problem is employed 
stagewise, will help to reduce the resource-efficient sets, keeping the storage 
requirements at reasonable levels. An important disadvantage is that the time 
necessary to solve the preference problems and to form the sets F&,., is 
significant. The average time per stage (after stage 9) to carry out both tasks 
(for the sample of problems) is 31.98 cpu sec. The main component is the 
time spent constructing the sets FT,,.,, which corresponds to 88% of the 
total. 

Table V shows further initial evidence that using 25 questions instead of 
15, in an attempt to further decrease the multiplier space is not successful. 
This seems to indicate that for bicriterion problems, one does not need many 
questions to achieve a reasonable decrease of the multiplier space, or that the 
questions are associated with very similar policies and hence, most of the 
constraints added are redundant. All the problems are O-l bicriterion 
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TABLE V 

Illustration of the Sizes of the Subsets of Resource Efficient Policies 
for Two Numbers of Questions 

Stage number 

Problem number j 6 4 10 11 12 

1 Q15 6 25 23 24 19 27 
425 6 25 23 24 19 21 

2 Q15 5 27 95 168 281 462 
425 5 27 93 165 275 452 

3 Q15 8 27 16 133 186 241 
425 8 27 76 133 186 247 

FATH 

18 
18 

52 
54 

99 
99 

No&. QIS-maximum of 15 questions; QZS-maximum of 25 questions; 
FATH-number of points eliminated; *-stages at which interactive sessions were carried 
out. 

TABLE VI 

Comparison of the Sizes of the Subsets of Resource Efficient Policies for the Same Problem 
with Different Set of Preference Weights 

Stage number 

Problem number Ml M2 3 6 9 FATH 

b =0.50 1 0.50 0.50 6 25 23 18 
0.25 0.75 6 23 19 23 

2 0.50 0.50 5 27 95 52 
0.25 0.75 5 31 90 12 

3 0.50 0.50 8 27 16 99 
0.25 0.75 8 29 81 101 

b=0.75 4 0.50 0.50 8 37 112 38 
0.25 0.75 8 37 112 38 

5 0.50 0.50 5 13 32 21 
0.25 0.75 5 12 32 18 

6 0.50 0.50 8 35 87 46 
0.25 0.75 8 32 85 46 

No&. FATH-number of points eliminated; Ml-value of first preference weight; 
M2-value of second preference weight. 
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multidimensional knapsack problems with four constraints, twelve variables. 
90% density, and b values of 0.50 the sum of the associated row coefficients. 

Table VI shows that different results can be achieved using the interactive 
procedure for solving the same problem, when different utility functions are 
considered. The problems solved have the same characteristics of those of 
Table V with b values of 0.50 and 0.75 the sum of the associated row coef- 
ficients. 

In this paper. it has been shown that multicriteria discrete programming 
problems can be solved by imbedding an interactive mode in the dynamic 
programing framework, provided that several properties of preference 
structures are satisfied. It was illustrated that using interactive sessions helps 
to decrease the sizes of the sets of resource-efficient policies. It was also seen 
that using the sets FFm,., in the interactive procedure, leads to a significant 
amount of time spent in constructing them. Finally, it is pointed out that 
several degrees of success could be achieved in reducing the sizes of the sets 
of resource-efficient policies when solving the same problem with different 
utility functions (see Table VI). 

Further analysis and research should focus on the behavior of the 
multiplier space with respect to variations in the number of questions posed 
to the decision maker, and on the generation of sets more effective than the 
sets F&,.,. where construction requires a significant portion of the time 
required for solving the total problem. 
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