
JOURNAL OF
COMPUTATIONAL AND
APPUED MATHEMATICS

ELSEVIER Journal of Computational and Applied Mathematics 66 (1996) 345-358

Software needs in special functions
Daniel W. Lozier*

Applied and Computational Mathematics Division, National Institute of Standards and Technology, Gaithersburg,
MD 20899-0001, USA

Received 31 August 1994; revised 23 June 1995

A b s t r a c t

Currently available software for special functions exhibits gaps and defects in comparison to the needs of modem
high-performance scientific computing and also, surprisingly, in comparison to what could be constructed from current
algorithms. In this paper we expose some of these deficiencies and identify the related need for user-oriented testing
software.

Keywords: Special functions - - computing; Special functions - - software; Special functions - - testing

AMS classification: 65D20

1. Introduction

A recent article by Lozier and Olver [21] provides a survey of algorithms and software for
the numerical evaluation of special functions. Its emphasis is on the generation of function values
although selected resources for zeros and integrals are included also. Journals, books, conference
proceedings, and software documents were examined and a bibliography of nearly 500 references
was constructed. Based on this investigation, the functions were classified and cross-referenced to
bibliographic entries and to specific software libraries and systems.

The bibliography was prepared using the authors' professional experience supplemented by
assistance from interested individuals. Twelve journals were searched systematically, and the review
journals Mathematical Reviews and Zentralblatt fiir Mathematik were searched under Mathemat-
ics Subject Classification 65D20 (computation of special functions and construction of tables). The
period covered by the bibliography is 1968-1993.

* E-mail: lozier.@nist.gov.
1 Certain commercial software products are identified in this paper. In no case does such identification imply recom-

mendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products are
among the best available for the purposes they serve.

0377-0427/96/$15.00 (~) 1996 Elsevier Science B.V. All rights reserved
SSDI 03 77-0427(95)00181-6

346 D. W. Lozier / Journal of Computational and Applied Mathematics 66 (1996) 345-358

The survey disclaims any recommendation of algorithms or software. Its purpose is to identify, not
to evaluate. The important topic of evaluating, or testing, numerical software for special functions
is addressed in a few of the references in the bibliography.

The first purpose of this paper is to scrutinize [21] and identify those functions for which software
is lacking, particularly in cases where algorithms have been described in journal articles. The need
to fill these gaps will be supported, in part, by reviewing requests for software that have appeared
on various electronic bulletin boards or were received directly by the author of this paper. We
mention here, as an indication of current interest in numerical evaluation, that over 200 requests
for a preprint of [21] were received within two weeks of an announcement of its availability in the
electronic NA Digest. Additional requests were generated by a later announcement in the newsletter
of the SIAM Activity Group on Orthogonal Polynomials and Special Functions.

This paper's second purpose is to venture beyond the mere identification of resources into the
more difficult terrain of software evaluation. A few examples of defects in function software will
be presented, and some general observations will be made on the kind of developments we think
are needed in the area of testing.

2. Libraries and interactive systems

Software is such a broad term, with so many meanings, that it is necessary to define the kind of
software that is of concern in this paper. We begin by offering the following elementary classification
o f scientific computing:

El. Numerical computing
E 1.1. Fixed-precision floating-point computing
El.2. Variable-precision floating-point computing
El.3. Non-floating-point computing

E2. Nonnumerical computing
E2.1. Symbolic computing
E2.2. Graphical computing

These categories are not mutually exclusive. Obviously, graphical computing requires numerical
computing. Scaling, shading and rotating, for example, involve arithmetic operations and elementary
functions, and coordinate transformations may involve special functions. Similarly, variable-precision
floating-point computing requires a considerable amount of nonnumerical computing. Nevertheless,
this classification serves as a useful guide.

Special functions pervade all categories of this classification. Fixed-precision floating-point com-
puting encompasses the historical development of computers and compilers for the purpose of
numerically simulating the solutions of problems in engineering and science using mathematical
and statistical models. Often, in the precomputer era, these problems were considered solved when
expressions in terms of special functions were obtained, for then one could, in principle, generate
numerical results from tabulated values of the functions. Further, the mathematical properties of the
special functions, particularly their asymptotic properties, contributed to a qualitative understand-
ing of the solutions. Because of their prominence in applied mathematics, it is not surprising that
subroutines for special functions were among the earliest examples of numerical software.

D. W. Lozier I Journal of Computational and Applied Mathematics 66 (1996) 345-358 347

Many of the special functions arose from certain integrals and differential equations that appeared
in the more tractable mathematical models. With the advent of computers, brute-force methods
replaced continuous models with huge discrete analogs and permitted the numerical solution of more
general problems. Nevertheless, special functions retain their importance in mathematical model-
ing. Their value as an aid to qualitative understanding is well recognized and accepted. They lead
in some cases to more economical forms of solution, as measured by operation counts; this is
particularly valuable in so-called supercomputing applications. An example is the use of the spectral
method to solve partial differential equations in terms of spherical harmonics in weather and climate
models. Special functions are used also in validating brute-force methods through the consideration
of specialized test cases.

In statistics, cumulative distribution functions (integrals of density functions) and their inverses
are special functions that form the basis of successful statistical analysis.

We conclude from the foregoing that the place of special functions in fixed-precision floating-
point computing is firmly established in general scientific computation. Variable-precision floating-
point and non-floating-point computing are not so clearly associated with scientific computing ex-
cept in their connection to symbolic computing, that is, using the computer to do mathematics
by manipulating symbols. This field of application of computers traces back almost as far as
numerical computing but, historically, the approach to using the computer is different. Numer-
ical computing, characterized by long but routine sequences of operations, proceeds very well
without monitoring. Symbolic computing is more exploratory in nature, with responses from one
calculation requiring human thought before the next calculation is initiated. We say symbolic
computing is interactive whereas numerical computing is (relatively) noninteractive. A modem
trend is for all computing to be more interactive, except possibly for very long numerical
simulations done by supercomputers. Even in supercomputing, interactivity plays a role
in the interpretation of results by graphical computing, so-called visualization, and
in the derivation of complicated formulas by symbolic computing for use in mathematical
models.

Decimal (or binary) approximations are avoided as much as possible in symbolic computing
because the intention is to produce exact results. Integers and rational numbers, introduced as
exact quantities and combined by exact arithmetic operations, avoid approximation and so they
are admitted. Thus exact rational arithmetic, with its attendant need for variable storage control,
supports a form of non-floating-point computing found in all symbolic computing systems. But
decimal approximations cannot always be avoided. Sometimes a formula needs to be evaluated
numerically, for example to produce a graph. Therefore, most symbolic computing systems pro-
vide, as an option that can be exercised by explicit commands, a means to evaluate formulas
in variable-precision floating-point arithmetic. The ability to compute in higher precision is im-
portant because formulas generated by symbolic computing can be, and often are, numerically ill-
conditioned. However, the numerical evaluation of special functions is sometimes limited to the fixed
precision of the hardware arithmetic because of the difficulty of devising suitable variable-precision
algorithms.

In this paper we are concerned exclusively with fixed-precision and variable-precision floating-
point evaluation of special functions, and we utilize the following software classification [21]:

SI. Software packages
$2. Intermediate, or specialized, libraries

348 D.W. Lozier/Journal of Computational and Applied Mathematics 66 (1996) 345-358

$3. Comprehensive libraries
$4. Interactive systems

These categories are to be regarded as progressively increasing in scope and organization.
A software package is an algorithm, or collection of algorithms, that has been implemented in

a specific programming language and published in a research or technical article. 2 Its purpose
is to make new algorithms available to programmers in an immediately usable form. Three im-
portant series of software packages are the ACM Algorithms in A CM Transactions on Mathe-
matical Software [17], the AS Algorithms in Applied Statistics [28], and the CPC Programs in
Computer Physics Communications [14, 15]. All contributions to these series are refereed before
acceptance.

Intermediate and comprehensive libraries consist of software packages that have been collected,
developed, organized and unified to meet the practical needs of programmers. Intermediate libraries
are limited to a subset of numerical mathematics. Three examples that specialize in mathematical
functions are the libraries of Baker [5], Moshier [25] and United Laboratories, Inc. [31]. Com-
prehensive libraries strive for complete coverage of numerical mathematics, with attention paid to
uniformity of documentation, style of usage, and handling of errors. Among the many examples
are CERN [8], IMSL [2], NAG [16], NSWC [24], Numerical Recipes [27], NUMPAC, 3 Scientific
Desk, 4 and SLATEC [7].

Software packages and libraries are usually written in a standard programming language such as
Fortran or C. They are used in the traditional compile-link-execute cycle of fixed-precision floating-
point programming. Interactive systems break this cycle by providing a comprehensive set of com-
mands, or in some cases items on menus, that produce an immediate response when entered at the
keyboard or selected by the mouse. These systems are extensible in that user-written commands
can be added, much like user-written subroutines are added to a library. However, straightforward
extension of an interactive system requires programming in the specialized language of the system.
Some systems provide a way of incorporating software written in a standard programming language
but the process tends to be cumbersome. Three examples of interactive systems for symbolic com-
puting with integrated support for graphics and floating-point computing are Macsyma [30], Maple
[9] and Mathematica [32]. Three examples of interactive systems for fixed-precision floating-point
computing with integrated support for graphics are HiQ [6], Mathcad [22] and Matlab [23]. HiQ
and Mathcad, in particular, make extensive use of menus.

Software packages, intermediate and comprehensive libraries, and interactive systems serve differ-
ent purposes. For special functions in a supercomputing application, the manufacturer's optimized
library would be the preferred choice except that these libraries typically include little beyond algo-
rithms for linear algebra and Fourier transforms. Accordingly, comprehensive libraries, augmented
by software packages and intermediate libraries where necessary and when available, are the norm.
Interactive systems are not much used in the number-crunching stage of supercomputing, because

2 It must be noted here that our usage of the term software package differs from common usage. More usually, it means
a comprehensive, integrated, and usually commercially supplied, sottware product. For the latter we prefer to distinguish
between libraries and interactive systems.

3 Information can be obtained from Ichizo Ninomiya, Chubu University, Kasugai, Aichi 487, Japan, or Yasuyo Hatano,
Chukyo University, Yagoto, Nagoya 466, Japan.

4 Information can be obtained from C. Abaci, Inc., P.O. Box 2626, Raleigh, NC 27602, USA.

D. W. Lozier l Journal of Computational and Applied Mathematics 66 (1996) 345-358 349

of the emphasis on very high execution rates, but symbolic and graphical systems are important
during the algorithm development and visualization stages.

Similar remarks apply to numerical computing in general when a standard programming language
is being used. However, interactive systems are becoming increasingly popular for small to medium-
scale computations because they provide an integrated computing environment that can substantially
ease the programming burden.

3. Current software

To assess the current state of affairs with respect to the availability of fixed-precision and variable-
precision floating-point software for special functions, the following method of seorino was applied.
For a given function and library or system, the score is zero if the function is not present, one if the
function is present but only for real variables, two if the function is present for complex variables
but without separate provision for real variables, or three if there is separate provision for real and
complex variables. The distinction between scores of 2 and 3 is made because real computation
is less demanding, in general, than complex computation, and the resulting efficiency can be of
importance in supercomputing applications. On the other hand, a score of 2 is quite satisfactory if
high efficiency is not critical, a situation that is typical when an interactive system is being used
in numerical applications and even in many standard programming applications with floating-point
libraries.

This method of scoring takes into account only the presence or absence of a function. It is
also important to know if technical support is available to answer questions and analyze failures.
In general, this kind of support is very good for comprehensive libraries and interactive systems,
particularly when they are commercially supplied. For other kinds of software, the original authors
often are willing to assist.

Scores for 44 functions and 15 libraries and systems were determined with the aid of the survey
paper [21], augmented by reference to software manuals and direct experimentation with the software
where necessary. Fig. 1 is a graphical depiction of the resulting matrix of scores where white
corresponds to a score of 0, light gray to 1, dark gray to 2, and black to 3. A software package, or
at least an algorithm, is listed in the survey paper for all the functions. The functions and software
that correspond to the matrix rows and columns are identified in Tables 1 and 2, respectively. The
rows and columns are arranged by their decreasing cumulative scores.

The figure and tables summarize and extend the survey paper. They can be used for several pur-
poses. One immediately obvious use is in the software consultant's role in providing information to
programmers upon request. Another use is in identifying gaps in the coverage of special functions.
Among the comprehensive libraries, so important in supercomputing and general scientific comput-
ing, only 7 functions are present in every one: Bessel functions of real order, the error function
and Dawson's integral, the exponential integrals, the complete and incomplete gamma functions,
and the incomplete elliptic integrals. Eight functions are present in none: generalized hypergeomet-
ric and zeta functions, incomplete Bessel functions, integrals of Anger-Weber functions, Landau
density and distribution functions, polylogarithms, spheroidal wave functions, and Weber parabolic
cylinder functions. Among the 29 functions that are present in at least one but not all comprehen-
sive libraries, we find Airy functions, Bessel functions of complex order, the dilogarithm, elliptic

350 D. IV.. Lozier/Journal of Computational and Applied Mathematics 66 (1996) 345-358

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
2g
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 1. Matrix of scores for 44 functions and 15 libraries and interactive systems. See the text for the definition of score.
A score of 3 is indicated by black, 2 by dark gray, 1 by light gray, and 0 by white. The functions are identified in
Table 1. The libraries and systems are identified in Table 2.

functions, Legendre and associated Legendre functions, inverse incomplete gamma and beta func-
tions, the psi and polygamma functions, and the zeta function.

A third use is in identifying possibilities for software testing, a topic that will be treated in more
detail in the next section of this paper. The comprehensive libraries support fixed-precision floating-
point computing. Variable-precision floating-point computing is supported by Macsyma, Maple and
Mathematica, and also by Matlab (which markets an add-on symbolic computing capability using
Maple). Therefore, a library function could be tested, in principle, by comparison against the same
function in one of the interactive systems, provided its system score is sufficiently high. From Fig. 1,
such a procedure is potentially feasible for 30 of the 36 functions that are included in one or more
comprehensive libraries. The excluded functions are Struve functions or integrals of them, Coulomb
wave functions, integrals of Bessel functions, integrals of the error function, Mathieu functions, and
generalized polylogarithms.

D. W. Lozier l Journal o f Computational and Applied Mathematics 66 (1996) 345-358

Table 1
Functions and their cumulative scores over 15 libraries and systems

351

Function Cum. score

1 Gamma function 33
2 Error function 29
3 Bessel functions of real order 28
4 Airy functions 25
5 Exponential integrals 21
6 Psi and polygamma functions 19
7 Incomplete gamma function, generalized exponential integrals 19
8 Bessel functions of integer or half-integer order 17
9 Dilogarithm 16

10 Jacobian elliptic fimctions 16
11 Incomplete elliptic integrals 15
12 Dawson's integral 13
13 Incomplete beta function 13
14 Sine, cosine, hyperbolic sine and hyperbolic cosine integrals 12
15 Fresnel integrals 12
16 Complete elliptic integrals 12
17 Bessel functions of orders 0 and 1 10
18 Inverse error function 9
19 Classical orthogonal polynomials 9
20 Legendre and associated Legendre functions 9
21 Confluent hypergeometric functions 9
22 Zeta function 8
23 Inverse incomplete gamma function 8
24 Inverse incomplete beta function 8
25 Logarithmic integral 7
26 Hypergeometric functions 7
27 Weierstrass' elliptic functions 7
28 Generalized zeta function 6
29 Bessel functions of complex order 6
30 Polylogarithms 5
31 Struve functions or integrals of Struve functions 5
32 Generalized hypergeometric functions 5
33 Zeros of Bessel functions 4
34 Fermi-Dirac, Bose-Einstein and Debye integrals 4
35 Coulomb wave functions 3
36 Integrals of Bessel functions 3
37 Integrals of the error function 2
38 Mathieu functions 2
39 Weber parabolic cylinder functions 1
40 Integrals of Anger-Weber functions 1
41 Generalized polylogarithms 1
42 Spheroidal wave functions 1
43 Landau density and distribution functions 0
44 Incomplete Bessel functions 0

See the text for the definition of score. See Fig. 1 for individual scores. See also
Table 2.

352 D.W. Lozier /Journal of Computational and Applied Mathematics 66 (1996) 345-358

Table 2
Intermediate libraries [ILl, comprehensive libraries [CL], and interactive
and their cumulative scores over 44 functions

systems [S]

Library or interactive system Cure. score

1 Mathematica [S] 58
2 C Mathematical Function Handbook [IL] 46
3 Naval Surface Warfare Center Library [Fortran CL] 43
4 CERN Library [Fortran CL] 40
5 Nagoya University Mathematical Package [Fortran CL] 35
6 IMSL Library [Fortran CL] 31
7 Mathematical Function Library for Microsoft Fortran or C [IL] 25
8 Methods and C Programs for Mathematical Functions [ILl 25
9 NAG Library [Fortran CL] 24

10 Maple IS] 22
11 SLATEC Library [Fortran CL] 22
12 Scientific Desk [Fortran CL] 22
13 Macsyma IS] 18
14 Numerical Recipes [Basic, C, Fortran or Pascal CL] 17
15 Matlab [S] 12

See the text for the definition of score. See Fig. 1 for individual scores. See also
Table 1.

The need to fill some of the gaps in the coverage of special functions is evidenced by recent
inquiries. The NA Digest has been serving numerical analysts since 1987 with a moderated (edited)
newsletter that is distributed by electronic mail. It is maintained by the Oak Ridge National Labo-
ratory and it has a readership of approximately 4000. Sixteen inquiries have appeared: three for Leg-
endre and associated Legendre functions; two each for Gauss hypergeometric, Mathieu and spheroidal
wave functions; one each for Bessel functions of pure imaginary order, spherical Hankel functions,
Kummer's or Whittaker's confluent hypergeometric functions, complex elliptic integrals, partial
derivatives of the incomplete beta function, the inverse of the complementary error function, and
standard probability functions accurate to full double precision. The newsgroup sci.math.num-

a n a l y s i s is an unmoderated electronic bulletin board with thousands of postings each year. Only
a small number of these from the spring of 1994 have been reviewed. Inquiries about the following
functions have been observed: the incomplete gamma function of complex argument; the integral of
the incomplete gamma function; the digamma, Fermi-Dirac, Hankel, Jacobi and Weierstrass elliptic,
parabolic cylinder, and zeta functions. Recent inquiries have been received directly by the author of
this paper for the Gauss hypergeometric function, Legendre and associated Legendre functions, and
spheroidal wave functions. In view of the number of gaps and the effort that would be required to
fill them, those who wish to provide new software should be guided by the expressed needs of the
scientific community.

4. Testing, validation and characterization

The previous section identified gaps in the coverage of special functions in current libraries and
systems. It did not raise the question of the quality of the software. This topic has many ramifications
but we are interested here only in numerical accuracy. As an example of the need for testing, we

D. I4(. Lozier l Journal of Computational and Applied Mathematics 66 (1996) 345-358 353

cite [26] in which an intermediate library with extensive coverage of special functions was reviewed.
It was found that a subroutine for evaluating the Bessel function J~(x), x and v real, returned highly
inaccurate or even totally incorrect values for certain arguments and orders. For example, the sign

1 1 and all the digits of the computed value of J~(x) were wrong when x ~ 9re and v = 25(2)105. The
reason appeared to be, at least in part, that Miller's backward recurrence algorithm was applied with
normalization of the trial values by a computed value of J1/2(97r). Since Jt/2(9rc) = 0, this cannot
succeed. An alternative normalization based on

(2) (v + 2k)r (v + k) _ = k! J~+2k(X), V # 0 , - -1 , - -2 , . . .
k=O

[1, Eq. (9.1.87)] would have avoided the failure.
There are two principal approaches to testing. The first is comparison against a standard. More

than 20 years ago, this was described and applied to elementary functions in [18, 19, 29]. The
second approach is verification o f functional identities. This has been described and applied to
elementary and special functions in a long series of papers by W.J. Cody and co-workers, of which
[11-13] are recent examples. Comparison testing is conceptually simple but requires computing in
higher precision. Verification testing is performed entirely in one precision but requires great care
in choosing an appropriate identity and in programming its verification. This complication is due to
the necessity for separating the error that arises in the evaluation of the identity from the error in
the numerical evaluation of the function itself.

Both approaches require a method of selecting test arguments and a method of measuring the
error. Typically, test arguments are generated on a uniform grid or randomly except near special
features of the function, algorithm, or computer arithmetic. These features include zeros, poles,
and special values of the function, cross-over boundaries between approximations that are used
in the algorithm, underflow and overflow thresholds, and special bit patterns. Often these nonran-
dom test arguments are the most instructive, as in the example of the Bessel function described
above, but they also require careful analysis of the algorithm to identify its weaknesses. Unfor-
tunately, black-box testing alone can never be used to prove correctness. Verification testing im-
poses an additional difficulty: the function must usually be evaluated at more than one point. This
leads to the process known as "purification" in which the multiple arguments are carefully ad-
justed after initial generation so as to minimize the error due to evaluation of the identity; see, for
example, [13].

Relative error is the usual error measure but it suffers from two deficiencies: it is not a genuine
distance function, and it is totally inappropriate in the vicinity of a zero. An alternative measure
that overcomes the first deficiency, and that closely approximates relative error, is relative precision
[lO]:

rp(x,y) = [l n x - lnYl, x,Y > O.

Next, in the vicinity of a zero, relative error is often replaced by absolute error. However, this is
not entirely satisfactory because the location of the transition is arbitrary. A uniform error measure
that avoids this difficulty is the distance function

d(x,2) = I (x) -

354 D. IV.. Lozier / Journal of Computational and Applied Mathematics 66 (1996) 345-358

where

~9(x) = { x if 0~<x~< 1,
l + l n x i fx~>l .

At their present stage of development, neither approach to accuracy testing is entirely satisfactory.
Indeed, it is an accepted belief that good software must be developed in conjunction with test
programs, and that the test programs should be distributed with the software. Test programs can be
found that use either or both approaches. Typically, the tests are run when the software is installed.
This process, often known as validation, is necessarily cursory in that only a tiny fraction of the
whole set of possible inputs is tested. Validation cannot guarantee that the software will be accurate
enough for a specific application. Therefore, a need exists for improved software that can be used to
characterize the numerical accuracy of special functions in any subset of the input domain, to any
degree of detail. We will use the term characterization for the process of determining the detailed
behavior of the error in software for numerically evaluating a special function.

Testing that goes beyond validation to characterization should be oriented toward users and soft-
ware analysts who are independent of the developers. This makes the conceptual simplicity of the
comparison method particularly attractive. Fortunately, the computational obstacles that were burden-
some 20 years ago can be largely overcome today. Previously, the limited capabilities of program-
ming languages and the high cost of computing on main-flame equipment were serious issues. Now
modem programming languages such as Fortran 90 and C ++ are adequate to support higher-precision
operations in a convenient, user-friendly manner; see, for example, [4]. Alternatively, following the
suggestion made in the previous section, an interactive system could be used to provide higher
precision for testing functions in fixed-precision libraries. And networks of workstations provide an
abundance of numerical computing power that could be harnessed using modem programming and
communications technology. It is possible today to consider establishing a software testing service
center that would offer customized characterization of special functions on request. Ideally, such
a service would be offered on the Intemet so that individuals could formulate and carry out the
desired tests. The remainder of this section is devoted to an example of how such a request could
be answered with the aid of a graphical presentation of the results.

Let us take as our example two software packages for the Airy function Ai(z) for complex z.
Package A is that of Amos [3]. This has been incorporated into numerous libraries and systems
because of its comprehensive, efficient and accurate coverage of Bessel and Hankel functions. Ai(z)
is provided through its representation in terms of the modified Bessel function K~/3(~) where ~ =
~Z2 3/2. Package B, unpublished as yet, uses the algorithm described in [20]. This algorithm computes
Ai(z) directly from its asymptotic expansion and its defining differential equation, which is integrated
numerically. Both packages provide an option to evaluate the scaled function A-~(z) = e ~ Ai(z). We

- - 2 wish to characterize the error in Ai(z) in the zero-flee sector [z[~<25, I argz[~< ~ .
Figs. 2 and 3 show the results of this characterization of Packages A and B, respectively. The

figures are surface plots of the error measure

e(z) = rp(Ail (z), Ai2(z)),

where the subscript 1 indicates the single-precision approximation computed by Package A or B
and 2 indicates the double-precision approximation computed by Package A. For small errors, e(z)
is almost the same as the conventional relative error.

x 10 -s

40

1.5. 1

1.

0.5.

0-

10 20 20
15

50

D.W. Lozier / Journal of Computational and Applied Mathematics 66 (1996) 345-358 355

A

2 ~3/2 Fig. 2. Error in A m o s ' s software for the Airy function e ; A i (z) , z complex, ~ = g~ , on the 51 x 21 grid with
2 [z(i [= ½ (i - 1), i = 1,2 51, and argz(l = - g r c + 2 g (j - 1)/30, j = 1,2 21. The max imum error on the

grid is 1.7 × 10 -5 .

x 10 -5

111
0.5

0

20
30 15

40 10
5

50

Fig. 3. Error in a new algori thm for the Airy function e; Ai(z) , z complex, ~ = 2 _3/2 gz , on the 51×21 grid with Iz, Jl -- ½ (i - 1) ,
i = 1,2 51, and argzq = -3z-n + 2 ~ (j - 1)/30, j = 1,2 21. The max imum error on the grid is 0.28 × 10 -5.

356 D. W. Lozier / Journal of Computational and Applied Mathematics 66 (1996) 345-358

The maximum of e(z) is 1.7 × 10 -5 in Fig. 2 and 0.28 × 10 -5 in Fig. 3. For comparison, the
maximum relative error due to a difference of one bit at the end of the 24-bit floating-point mantissa
is 0.012 x 10 -5. Accordingly, the maximum error in this characterization of Package A affects the
last 8 bits of the mantissa, compared to the last 5 bits for Package B.

Often the maximum and root-mean-square errors are the only statistics given in tests; see, for
example, [11]. But Figs. 2 and 3 show how much information can be lost by attempting to charac-
terize a function with only one or two numbers. A user might feel more confidence in Package B
because the error appears to be more regular and predictable. A software analyst might be inter-
ested in explaining a failure in one of the packages, or in ruling out a package as the cause of a
failure in a larger application, or in attempting to improve the performance of the package. In all of
these circumstances, detailed graphical output is illuminating and the ability to craft detailed tests
is valuable in developing an adequate characterization of a function.

5. Summary and conclusions

In Section 2, we presented a simple classification of scientific computing in which we distinguished
numerical computing from symbolic and graphical computing, and we described some of the ways
special functions interact with the categories of the classification. Then, following the classification
of software given in the survey paper [21], we defined and gave examples of software packages,
intermediate and comprehensive libraries, and interactive systems.

In Section 3, we devised a method of scoring the coverage of a particular function in a library
or interactive system, and we applied it to 44 functions and 15 libraries and systems. The resulting
matrix of scores was depicted graphically in Fig. 1 with accompanying detail presented in Tables 1
and 2. Then we discussed ways of discerning gaps in the coverage and how to evaluate the potential
for testing library software by comparison against system functions. This approach is suggested by
the fact that many systems support variable-precision floating-point computing while most libraries
are limited to fixed precision. At the end of Section 3, we reviewed inquiries about special functions
that have surfaced in the electronic media and elsewhere, thereby providing evidence of need to fill
the gaps.

We addressed the question of evaluating the quality (numerical accuracy) of function software
in Section 4. We distinguished between comparison testing and verification of functional identities
as the two chief testing strategies, and we introduced the term characterization for the process of
determining the detailed behavior of the error. Then we proposed the establishment of a software
testing service center that would offer powerful testing software for use by anyone on the Internet.
Finally, as an example of characterization, we presented surface plots in Figs. 2 and 3 of the relative
error in two different packages for the complex Airy function.

Our conclusions are as follows. First, given that over 50% of the scores in Fig. I are 0, the
computation o f special functions is not a mature field when it comes to the provision of software
in libraries and interactive systems. Second, since nearly 75% of the nonzero scores are 1, the
computation o f complex functions is an area o f particular need. Third, since an algorithm or
software package has been published for all the functions in Table 1, the foundations exist for
improving the coverage o f special functions. Fourth, in view of the characterization of the Airy
functions in Figs. 2 and 3, describing the accuracy o f functions by giving one or two simple statistics

D. IV.. Lozier / Journal of Computational and Applied Mathematics 66 (1996) 345-358 357

is not adequate. And fifth, in view of the current advanced state of network communications and
abundance of computational power, the development of user-oriented software for characterizing
functions, over the Internet if possible, should be considered.

References

[1] M. Abramowitz and I.A. Stegun, Eds., Handbook of Mathematical Functions with Formulas, Graphs and
Mathematical Tables, National Bureau of Standards Applied Mathematics Series 55 (US Government Printing
Office, Washington, DC, 1964).

[2] T.J. Aird, The IMSL library, in: W.R. Cowell, Ed., Sources and Development of Mathematical Software (Prentice-
Hall, Englewood Cliffs, NJ, 1984) 264-301.

[3] D.E. Amos, Algorithm 644. A portable package for Bessel functions of a complex argument and nonnegative order,
ACM Trans. Math. Software 12 (1986) 265-273; for remark see ACM Trans. Math. Software 16 (1990) 404.

[4] D.H. Bailey, Algorithm 719. Multiprecision translation and execution of Fortran programs, ACM Trans. Math.
Software 19 (1993) 288-319.

[5] L. Baker, C Mathematical Function Handbook (McGraw-Hill, New York, 1992), includes diskette.
[6] Bimillennium Corporation, HiQ Reference Manual, Version 2.0, 16795 Lark Avenue, Suite 200, Los Gatos, CA,

1993.
[7] B.L. Buzbee, The SLATEC common mathematical library, in: W.R. Cowell, Ed., Sources and Development of

Mathematical Software (Prentice-Hall, Englewood Cliffs, NJ, 1984) 302-320.
[8] CERN Program Library Office, CERNLIB Short Writeups, CERN-CN Division, Geneva, Switzerland, 1993 (e-mail:

cernlib@cernvm.cern.ch).
[9] B.W. Char, K.O. Geddes, G.H. Gonnet, B.L. Leong, M.B. Monaghan and S.M. Watt, Maple V Library Reference

Manual (Springer, New York, 1991).
[10] C.W. Clenshaw and F.W.J. Olver, Beyond floating point, J. Assoc. Comput. Mach. 31 (1984) 319-328.
[11] W.J. Cody, Algorithm 714. CELEFUNT: a portable test package for complex elementary functions, ACM Trans.

Math. Software 19 (1993) 1-21.
[12] W.J. Cody, Algorithm 715. SPECFUN: a portable Fortran package of special function routines and test drivers,

ACM Trans. Math. Software 19 (1993) 22-32.
[13] W.J. Cody and L. Stoltz, The use of Taylor series to test accuracy of function programs, ACM Trans. Math.

Software 17 (1991) 55~53.
[14] Program master index volumes 1-40, July 1969-June 1986, Comput. Phys. Comm. (1987) 1-75.
[15] Master index volumes 41-50, July 1986-July 1988, Comput. Phys. Comm. (1990) 17-30.
[16] B. Ford and J.C.T. Pool, The evolving NAG library service, in: W.R. Cowell, Ed., Sources and Development of

Mathematical Software (Prentice-Hall, Englewood Cliffs, NJ, 1984) 375-397.
[17] F.T. Krogh, ACM algorithms policy, ACM Trans. Math. Software 17 (1991) 427-430.
[18] D.W. Lozier, L.C. Maximon and W.L. Sadowski, A bit comparison program for algorithm testing, Comput. J. 16

(1973) 111-117.
[19] D.W. Lozier, L.C. Maximon and W.L. Sadowski, Performance testing of a Fortran library of mathematical function

routines - - a case study in the application of testing techniques, J. Res. Nat. Bur. Standards 77B (1973) 101-110.
[20] D.W. Lozier and F.W.J. Olver, Airy and Bessel functions by parallel integration of ODEs, in: R.F. Sincovec, D.E.

Keyes, M.R. Leuze, L.R. Petzold and D.A. Reed, Eds., Proc. 6th SIAM Conf. on Parallel Processing.for Scienti]ic
Computing, Vol. 2 (SIAM, Philadelphia, 1993) 531-538.

[21] D.W. Lozier and F.W.J. Olver, Numerical evaluation of special functions, in: W. Gautschi, Ed., Mathematics of
Computation 1943-1993: A Half Century of Computational Mathematics, Proc. Symposia in Applied Mathematics,
Vol. 48 (AMS, Providence, RI, 1994) 79-125.

[22] MathSoft Inc., Mathcad 4.0 User's Guide, 201 Broadway, Cambridge, MA, March 1993.
[23] The MathWorks, Inc., MATLAB High Performance Numeric Computation and Visualization Software Reference

Guide, Natick, MA, August 1992 (e-mail: info@mathworks.com).
[24] A.H. Morris Jr., NSWC Library of Mathematics Subroutines, NSWCDD/TR-92/425, Naval Surface Warfare Center,

Dahlgren Division, Dahlgren, VA, January 1993.

358 D.W. Lozier/Journal of Computational and Applied Mathematics 66 (1996) 345-358

[25] S.L.B. Moshier, Methods and Programs for Mathematical Functions (Ellis Horwood, Chichester, 1989), separate
diskette.

[26] F.W.J. Olver, Review of United Laboratories, Inc., Mathematical Function Library for Microsoft-Fortran (Wiley,
New York, 1989); Math. Comp. 56 (1991) 879-885.

[27] W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flanncry, Numerical Recipes. The Art of Scientific Computin 9
(Cambridge Univ. Press, Cambridge, 2nd ed., 1992), diskettes and example books available; editions exist in Basic
(1991), C (1992), Fortran (1992), Macintosh Fortran (1988) and Pascal (1989).

[28] J.P. Royston, J.B. Webb, P. Griffiths and I.D. Hill, The construction and description of algorithms, Appl. Statist.
36 (1987) 94--103.

[29] W.L. Sadowski and D.W. Lozier, A unified standards approach to algorithm testing, in: W.C. Hetzel, Ed., Program
Test Methods (Prentice-Hall, Englewood Cliffs, NJ, 1973) 277-290.

[30] Symbolics, Inc., MACSYMA Reference Manual, Version 13, Arlington, MA, November 1992.
[31] United Laboratories, Inc., Mathematical Function Library for Microsoft-C (Wiley, New York, 1990), includes

diskettes.; edition also exists in Fortran (1989).
[32] S. Wolfram, Mathematica, a System for Doin9 Mathematics by Computer (Addison-Wesley, Redwood City, CA,

2nd ed., 1991).

