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Abstract

Until recently, the automotive industry was solely relying on one energy resource: oil. However, because of several
environmental, political and economical issues, new alternatives are now emerging, such as electric vehicles (EVs).
The greenhouse gas (GHG) emissions of an EV are linked with the manufacturing of the car and the electricity
production during the use phase. In this article, we study the GHG emissions linked with EVs using photovoltaic
(PV) and wind electricity associated with a Renault EV.

GHG emissions are compared with EVs using average electricity from various European countries and from
conventional thermal vehicles. The results show that using wind electricity always allows decreasing GHG emissions
while PV impact is dependent on the country studied. Nonetheless, when using PV electricity, GHG emissions are
always lower than conventional thermal vehicles.
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1. Context, aim and scope

Until the end of the twentieth century, the automotive industry was solely relying on one energy
source: oil. However, this dependence to oil has led to several issues, such as anthropogenic global
warming, air pollution (especially in highly populated areas), depletion of oil, dependence of oil-
consuming countries (for instance the European Union, EU) to oil-producing countries, etc. In order to
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meet these challenges, different technologies are being developed: first-generation biofuels (mainly
ethanol and biodiesel), second-generation biofuels (biomass to liquid, hydrogenated vegetable oil, etc.),
algal fuels, hydrogen associated with fuel cells and electric vehicles (from mild hybrid to fully electric
vehicles).

In this article, we focus on electric vehicles (EVs). The environmental impact of a vehicle can be
separated in four steps: car production, fuel production, car use and car disassembly and recovery. Here,
we only retain the fuel production and the car use. The impact of using an EV mainly comes from the
electricity production, which is dependent on the primary resource employed: natural gas, coal, nuclear,
water, wind, sun, geothermal, etc. Each country has its own energy strategy, using different sources
(referred as the electricity “mix’’). This means that, depending on where they are driven, EVs can have
very different environmental impacts. Moreover, this implies that, for customers who want to reduce their
environmental impact, it is possible to couple EVs with renewable energies, such as photovoltaics (PV) or
wind. The aim of this study is to assess the greenhouse gas (GHG) emissions of charging an EV with PV
and wind electricity compared with an EV using average electricity mix and conventional vehicles (using
internal combustion engines, ICE).

2. Materials and methods
2.1. Life cycle assessment and well to wheels analysis

Life cycle assessment (LCA) has been retained as the best tool to assess the GHG emissions associated
with our system. LCA is a normalized tool (ISO 14040/14044) that sums up all the resources consumed
and all the emissions of a product or a service. Here, as we only study the use phase of the cars, the LCA
can be referred as a “well to wheels” (WTW) analysis, meaning that the environmental impacts are
studied from the extraction of energy resources (from the “well”) to the car (to the “wheels”). The WTW
approach can be separated in two steps: the well-to-tank (WTT) stage, which covers the production of the
required energy (liquid fuel or electricity) and the tank-to-wheels (TTW) stage, covering the consumption
of energy and pollutant emissions by a car on a given distance. For EVs, the environmental impacts are
limited to the WTT step, since the consumption of electricity by EVs does not emit any pollutant.
Because we narrow our study to GHG emissions (CO, but also methane and nitrous oxide, using factors
from [1]), the WTW analysis can be summed up by the following equation:

[(energy prod. GHG (MJ™") x energy cons. (MJ.distance™))wrr + (exhaust GHG (distance™))rrwlwrw
2.2. Photovoltaic energy
2.2.1. Description of the system

PV electricity can represent various technologies, which can be separated in three groups: silicon-
based PV, thin films and other technologies. Today, silicon-based technologies represent the majority of
the installed PV panels, with monocristalline (mono-Si) and multicrystalline (multi-Si) respectively
representing 40% and 46% of the market in Europe in 2010 (according to the European Photovoltaic
Industry Association). Thin films, especially cadmium telluride (CdTe) technologies, are now emerging,
representing about 13% of the market. Thus, in this study, we focus only on these three technologies. PV
is a non-centralized energy, which can be produced by both small producers and large plants (about 100
MW, [2]). The power of a PV panel is defined using the Watt-peak concept, which represents the nominal
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power of the PV panel exposed under a 1,700 kWh/m?*/yr irradiation. This value enables the comparison
of various panels but do not represent the true power delivered. Indeed, the irradiation in Europe is
strongly dependent on latitude, with values ranging for instance from 955 kWh/m*/yr in the UK to 1,660
kWh/m*/yr in Spain, France representing the average value in Europe (1,204 kWh/m?/yr). Thus, the
efficiency of the panel greatly varies, according to the country retained. The yield (1) of the panel, which
corresponds to the electric power delivered per sun energy received, depends on the nominal power (P,
Watt-peak), the irradiation (Irr, W/m?) and the effective surface of the panel (A, m’), according to the
following equation: m =P / (Irr X A). The yield of silicon-based PV panels is comprised between 14%
and 19% [3] for south 45° oriented panels under a 1700 kWh/m?*yr irradiation, multi-Si being slightly
less efficient than mono-Si. The yield tends to decrease during the lifetime of the panel and thus we
retained the average yield during a 30-year lifetime. In our study, the yield retained under average
irradiation (1204 kWh/m?/yr) and optimal inclination (45° south) are: monoSi (13,1%), multi-Si (12,8%)
and CdTe (9,6%).

PV panels, notwithstanding the technology considered, are composed of framed modules, which are
made of cells in series. The first step of PV panel production is quartz extraction from sand. The silica
contained in the quartz crystals is then turned into metallurgic-grade silicon using an electric-arc furnace.
The average silicon purity obtained is equal to 98.5% [4]. This purity being insufficient for PV panels, it
is purified using the Siemens process in order to obtain solar-grade silicon, with impurities being less than
ppm — ppb [4]. These steps are common for both mono-Si and poly-Si panels. For mono-Si panels, round
wafers are obtained from mono-Si crystals using the Czochralski process and then cut into cells. For
multi-Si panels, rectangular wafers are obtained from multi-Si ingots using the Bridgeman or the block-
casting processes. Multi-Si allows less losses of silicon during the process of cutting. For both
technologies, the silicon is then arranged in two layers, one negative (n-layer with boron) and the other
positive (p-layer with phosphorus), these two layers being put between two conducting grids. The cells
are then covered with ethylene-vinyl acetate (EVA) and glass to protect them. Finally, cells are put
together to form a module which is incorporated within a frame to form a panel. The manufacturing
process of CdTe panels is completely different from the previously described panels because they contain
no silicon. Yet, they also use two layers (a p- and an n- layer), covered by a conducting grid and protected
by an EVA layer and glass. The p-layer is composed of cadmium telluride while the n-layer is composed
of cadmium sulfide. Notwithstanding the technology studied, the panels deliver a low-voltage direct
current, which must be turned into 220-230V alternating current to be suitable for EVs. This requires a
DC/AC converter and an inverter. Cables and other small electric devices are also required to connect the
PV panel to the grid or the vehicle (in this study, we consider a panel directly connected to the vehicle).
All this supplementary materials are called “balance of the system” (BoS).

Though we study the impacts of the PV panels installed in EU, this does not mean that all panels are
produced there. Indeed, PV panels mainly come from three geographical zones : EU, United States (US)
and China. The place of production plays a role in the environmental impact of PV panel production and
thus it cannot be neglected [5]. In our study, PV panels installed in the EU in 2010 come from the
following regions: China (60%), EU (25%) and US (15%) (adapted from [6]).

Recycling of PV panels is not yet a developed industrial pathway, especially for thin film technologies.
For both CdTe and silicon panels, recycling process are not so well known and thus we only consider
aluminum (from the frame), glass and copper recycling. The other materials are either incinerated or, for
the majority of them, landfilled.
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2.3. Wind energy

Wind is an abundant energy, which is collected and turned into electricity using wind turbines (WTs).
Wind energy is especially abundant in plains and near / above the sea. Therefore, we can consider that
wind energy yields are not dependent on the country where WTs are planted, contrary to PV electricity,
but depends on the wind strength in the area. The main differences are between onshore and offshore WTs
while countries are only differentiated according to the number and capacity of WTs that can be planted.
The nominal power of WTs varies, depending on the wind that can be harvested and thus WTs in EU tend
to have nominal powers between 0.8MW to 2.3MW. According to a randomly picked sample from [7],
the average 2011 WT has a 2MW nominal power and is retained in our study. Offshore WTs tend to have
higher nominal powers but represent a marginal part of WTs installed in EU. Therefore, they are
neglected in our study. The nominal power does not represent the actual power delivered by the WT. This
power depends on the wind, which, as explained above, can greatly vary between different locations. The
load factor corresponds to the actual power that the WT can deliver. This load power varies from 20% to
70%, with 25% being the average retained between southern Europe (28%, Mediterranean coast) and
Northern Europe (20%, Germany).

A standard horizontal axis WT can be separated between a fixed part and moving parts. The fixed part
is basically composed of a painted steel tower with concrete fundations (around 500 m®). Steel sheets of
the desired size are rolled up to form the tower which is then painted. The moving parts are mainly the
blades (usually three) and the pod. The blades are composed of polyester reinforced with glass or carbon
fiber. They weigh about 6,5t, with about 2,6t of glass fiber for a 39m standard blade [8]. They are attached
together to a steel structure, which is connected to an electric machine in the pod. The alternating current
generated by the WT is then turned into the desired voltage to be connected to the electric grid. Contrary
to PV panels, the car using WT electricity is connected to the grid and not directly to the WT. In addition,
no importations are considered and WT are entirely produced in EU. After 20 years of use, most of the
wind turbine components can be recycled: oil, aluminum, copper and especially steel. Plastics are
incinerated while other components are disposed of in landfills.

2.4. Life cycle modeling

Life cycle modeling is done wusing Gabi4 software [9] and data from literature
[10,11,12,13,14,15,16,17,18,19] and from commercial brochures from different suppliers. For missing
data, the following databases are used, by priority order: European life cycle database (ELCD, [20]),
GaBi4 [9] and ecoinvent [21]. CdTe panel production were mainly modeled according to the ecoinvent
database, since the literature and the suppliers are less numerous.

Figure 1 describes the production of a European PV panel. However, as shown in section 2.2, PV
panels mainly come from China and a significant part also comes from US. Thus, the steps from silicon
production to panel production were modified to take into account this geographical variation. The main
modifications concern the electricity mix and the source of energy for furnaces and heaters (using mainly
natural gas in EU and coal in China). Once built, PV panels are imported into EU. Transport distances are
equal to 6,000 km and 15,600 km, respectively from US and China and panels are transported using ships.
Once at EU borders, they are transported by rail from the harbor to the storage facility on 1,100 km and
then transported by small trucks on 200 km. Transport inside EU, use phase and recycling steps are
considered equivalent, notwithstanding the origin of the panels. WTs are separated into two systems:
moving parts and fixed parts, using the same databases than PV. The main steps of fixed parts production
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are: concrete production, epoxy-resin production and steel processing to build the tower. Moving parts
production main steps are: various steels and alloys processing and production, aluminum, tin, wire
drawing, PVC, polypropylene, polyethylene, lead, glass fiber and copper. Moving and fixed parts are
transported by rail and lorry on distances between 600 and 2,000 km and are assembled onsite.

Quartz extraction ———» Metallurgic grade Si — Solar grade Si

Mono-Si Crystal Multi-Si ingot
BoS Frame Mono-Si wafer Multi-Si wafer

NN N

Disassembly -Recycling 4— Photovoltaic system g— Panel —_ Cell

Fig. 1. Life cycle modeling of mono-Si and multi-Si panels
2.5. Other energies and selected vehicles

For our comparison, we retain an EV using the average electricity mix for various EU countries. These
countries include: Denmark, France, Germany, Italy, Spain, Sweden and UK. They were both retained for
their geographical location (which influence the irradiation they receive and thus the environmental
impact of PV) and their electric mix. The GHG emissions of electricity mixes are taken from GaBi4
software [9] and from Renault’s WTW figures (in brackets) [22]. The EV retained, for average mixes and
renewable energies, is an electric Fluence (first EV sold by Renault). This car can transport five persons
and has a 160 km range. Its consumption is equal to 0.47 MJ/km (official consumption on NEDC
homologation cycle). Using this consumption and the GHG figures for each electricity mix, the GHG
emissions of the reference EV are the following (irradiation for each country is also defined):

Germany: 82 (71) g CO,._./km; irradiation = 972 kWh/m*/yr;
Denmark: 99 (80) g CO,._.q/km; irradiation = 985 kWh/m?*/yr;
Sweden: 4 (4) g CO,..q/km; irradiation = 980 kWh/m*/yr;
Spain: 83 (57) g CO,.q/km; irradiation = 1,660 kWh/m?/yr;
France: 19 (12) g CO,._¢q/km; irradiation = 1,204 kWh/m?/yr;
UK: 86 (72) g CO,.q /km; irradiation = 955 kWh/m?*/yr;
Italy: 92 (69) g CO,.¢q/km; irradiation = 1,251 kWh/m?/yr.

For the comparison with conventional ICE vehicles, the methodology developed by [23] is retained. It
consists of two vehicles, respectively using gasoline and diesel fuel. These vehicles are representative of
the ICE average vehicle sold in the EU in 2011. The fuel production impacts are selected from the same
source. These cars have the following GHG emissions (NEDC cycle):

e gasoline car: 160 g COyeq (WTT =22 g COyq + TTW =140 g CO, );
e diesel car: 163 g COpeq (WTT =28 g CO; oq + TTW = 135 g CO, ).
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2.6. Functional unit definition

The vehicles must be compared on the same basis: this is the role of the functional unit (FU). In our
study, we consider “driving one km on NEDC cycle” as the FU. However, since vehicles, wind turbines
and PV panels do not have the same lifetime, it is necessary to define those lifetimes to have a consistent
FU. The cars last 10 years and are driven on 150,000 km (meaning 15,000 km per year). This is a
commonly accepted FU in the automotive industry [24]. PV panels have a 30-year lifetime, and the
inverter lasts 10 years. Finally, WTs have a lifetime of 20 years. Thus, these systems are not directly
comparable. To resolve this, we adopt two conventions: First, since the lifetime of the car is ten years, all
calculations must be done according to this value. This means that, for PV panels, the impacts of their
production and dismantling must be divided by three, because their lifetime is three times longer than the
cars’. For WT, the impacts must be divided by two (lifetime = 20 years).

The second issue is the size of the WTs and PV panels. The surface of PV panels is fixed in order to
provide the necessary electricity for the car, according to the yearly irradiance. Thus, in our system, the
surface corresponds to the surface needed to provide the electricity necessary to drive 15,000 km/yr,
which corresponds to 7,050 MJ/yr. The surface needed will depend on the yield of the PV panel and the
irradiation received, meaning that for the same PV panel, the higher the irradiance, the smaller the
surface. For the WT, since it produces more electricity than needed by the car, the environmental impacts
are simply divided by the electricity consumed by the car to drive one km.

Finally, one must keep in mind that PV electricity is a non constant energy. The PV panel is designed
in order to provide the required energy on a yearly basis. This means that, some days, the energy
produced will be insufficient while sometimes it will be enough to power more than the EV. Moreover,
we must also consider the fact that the EV is driven for 15,000 km on a yearly basis. This means that
some days, it will not be used and thus it will not use electricity from the PV panel. Thus, we consider the
following hypothesis: on a yearly basis, the electricity consumed is equal to the electricity produced.
When the panel cannot provide sufficient energy, the EV is charged using average grid electricity, while
when the panel is producing more energy, it is used to replace energy from the average grid. This is a
simplistic approach, which is roughly equivalent to carbon compensation.

3. Results
3.1. Photovoltaic panels and wind turbines

Figure 2 shows the GHG emissions caused by PV panels (mono-Si and multi-Si) associated with the
EV traveling one km (mean irradiation = 1,204 kWh/m*/yr). GHG emissions associated with mono-Si are
higher than for multi-Si, though mono-Si panels have a higher yield than multi-Si (Cf. section 2.2.1). This
is linked to the higher energy requirements of the Czochralski process, compared with multi-Si ingot
production. For one km driven with the Fluence EV, the GHG emissions are: mono-Si (12 g CO, .o/km),
multi-Si (9 g CO, o/km) and CdTe (5 g CO, ¢o/km, not shown on figure 2). Though CdTe panels have the
lowest yield, their GHG emissions are also the lowest, because CdTe production is much less GHG-
emitting than silicon, which represents more than half of the impact for both Si technologies.

Table 1 shows the relative shares, for each PV technology, of importations. The first column represents
the share of importations for the three technologies, which are considered identical. The three following
columns display the share of GHG emissions for each country and technology. This shows that producing



Florent Querini et al. / Energy Procedia 20 (2012) 391 — 401

PV panels in China emits much more GHG than in EU. This is not caused by the greater transport
distances but by the energy production in China, which heavily relies on coal. This is especially true for
Si-based PV panels, which are more energy consuming than CdTe.

14 O End of life
12 4 O Transport
E 10 BBoS
? g [ Panel
k OCell
2 6
g 4] B Wafer
O
T 5 [ Czochralski / Bridgeman-Block
] casting
0 M Solar Si
' . .
> Mono-Si Multi-Si OMetallurgic Si

Fig. 2. GHG emissions associated for 1km driven with an EV associated with mono- and multi-Si PV

Table 1. Shares of installed PV panels and GHG emissions depending on importation countries

Country Surface installed Mono-Si GHGs Multi-Si GHGs CdTe GHGs
Europe 25% 18% 8% >18%
China 60% 78% 87% 68%

us 15% 4% 5% >13%

Total 100% 100% 100% 100%

Results for PV per kWh are higher than results from the literature (except for one study on CdTe ([2]).
This is due to the fact that in the literature, results are usually expressed for a 1700 kWh/m?*yr irradiation
([2], [11], [25], [26]), contrary to our study. Moreover, except in [10], PV panels are usually considered to
be manufactured in EU. This lowers the GHG emissions compared with our study. For instance, if mono-
Si PV panel production occurred only in UE, our results would decrease by 28%, from 92 g CO,.q/kWh
to 66 g CO,..q/kWh. Moreover, considering an irradiance equal to 1,700 kWh:m*yr, GHG emissions
would fall to 47 g CO,.q/kWh, comparable with values from Ito et al. (50 g CO,..o/kWh) [2] and
Fthenakis et al. (55 g CO,..q/kWh) [11].

WT results are simpler since only one technology is investigated and all WTs considered are produced
in EU. Driving one km using electricity coming from WT emits 1.5 g CO,..q/km, with fixed parts
representing 0.8 g CO,.q and moving parts 0.7 g CO,..q. Thus, the GHG emissions of WTs are far
inferior than PV. Results (12 g CO,./kWh) are consistent with latest literature data. Guezuraga et al.
(2011) [27] found, for a 2MW turbine, 9 g CO,.,/kWh, using a load factor equal to 34%. This means
that, using a load factor equal to 25%, GHG emissions would be equal to 12 g CO,./kWh, as in our
study. Jungbluth et al. 2005 [28], found, for a 0.8 MW WT, emissions significantly lower and equal to 9 g
COy.¢q/kWh (11 g CO,.¢q using a load factor equal to 20%). Using the ELCD database, GHG are even
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lower, equal to 7 g CO,../kWh. However, Arvesen and Hertwich (2011) have found significantly higher
values, with 16.4 g CO,.,/kWh for a 2.5 MW WT with a 23.6% load factor [29]. This means that our
results correspond to an average value between all data from literature.

3.2. Comparison of EV depending on EU countries

Depending on the country investigated, the GHG emissions associated with the average electricity mix
can greatly vary, as described in section 2.5. Between these countries, the PV panel emissions also vary,
the surface needed being dependent on the sun irradiation. The following map shows the GHG emissions
associated with the 7 selected countries for PV (40% mono-Si, 46% multi-Si and 13% CdTe) and average
electricity. Wind electricity and internal-combustion-engine vehicles (gasoline and diesel fuel) are the
same for all countries, emitting respectively 1.5 g CO, ¢q/km, 160 g CO; ;q/km and 163 g CO, ¢q/km. The
following conclusions can be drawn:

e for every country retained, the EV emits less GHG than diesel and gasoline vehicles when using
average electricity mix;

e  WT always emits less GHG than PV or average mix, whatever the country retained;

e sunirradiation has a strong influence, GHG emission for PV vary between 7 to 12g CO; oo /km;

e conclusions between average electricity and PV depend on the country studied. For most countries
(UK, Spain, Denmark, Germany, Italy and Spain), PV has lower GHG emissions than average
electricity. For France, PV emissions are close to average mix, though lower. Finally, for Sweden,
which uses high amounts of renewable energy and has a low sun irradiation, PV emits more GHG
than the average mix.

Sweden
PV:12¢g
Y Mix: (4) 4g
Denmark
PV: 12¢g
Mix: (80) 99g
] UK
{ PV: 12g
K N 5 Mix: (72) 86g
.0 Germany
n A PV: 12¢g
%J— ¢ = Mix: (71) 82¢
9 . ' France
y PV: 10g
= . Mix: (12) 19g
b = Italy
L - PV: 9g
b\ Mix: (69) 92g
& = \ \ Soain
g LY PV:7g
s— Mix: (57) 83g

Fig. 3. GHG emissions associated for 1km driven with an EV using average electricity mix and PV
4. Discussion and conclusion
4.1. PV results

Results show that GHG emissions from panels produced in China are higher than in US or EU. This is
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due to the fact that emissions associated with energy production in China are higher (China extensively
uses coal). To take into account the Chinese context, we only changed the emissions associated with
energy production but keep the same process efficiencies and emissions. This is a limitation because the
databases used do not contain data about Chinese processes. Thus, we might over- or underestimate the
GHG emissions associated with Chinese panels. Considering the fact that Chinese panels represent about
60% of panels currently being installed in EU, the error might be significant. Nevertheless, this is an issue
which overpasses our study and is encountered in many other LCAs.

PV panel lifetime was set to 30 years, since it is the lifetime which is the most commonly found in the
literature. Changing the lifetime to 20 years, would lead to different results. Since the BoS has almost
negligible GHG emissions, we can consider that switching from a 30-year to a 20-year lifetime would be
the same as multiplying the results by 3/2. This would not change the conclusions, as PV GHG emissions
would remain lower than average electricity for UK, Germany, Spain, Denmark and Italy. The difference
between French average electricity and PV would be smaller. Recycling is taken into account mainly by
recycling the aluminum frame, copper and glass. Yet, as shown on figure 2, most GHG emissions are
associated with silicon production, purification and cutting into wafers. This means that, as long as the
silicon cells cannot be recycled, the recycling will not have a large impact on PV emissions.

4.2. Comparison between EV and ICE vehicles

The ICE vehicles retained are average European vehicles such as defined in [23]. However, in 2011,
many vehicles emit less than 135-139 g CO, / km. If we consider an average champion that would emit
about 90 g CO, / km during its use phase, this would correspond to 104 and 118 g CO, / km respectively
for gasoline and diesel in a WTW point of view. Even so, the GHG emissions of EVs would be lower
when using the average electricity mix. The difference would be small for some countries (such as
Denmark or Italy) or still very significant for some others (France and Sweden). For PV and WT, the
difference remains very high and EVs emit much less GHG than ICE vehicles, wherever they are driven.
The consumption of vehicles are calculated and measured on the NEDC homologation cycle. This cycle
is defined in the EU to calculate the official CO, emissions and fuel consumptions, for instance to enable
the client to compare different vehicles from different brands. It does not represent all emissions of all
cars in all situations, since, for the same vehicle, the fuel consumption greatly varies depending on the
driver behavior: eco-driving, congestion, heating and cooling systems turned on or off, etc. Thus, the
conclusions in this article are only valid on NEDC cycle and cannot be compared to studies that would
use other cycles. In this article, we only studied the use phase of EVs and ICE vehicles. That is to say, we
did not conduct the whole car LCA. Therefore, the conclusions can only be drawn for the use phase (the
well-to-wheels analysis) and are not sufficient to conclude between ICE vehicles and EVs. The GHG
emissions of an EV are not the same as for an ICE vehicle, because they respectively use an electric
engine with a battery and an internal combustion engine. The aim of this article is not to compare EVs
and ICE vehicles, however, as a sensibility analysis, the impact of taking into the battery should be
investigated. Considering that the battery of the vehicle represents around 20 g CO,.o/km (Renault
internal data), this would not change the conclusions for PV and WT. Even with 20g CO,_.q/km added, an
EV using WT electricity would emit 21-22g CO,..q/km. For PV electricity, this would lead to emissions
between 27 — 32 g CO,_¢q/km, still far less than ICE vehicles. Finally, for average electricity mixes, the
conclusions would depend on which vehicles EV are compared to. Compared with the average ICE
vehicles, the conclusions do not change, even for countries with high GHG-emitting electricity, such as
Germany or UK. However, for these countries, the GHG emissions between EVs and champion ICE-
vehicles would be approximately equivalent. For countries with low GHG emissions, the EV remains less
impacting, even compared with ICE champions. The low impact of the Li-ion battery, compared with ICE
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vehicles, is confirmed by data from the literature. Indeed, Data from literature ([30], [31], [32]) range
from 7 to 12 g CO,.¢q/km, being even lower than Renault’s calculations.
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