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a b s t r a c t

In this paper, several integral equations are solved by He’s variational iteration method in
general case, then we consider the convergence of He’s variational iteration method for
solving integral equations.
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1. Introduction

Various kinds of analytical methods and numerical methods [1,2] were used to solve integral equations. In this paper,
we apply He’s variational iteration method (shortly VIM) [3–8] to solve integral equations. The method can solve various
different nonlinear equations [9–11]. The variational iteration method is used in [12] to solve some problems in calculus
of variations. This technique is used in [13] to solve the Fokker–Planck equation. Authors of [14] applied the variational
iterationmethod to solve the Lane–Emden differential equation. This method is employed in [15] to solve the Klein–Gordon
partial differential equations. Authors of [16] used the variational iteration method to solve a model describing biological
species living together. Also the approach is employed in [17] to solve a parabolic inverse problem. He’s variational iteration
method is proposed in [18] to solve the Cauchy reaction–diffusion problem. This method is used in [19] to solve a biological
population model. For more applications of the method the interested reader is referred to [20–24].
To illustrate the basic idea of the method, we consider a general nonlinear system:

L[u(t)] + N[u(t)] = g(t),

where L is a linear operator, N is a nonlinear operator and g(t) is a given continuous function. The basic character of the
method is to construct functional for the system, which reads

un+1(x) = un(x)+
∫ t

0
λ(s)[Lun(s)+ Nũn(s)− g(s)]ds,

where λ is a Lagrangemultiplier which can be identified optimally via variational theory, un is the nth approximate solution,
and ũn denotes a restricted variation, i.e. δũn = 0.

∗ Corresponding author at: Department of Mathematics and Computer Science, Amirkabir University of Technology, 424 Hafez Avenue, Tehran 15914,
Iran.
E-mail address: rsaadati@eml.cc (R. Saadati).

0898-1221/$ – see front matter Crown Copyright© 2009 Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2009.03.008

http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:rsaadati@eml.cc
http://dx.doi.org/10.1016/j.camwa.2009.03.008


2168 R. Saadati et al. / Computers and Mathematics with Applications 58 (2009) 2167–2171

2. Fredholm integral equation of the second kind

Now we consider the Fredholm integral equation of the second kind in general case, which reads

u(x) = f (x)+ λ
∫ b

a
K(x, t)u(t)dt, (2.1)

where K(x, t) is the kernel of the integral equation. There is a simple iteration formula for Eq. (2.1) in the form

un+1(x) = f (x)+ λ
∫ b

a
K(x, t)un(t)dt. (2.2)

Next we consider the existence of solution for Eq. (2.1) by considering the convergence of (2.2) by the next theorem.

Theorem 2.1. Consider the iteration scheme

u0(x) = f (x)

un+1(x) = f (x)+ λ
∫ b

a
K(x, t)un(t)dt,

for n = 0, 1, 2, . . ., to construct a sequence of successive iterations {un(x)} to the solution of Eq. (2.1). In addition, let∫ b

a

∫ b

a
K 2(x, t)dxdt = B2 <∞, (2.3)

and assume that f (x) ∈ L2(a, b). Then, if |λ| < 1/B, the above iteration converges in the norm of L2(a, b) to the solution of
Eq. (2.1).

Example 2.2. Consider the integral equation

u(x) =
√
x+ λ

∫ 1

0
xtu(t)dt, (2.4)

its iteration formula reads

un+1(x) =
√
x+ λ

∫ 1

0
xtun(t)dt, (2.5)

and

u0(x) =
√
x. (2.6)

Substituting Eq. (2.6) into Eq. (2.5), we have the following results

u1(x) =
√
x+ λ

∫ 1

0
xt
√
tdt =

√
x+

2λx
5
.

u2(x) =
√
x+ λ

∫ 1

0
xt
[
√
t +
2λt
5

]
dt =

√
x+

[
2λ
5
+
2λ2

15

]
x.

u3(x) =
√
x+ λ

∫ 1

0
xt
[
√
t +

(
2λ
5
+
2λ2

15

)
t
]
dt =

√
x+

[
2λ
5
+
2λ2

15
+
2λ3

45

]
x.

Continuing this way ad infinitum, we obtain

un(x) =
√
x+

[
2
5.30

λ+
2
5.31

λ2 +
2
5.32

λ3 + · · ·

]
x =
√
x+

[
2
5

n∑
i=1

λi

3i−1

]
x.

The above sequence is convergent if |λ| < 3 and the exact solution is

lim
n−→∞

un(x) =
√
x+

6λ
5(3− λ)

x = u(x).

Note that by Theorem 2.1 we have∫ b

a

∫ b

a
K 2(x, t)dxdt =

∫ 1

0

∫ 1

0
(xt)2dxdt =

1
9
= B2.

Then if |λ| < 3 Eq. (2.5) is convergent.



R. Saadati et al. / Computers and Mathematics with Applications 58 (2009) 2167–2171 2169

Example 2.3. Consider the integral equation

u(x) = x+ λ
∫ 1

0
(1− 3xt)u(t)dt, (2.7)

its iteration formula reads

un+1(x) = x+ λ
∫ 1

0
(1− 3xt)un(t)dt, (2.8)

and

u0(x) = x. (2.9)

Substituting Eq. (2.9) into Eq. (2.8), we have the following results

u1(x) = x+ λ
∫ 1

0
(1− 3xt)tdt = (1− λ)x+

1
2
λ.

u2(x) = x+ λ
∫ 1

0
(1− 3xt)

[
(1− λ)t +

1
2
λ

]
dt

= (1− λ)x+
1
2
λ+

λ2

4
x.

u3(x) = x+ λ
∫ 1

0
(1− 3xt)

[
(1− λ)t +

1
2
λ+

λ2

4
t
]
dt

= (1− λ)x+
λ2

4
(1− λ)x+

1
2
λ+

λ3

8
.

Continuing this way ad infinitum, we obtain

un(x) =
n∑
i=0

[(
λ2

4

)i
λ

(
1
2
− x

)
+

(
λ2

4

)i]
+ (1+ (−1)n)

λ2n+2

22n+3
x.

The above sequence is convergent if | λ
2

4 | < 1 i.e.,−2 < λ < 2 and the exact solution is

lim
n−→∞

un(x) =
2λ
4− λ2

+
4(1− λ)
4− λ2

x = u(x).

Note that by Theorem 2.1 we have∫ b

a

∫ b

a
K 2(x, t)dxdt =

∫ 1

0

∫ 1

0
(1− 3xt)2dxdt =

1
2
= B2.

Then if |λ| <
√
2 i.e.,−

√
2 < λ <

√
2, Eq. (2.8) is convergent.

3. Volterra integral equations of the second kind

First, we consider the Volterra integral equations of the second kind, which reads

u(x) = f (x)+ λ
∫ x

a
K(x, t)u(t)dt, (3.1)

where K(x, t) is the kernel of the integral equation.
As in the case of the Fredholm integral equation we can use variational iteration method to solve Volterra integral

equations of the second kind. However, there is one important difference: if K(x, t) and f (x) are real and continuous, then
the series converges for all values of λ (see [25]).

Example 3.1. Consider the integral equation

u(x) = x+ λ
∫ x

0
(x− t)u(t)dt, (3.2)

its iteration formula reads

un+1(x) = x+ λ
∫ x

0
(x− t)un(t)dt, (3.3)
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and

u0(x) = x. (3.4)

Substituting Eq. (3.4) into Eq. (3.3), we have the following results

u1(x) = x+ λ
∫ x

0
(x− t)tdt = x+ λ

x3

3!
.

u2(x) = x+ λ
∫ x

0
(x− t)

[
t + λ

t3

3!

]
dt = x+ λ

x3

3!
+ λ2

x5

5!
.

u3(x) = x+ λ
∫ x

0
(x− t)

[
t + λ

t3

3!
+ λ2

t5

5!

]
dt

= x+ λ
x3

3!
+ λ2

x5

5!
+ λ3

x7

7!
.

Continuing this way ad infinitum, we obtain

un(x) =
n∑
i=0

λi
x2i−1

(2i− 1)!
.

The above sequence is convergent for all λ.

Example 3.2. Consider the following integro-differential equation

u′′(x) = −1+ λ
∫ x

0
(x− t)u(t)dt, (3.5)

which is equivalent to

u(x) = 1−
x2

2!
+
λ

3!

∫ x

0
(x− t)3u(t)dt, (3.6)

for more details see [26]. Eq. (3.6) is a Volterra integral equation of the second kind where its iteration formula reads

un+1(x) = 1−
x2

2!
+
λ

3!

∫ x

0
(x− t)3un(t)dt, (3.7)

and

u0(x) = 1−
x2

2!
. (3.8)

Substituting Eq. (3.8) into Eq. (3.7), we have the following results

u1(x) = 1−
x2

2!
+
λ

3!

∫ x

0
(x− t)3

[
1−

t2

2!

]
dt = 1−

x2

2!
+ λ

[
x4

4!
−
x6

6!

]
.

u2(x) = 1−
x2

2!
+
λ

3!

∫ x

0
(x− t)3

[
1−

t2

2!
+ λ

(
t4

4!
−
t6

6!

)]
dt

= 1−
x2

2!
+ λ

[
x4

4!
−
x6

6!

]
+ λ2

[
x8

8!
−
x10

10!

]
.

u3(x) = 1−
x2

2!
+
λ

3!

∫ x

0
(x− t)3

[
1−

t2

2!
+ λ

(
t4

4!
−
t6

6!

)
+ λ2

[
t8

8!
−
t10

10!

]]
dt

= 1−
x2

2!
+ λ

[
x4

4!
−
x6

6!

]
+ λ2

[
x8

8!
−
x10

10!

]
+ λ3

[
x12

12!
−
x14

14!

]
.

Continuing this way ad infinitum, we obtain

un(x) =
n∑
i=0

λi
x4i

(4i)!
+

n∑
i=0

λi
x4i+2

(4i+ 2)!
.

The above sequence is convergent for all λ. Note, for λ = 1 the above sequence converges to cos xwhich is the exact solution
for

u′′(x) = −1+
∫ x

0
(x− t)u(t)dt. (3.9)
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4. Conclusion

In this paper, we have applied He’s variational iteration method in general case and considered its convergence.
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