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It is shown how an algorithm for inverting Toeplitz matrices using O(n”) 
operations can be modified to deal with a certain type of extension, named 
conjugate-Toeplitz matrices. The block partitioned case is also included. 

1. INTRODUCTION 

It is well known that inversion of an n X n Toeplitz matrix can be 
achieved using O(n’) operations. In a previous paper [3] we defined some 
extensions of Toeplitz matrices, and showed how a number of properties of 
the standard case still applied. In this present paper we concentrate on what 
we termed conjugate-Toeplitz (CT) matrices, and obtain direct analogues of 
well-known algorithms for inverting Toeplitz and block Toeplitz matrices. 
The CT case is given in Section 2, with an illustrative numerical example in 
Section 3, and the block CT case is covered in Section 4. The somewhat 
tedious details of the verification of the recursion formulae are relegated to 
an Appendix. Finally, in Section 5, we demonstrate the elementary fact that 
block (conjugate) Toeplitz matrices are similar to partitioned matrices in 
which each block has (conjugate) Toeplitz form. 

The motivation for this work is two fold. Firstly, it is of interest 
mathematically to extend the class of matrices whose inversion requires 
O(n’) operations. Secondly, there are a number of problems in signal 
processing where inversion of nonstandard Toeplitz-type matrices arise (e.g. 
[7]) and it is hoped that the matrices discussed below may find applications 
in that field. 

It is necessary to establish some preliminary notation: For any complex 
number X, let c(x) denote the complex conjugate X, so that in particular 
c2”(x) = x, C2+I (x) =X for all positive integers m, and c”(x) = x. An n x IZ 
matrix A = [aij] is conjugate-Toeplitz (CT) if 

uij = ci-‘(ui~j), i,j= 1,2 ,..., n. (1.1) 
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Notice that (1.1) implies the alternative definition 

ai+l,j+l = C(Uij) (1.2) 

and if the aij are all real, then (1.1) and (1.2) reduce to the usual charac- 
terizations of a Toeplitz matrix. We shall use c’(A) to stand for the matrix 
having i, j element c’(aij), and J to denote the “reverse unit matrix,” having 
ones along the secondary diagonal and zeros elsewhere. 

We note in passing, that if A is CT then JA has “conjugate-Hankel” form 
so there is no need to consider such cases separately. 

2. THE INVERSION OF CONJUGATE-TOEPLITZ MATRICES 

In [3] we showed how the algorithm to invert a Toeplitz matrix due to 
Trench [8, 91 could be extended to persymmetric and perhermitian CT 
matrices. We now give a corresponding algorithm for any strongly 
nonsingular CT matrix (i.e., all its leading principal minors are nonzero). If 
An is an it x n CT matrix as defined in (1. 1 ), we need to introduce a related 
matrix B, = [b,] as follows. 

DEFINITION 2.1. B, = c”’ ‘(JA ,‘J), 

It follows immediately that B; ’ = c”+ ‘(JA; ‘J), and hence the first row 
and column of B; ’ are respectively the last column and row of c”’ ‘(A; ‘) 
with the elements reversed. Note also that a,, = b,, = a,. The key idea is to 
apply the bordering technique of [8] to A,, 1 and B,, 1 simultaneously. 

For n > 1, define 
T  T  

A a0 rn 
n-t1 = I I s, A, ’ 

A,:,= ; zn , 
I I 

T  P-2) 

B a0 un n+1= 
I I v, B, ’ 

B,;, = ‘, g,’ 

I I hn Pn’ 

where A, = 5, = 3,) and 

r, = (a-,,a-,,...,u-JT, S” = (c(a,>, c2@*),..., c”(%J)T, 

24, = (c(u-,), c*(u-*) )..., C”(u-,>>T, 21, = (a,, u2 )..., uJT. 
(2.3) 

It follows (see Remark 6 in the Appendix), that the following recursive 
steps generate the inverse of A, + 1. 

Step 1. If A 1’ = [xii] then 

a1 =x11, PI =X22, e, =E1 =x12, f, =h, =xzl. (2.4) 

These are the initial values for the recursion. 
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Step 2. For each integer i, 1 < i < n - 1, 

yi= Ci+'(J9i)U-(i+,) t C'+'(gT)Jriy (2.5) 

Bi=Cifl[PiUi+l t hTJCitl(Si)], P-6) 

&i=Ci+l[CZiU-,i+l, t erJci+'(ui)], (2.7) 

‘li=c’+‘(ai)ai+, tc'+'(ff)J2+, (2.8) 

(2.10) 

(2.11) 

Step 3. If we now let A;:, = [ yij], then 

Yl, = a,, Ylj= [enlj-l,12 Yil = [.&Ii-l,19 i,j= 2, 3 ,..., n + 1, (2.12) 

Y n+1,n+1= n, P Yi,n+l=C n+2[hnln-i+l,l 9 

Y -Cn+2[gnln-j+l,l~ n+l,j- i,j=2,3 ,..., n, (2.13) 

- +Yitl,lYl,j+l Yn++I,jJi,n+l 
Yi+l,j+l =Yij > 

Yll Yn+l,ntl 

i,j= 2, 3 ,..., n - 1. (2.14) 

The number of multiplications required using this method to determine A;:, 
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is of the order 8n2, compared with O(n”) using a standard method such as 
gaussian elimination. 

Remark 1. If all ai-j are real then A,, i reduces to ordinary Toeplitz 
form, and B,+i =A,,+i. Thus the amount of work is halved, cir vi, pi+ i , 

gi+l and hi+i being redundant, and we have the algorithm of [8], requiring 
4n2 multiplications. 

Remark 2. In the Toeplitz case, Zohar [9] removes a factor a, from 
A n+ i in (2.2) so that the element in the top left hand corner becomes unity. 
This cannot be done in the CT case as it destroys the CT pattern. The 
recursion given above however, shows that this step is unnecessary. 

3. A NUMERICAL EXAMPLE OF THE ALGORITHM 

Consider the fourth order CT matrix 

A,,= 

Step 1. We have 

A,= 

and from (2.4) 

L 

l-i -1-i 

2 i 2 

2-i l+i - - 
5 2 

-i 

3-i 2+i l-i -- - 
10 5 2 

4-i 3+i 2-i -- - 
17 10 5 

i 

-1 
l+i ’ 

A;’ = 

2 

-2+i 
5 

-1 fi 
2 

i 

lfi 

-1+7i 

i. 

5 
-4 - 2i 

5 

2 

8 - 6i 
5 

7fi 
5 

-1+7i 7-i 
a, = 

5 ’ P1=gr 

8 - 6i .$?, =gi=-, 
5 

f, = i, = - “s 2i. 

(3.1) 

I , (3.2) 

(3.3) 
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Step 2. Now putting i = 1 in (2.5)--(2.8) gives 

y1=/?la~,+g,r,=-2+i, 

-2- lli 
F, = alum2 + e, u, = 

5 ’ v1 =alu2 +fivl = - “2; 3i. (3.5) 

Hence from (2.9) and (3.3)-(3.5) 

1+3i 13 -9i 
al=---, 

2 P2=7. 

Lastly in this stage (2.10) and (2.11) give 

-1-3i 

e, = 

i 

5 + 5i 
2 

L 
1 $ Ii 

g2= 5 5 + 5i 
2 

h, = 

-3 - i 

5 
l-3i ’ 

10 I 

-1 +i 

l-3i . 

10 1 

(3.6) 

(3.7) 

These steps are now repeated for i = 2, giving 

y2=/72u-3+g~Jr2= 1+3i, 6, =&a, + h;Js, = 5 + 3i 
85’ 

- - 
c,=a,u_,+e~Ju,=- 1 -3i, ~2 = a,~, +.?;Jv2 = 

11-27i 
425 , 

21 + 103i 393 - 3491’ 
a, = 

78 ’ 
P3 = 

390 ’ (3.8) 

e3 = 

4- 33i - 
13 

- 45 + 9% 
26 

144 - 83i 

39 . 

f, = 

-2-i 
3 

1 - 7i 
30 

6- 17i 

195 
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-10 + 15i 
13 

- 1-57i 

130 

6+ 17i 

195 
(3.9) 

We now have the first and last rows and columns of A;‘. In fact if 
A;’ = [yij], then y,, occurs as both [e313i and [g313i, and similarly y,, is 
duplicated. The rest of the elements of A 4 ’ are obtained from (2.14), a single 
example of which is given below: 

4 - 33i 

t-2yij(-45$95ij i-11;;7ij/l44;83ij 

Y23 = 13 + (21 ;;O”j - [393$49i) 

=-2+i. 

The complete inverse matrix is 

A;l= 

- 21 + 103i 4 - 33i -45 f 95i 144 83i - 

78 -13 26 39 

-2-i 3-i 
-2+i 

13-i 
- 

3 2 6 

1 - 7i -4 + 3i 3+i -8 - 19i 

30 5 2 15 

6- 17i -1 + 57i -10 - 15i 393 + 3491’ 
195 130 13 390 

4. THE INVERSION OF BLOCK CT MATRICES 

A scheme for the inversion of block Toeplitz matrices using an extension 
of the Trench algorithm has been devised by Akaike [ 11. We now generalize 
this result to the case of block CT matrices which satisfy the conditions in 
Remark 7. We first make some further definitions which will be needed in 
this section. 
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DEFINITION 4.1. The mn x mn reverse unit block matrix Jn is defined as 

where I, and 0, are the unit and zero matrices of order m, respectively. 
Each row and column has n blocks. 

DEFINITION 4.2. An mn x mn matrix A,., is block CT if 

A -I . . . A -nil 

A C(A”) ... c(A--,,+,I 
m,n = (4.2) . . . 

c”-‘(A,-,) ... cn-‘(A,,) 

where A,= IQ;,;‘] is an arbitrary m x m matrix and c(A,) = [tiil’]. 

DEFINITION 4.3. 

B m,n = J&‘+l(A;,n) J,. (4.3) 

It can easily be seen that 

c(A:,) ... c”-‘(A:,,,) 

B m.n = (4.4) 

In order to determine the inverse of A,,(,+ ,), we need to border Am,(n+ ]), 
B m,Cn+,, and their inverses as follows: 

A,,‘,., 1) = I ” Fn 

B,,:nt 1, = I 
z, 
Hn 

(4.5) 

where 

R;=(A-1,...,A-,), S; = (c(A;),..., F(A;)), 
(4.6) 

U; = (c(A : ,)r..., ?‘(A ‘,)), V,‘=(A , ,...1 A .>, 

and Y, and Z, are m X m matrices. 
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We now give the recursive steps required to obtain the inverse of A,,(,+ 1j, 
corresponding to those in Section 2. The proof is given in the Appendix. 

Step 1. Invert A;*‘* and B;,: by some standard method, and hence 
obtain Y,, 2,) E,, F,, G, and H,. These are the starting values of the 
recursion. 

Step 2. For each integer i, 1 < i < n - 1, determine 

yi =A -(it UC !+‘(Z;) + RfJDci+‘(Gj), (4.7) 

(J = ci+ ’ [ZTA,.+, + H!~~C’+‘(Si)J, (4.8) 

Ei = c i+‘[Af(j,,,YT+ci+‘(U’)J~Ei], w 

qi=ci+‘(Y;)A;+, +ci+‘(F!‘)J,Vi. (4.10) 

Solve the following two bilinear equations for Yi+, and Zj+, using, for 
example, [ 5 ] : 

Y i+ 1 -Ci+‘(E;)6iYi+,yiCi+1(t()= Yi + C’+yqjZiEi)7’, (4.11) 

Zi+,-ci+‘(YT) Y]iZi+]&jCi+l(~T)=Zi+Ci+‘(~jYjYj)~. (4.12) 

Finally, obtain 

E- _ EiY;T-JDCi+l(HiZ;l)y; 
ltl- 

I 4 
y7 I+]’ 

(4.13) 

F = 
I 

FiY,’ -J~C’+‘(GiZi’) Ji 
i+l 

-Jj I 

y, 
It I' 

G, _ G,Z+ 
If1 - 

I 

H, _ H,Z,‘- 
it1 - 

I 

Jbc’+‘(Fj 

-&T 

JBc’+‘(Ei 

-vi 

Y,‘) &; 

I 
ZL 

Yi’) vi 
(4.14) 

I 
Z it 1’ 

Step 3. Determine the blocks inside the border of A;,‘(, + i) using 

LA,,:“+ I)li+ I,.jt 1 = FAL,‘(n+l)lij + LFnli Y~‘[E,Tlj 
- cn+‘{ EL,-it 1 z,‘[H,Tln-j+, 1, WV 

where [J’,li is the ith block in the block vector F,, [Efl, [Gnlnpi+,, 

LH,Tln-j+ I being defined similarly and [A;,‘(, + 1,] jj is the ijth block in 
AI$l+l)’ 
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5. BLOCK PATTERN AND PATTERN BLOCK MATRICES 

In the previous section we presented an algorithm for inverting a block CT 
matrix, extending similar results for block Toeplitz matrices [ 1 ] and block 
circulant matrices [4]. It does not seem to have been realised, however, that 
“pattern block” matrices are similar to “block pattern” matrices, as we will 
now show. 

The result is first given for the Toeplitz case, followed by a statement of 
the necessary modifications for other patterns. 

DEFINITION 5.1. The shift matrix of order n is 

It is easy to see that 

Z’= 18 I;’ 1, r = 1, 2 ,..., n - 1, (5.1) 

and it can also easily be shown that (Zr)’ is the Moore-Penrose inverse of 
Z’. This inverse, for convenience in the following analysis, will be denoted 
by Z mr. Note that Z” denotes the unit matrix I,. We can now give a series 
definition for a Toeplitz matrix. 

IfA = [aiil is a Toeplitz matrix of order n, and a,j=a,mi and ai, =aim,, 
then we can write 

In a similar fashion, if @ denotes Kronecker product, then 

n-l 
\‘ - Z’@A-,= 

r--In-l) 

(5.2) 

(5.3) 

where the Ai are arbitrary matrices of order m, is a block Toeplitz matrix of 
order mn. Furthermore, it is easy to see that 
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is a Toeplitz block matrix, i.e., each matrix B, in (5.4) is itself Toeplitz. If, 
as before, we denote the r, s element of a matrix X by [Xl,,, then comparing 
(5.3) and (5.4) reveals that 

LEMMA 5.1. The block Toeplitz matrix (5.3) is similar to the Toeplitz 
block matrix (5.4). 

ProoJ If we introduce the vet-permutation matrix I,,,, it is well known 
[6] that for arbitrary matrices X(m x m) and Y(n X n), then 

where 

I I m,n n.nt =I,,; (5.6) 

I,, denoting the unit matrix of order mn. Applying (5.5) to (5.3) and (5.4) 
term by term shows that 

Remark 3. In order to replace “Toeplitz” by “conjugate Toeplitz” in 
(5.2) we need to introduce an operator matrix: 

DEFINITION 5.2. The operator matrix Z,, is defined by 

z,= j i I 

1 

0 0 

0 0 .a* 

where xcr = c!(x). 

If we replace 2’ by Z,Zrpl and Z-’ by ZzZprtl, r # 0, in (5.3) then it 
becomes a block CT matrix, and similarly (5.4) becomes a CT block matrix. 
The Lemma then applies to the CT case. 

Remark 4. Toeplitz matrices can also be replaced by circulant matrices 
in the above argument, by setting 

a,=a-,,,, r = 1, 2 ,..., n - 1. (5.7) 
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In this case (5.7) allows the series (5.2) to be written as 

where rr = circ(0, 1,0 ,..., 0), as defined by Davis 141. This is the usual series 
representation of a circulant matrix. It then easily follows that a block 
circulant matrix is similar to a circulant block matrix, a fact not quoted in 

141. 

Remark 5. Lemma 5.1 and its corollaries are an expanded version 
of 121. 

APPENDIX 

The proof of the recursion steps for inverting a block CT matrix is given 
below. The inversion of a CT matrix follows directly as a corollary. 

We begin from Eqs. (4.5). If we consider A;;.‘(,+ ,,.4m,cn+ ,) = Zrncn t ,, we 
have 

Y,,R:, + mn.,, = 01 F,,R:, + wdLl= IwIll, (A.11 

and so 

Hence 

M m.n =A,,:, + F, Y,‘E’ n (A.3) 

and substituting (A.3) into (4.5) produces 

Similarly, by considering BA,\~ + ,,Bm,,,, + ,) = I, we obtain 

G’cn+ I) = Z, G:, 
Hll ii,.‘, + H,Z,‘G7 ’ n 

(A.4) 

(A.51 

From Definition 4.3 we have 

(‘4.6) 
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and therefore from (A.5) 

A,,:,,+ ,) = c”+’ 
J&$Jn f JnGnZITH,rJ, J,G, 

KJL3 z; ’ 64.7) 

We now take the (i + l,j+ 1)th block in (A.4) and the (i,j)th block in 
(A.7) and obtain respectively 

[Ai,‘cn+ ,,Ii+ I,.i+ 1 = [Ak,‘nIi,/ + I’n Yi “C’Iij 
= Ki,‘nli,j + lF”li wm~ (‘4.8) 

IAri,‘~n+~~Ii,/=~“+~ [JoBi:,,J, + J,G,Z,‘HcJ,]i,i, 

= [Ai,‘n]i, + cnt2 WA-i+,Zn’lff~lrr it,\. (A.91 

The notation used in (A.8) and (A.9) was explained in (4.15). 
If we now take the conjugate of (A.9) and eliminate (x;,‘,,]i.i in (A.8) and 

(A.9) we have 

which shows that the (i + 1,j + 1)th block in A,;,:,,, ,) is obtained from the 
(i,j)th block and the border blocks only. This establishes (4.15). 

We next obtain the recursive procedure for Ei, F,, Gi and Hi. It can be 
seen that we can replace n by i + 1 for 1 < i < n - 1 in Eqs. (A. lt(A.10). 
Hence from (A.2) (A.6) (A.5) and (4.6) we have 

Ei+l . = -A,‘,i+ ,,Ri+, Y;+, = -c’+‘(J,&~‘,;+ ,, JLl} Ri+, Y:, , (A.1 1) 

Ic~“(Z~)A’,~+ ,, +ci”(G~)J,RiI 

= -JL3 c i+‘(H,Z; ‘)[c’+’ (Zi)AL(i+ 1) +c~~‘(GI)J~R~I Y’+l 

+ ci ’ ‘(B,-.I,) JnRi I 

1 J,Ril Y:+, 

Jncii ‘(B,-,I.) JoRi yf 
0, 

ItI 
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which from (A.1 1) and (4.7) becomes 

351 

Similarly, we obtain from B;+‘(,+ ,,B,,(,+ ,) = Im(,,+ ,), and (4.9) 

If we now consider Am .,,, + , ,A ;,‘tn + ,) = Zm,,, + ,), we obtain in a similar way to 
(A.1) and (A.11) 

which gives, using (4.8), 

F;,, =- 1 J’,,i”;“iz”’ 16,Y;+, + 1 2 1 Y,‘Y;,,. (A.14) 

Lastly, from B,, .,,, + ,,BL;.‘~,, + ,, = I,,,, , ,, and (4.10) 

(A. 12)-(A. 15) are the required formulae (4.13) and (4.14). 
It remains to determine Y;, , and Zj + , to complete the recursion. From 

(A.4) and (A.6) the bottom right hand block, with n replaced by i, is 

IA,,r.\i+l,l;,I,i+l= IA,.{];;+ lFili”i ‘[E~lj=c’+‘(Z!). (A. 16) 

If we omit the left hand term of (A. 16) and replace i by i + 1 we obtain 

I’m,:i+l,I;-l,i+l + IFi+ IIif 1 Y,~+‘,I’!+tli+, =Cit3(Zi’+~). (A. 17) 

Conjugating the first and last terms in (A. 16) and substituting in (A. 17) 
gives 

cit3(Z ;) + IFi+, Ii+, Y J’+, IEI,, Ii+, = cit3(Z;+ ,). (A.18) 

From (A.12) and (A.14) we have 

IE!+Ili+I=-yi+lYi and IFi+,Ii+I=-6iJ’+l 

and hence 

c’+yz;) + di Yi+, yi = ci+ yz;+ ,). (A.19) 
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Similarly, using B,,‘(,,+ ,) we obtain 

ci+ ‘(Y:‘) + qzi+ , Ei = ci+ “(YT+ ,)’ (A.20) 

Finally, eliminating Zi+, from (A.19) and (A.20) produces (4.1 l), and 
eliminating Yi+ i from the same equations gives (4.12), which completes the 
recursion. 

Remark 6. The analysis is similar to that of Akaike ( 1 ], with the crucial 
difference that both A,,(,+ i, and B,(,+ ,) are considered simultaneously (see 
also Remark 1 in Section 2). 

Remark 7. Necessary conditions for the application of the algorithm can 
be given either in terms of the original matrix A,,(,,+ ,) or its inverse. Firstly, 
if all leading principal submatrices of A,n,cn+ ,) of order rm. r = I. 2,..., n, are 
nonsingular then the algorithm is valid. Alternatively, applying Schur’s deter- 
minantal expansion to (A.4) with n replaced by i, gives 

IA,,‘ci+ ,)I = / Yi( I&$ + Fi Y,:‘E: - Fi Y; ‘Ef / = I Yil lA,,‘J. (A-21) 

Thus if Yj is nonsingular for i = 1, 2,..., n then A;,‘,;, ,, exists, which is 
equivalent to the first condition above. 

Remark 8. Equation (A.21) shows that it is possible to calculate the 
determinant of A,,,, + ,) with only O(n) extra operations. As part of the 
algorithm, Yi is obtained from (4.11) and hence we have 

When m = 1 and all the elements are real in (A,22), then this reduces to a 
formula in [ 91. 

Remark 9. If m = 1 each block reduces to a single element, and we 
immediately obtain the recursion steps for inversion of a CT matrix, 
described in Section 2. The condition of Remark 7 reduces to strong 
nonsingularity as defined in Section 2. 

Remark 10, The number of multiplications required for inverting an 
mn x mn block CT matrix using the given algorithm is of the order of 8min2 
or 8m(mn)I. When m = 1 this reduces to 8n2 as indicated in Section 2. 
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