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Abstract Mycosynthesis of silver nanoparticles was achieved by endophytic Colletotrichum sp.

ALF2-6 inhabiting Andrographis paniculata. Well dispersed nanoparticles were characterized using

UV–Visible spectrometry with maximum absorption conferring at 420 nm. FTIR analysis revealed

possible biomolecules reducing the metal salt and stabilization of nanoparticles. XRD analysis

depicted the diffraction intensities exhibiting between 20 and 80 �C at 2theta angle thus conferring

the crystalline nature of nanoparticles. Morphological characteristic using TEM revealed the

polydispersity of nanoparticles with size ranging from 20 to 50 nm. Synthesized nanoparticles

exhibited bactericidal activity against selected human pathogens. Nanoparticles mode of action

was carried out to reveal DNA damage activity. Thus the present investigation reports facile

fabrication of silver nanoparticles from endophytic fungi.
ª 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nanotechnology is emerging field of science which involves

synthesis and development of materials at nanoscale (Naveen
et al., 2010). It has opened new avenues by intersecting with
interdisciplinary field of science for innumerable applications

(Morones et al., 2005). These nanomaterials are used in vari-
ous fields such as electronic devices, sensor technology, signal
enhancers, optical sensors, biomarkers, magnetic, catalysis,

optical polarizability, electrical conductivity, antimicrobialac-
tivity and drug delivery to tumor cells (Nilsson et al., 2007;
Duncan, 2011; Costa-Fernandez et al., 2006; Schrand et al.,

2008; Naz et al., 2014; Shiraishi and Toshima, 2000; Ning
et al., 2008; Sondi and Salopek-Sondi, 2004; Aliosmanoglu
and Basaran, 2012; Syed et al., 2013). Hence nanoparticle

research has gained tremendous interest especially use of silver
nanoparticles has myriad applications in biomedical sector
with large number of products already in market such as oint-
ments, dressing materials and packaging materials (Sadowski

et al., 2008). Silver nanoparticles are reported to bear antimi-
crobial property against array of pathogenic microorganisms.
Mode of action of silver nanoparticles as per the scientific

records suggests that silver nanoparticles have different mode
of action for instance they are known to interact with the thiol
groups of vital enzyme, cause pit on the cell wall and damage

the DNA of the organism (Baker and Satish, 2012b).
In future decades much more applications of silver nano-

particles are expected to be reported but one of the major
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constraint is the synthesis protocols of nanoparticles. Most
popular and widely used conventional methods for the synthe-
sis of nanoparticles are bound with various implications such

as use of toxic chemicals and generation of high energy result-
ing in environmental pollution (Baker et al., 2013a). Owing to
which eco-friendly process for nanoparticle synthesis has

gained impute importance in recent years with large number
of biological entities are constantly being explored for reduc-
tion of metal salts and synthesize nanoparticles with desire size

and shape (Baker et al., 2013b). Use of microorganisms is
known to have better advantage compared to plant species
as microorganisms can be cultured and preserved for constant
usage whereas use of plant species may pose a risk and imbal-

ance to plant diversity especially the harvesting of endangered
species. Among the microbial diversity encompasses the pleth-
ora of microorganisms called endophytes which have reported

to be one of the untapped and rich sources of bioactive com-
pounds bearing biological activities. Endophytes are of great
potentials to secrete structurally diversified metabolites

(Baker and Satish, 2012a). But one of the least studied areas
in the field of endophytes is their evaluation for nanoparticle
synthesis (Baker and Satish, 2012c). The interference of endo-

phytes with nanoparticles is relatively new and is expected to
have significant impact. Fungal endophytes are reported to
secrete diverse group of biomolecules extracellularly which
are capable of reducing metal salts at rapid scale under opti-

mized conditions. One such endophyte is isolated from healthy
leaf of Andrographis paniculata and employed for rapid synthe-
sis of silver nanoparticles. The synthesized nanoparticles were

evaluated for bactericidal activity against significant human
pathogens. Mode of action of nanoparticles was determined
with treatment of DNA with silver nanoparticles. Thus the

study highlights the mycosynthesis of silver nanoparticles bear-
ing bactericidal activity using Colletotrichum sp. ALF2-6 and
the results obtained are promising enough to envision the

emerging role of endophytes for facile reduction of metal ions.

2. Materials and methods

2.1. Sample collection and isolation of endophytes

Healthy leaves ofA. paniculatawere collected from southern part

of India. The samples were thoroughly washed in running tap
water followed by sterile distilled water to remove adhered soil
particles. Samples were excised into small segments (0.4–0.5 cm)

using sterile scalpel and segments were subjected to surface
sterilization by sequential steps as followed by protocol of
Rakshith et al. (2013). Segments were placed on to the surface

of water agar media amended with chloramphenicol (150 mg/L)
and incubated at 26 �C in an alternate cycle of 12 h dark and
12 h light for 3 weeks. Colonies emerging from surface sterilized

plant segments were subcultured until further use.

2.2. Optimization and mycosynthesis ofsilver nanoparticles

Fermented cell free extract of Colletotrichum sp. ALF2-6 was

treated with 1 mM of silver nitrate and incubated at different
temperatures ranging from 30 to 80 �C and pH of the reaction
mixture was varied from acidic to alkaline. Samples were

monitored periodically for the synthesis of nanoparticles with
the aid of UV–Visible spectrophotometer operating at a
resolution of 1 nm (Baker et al., 2014).
2.3. Characterization of mycosynthesized silver nanoparticles

The X-ray Diffraction (XRD) patterns were obtained on desk-
top X-ray diffractometer operating at 30 kV and at a current
of 15 mA with Cu radiation (k= 1.5404 Å). The diffracted

intensities were recorded from 0� to 80� of 2h angles. X-ray
photoelectron spectra were recorded Rigaku miniflex 2 instru-
ment. FTIR spectra of silver nanoparticle solution were
recorded on Perkin Elmer spectrum one B in diffuse reflectance

(DRS) mode at a resolution of 2 cm�1. Transmission electron
microscopy (TEM) analysis of silver nanoparticles was pre-
pared on carbon-coated copper TEM grids. TEM scan was

performed using a TECHNAI-T12 JEOL JEM-2100 Trans-
mission electron microscope operated at a voltage of 120 kV
with Bioten objective lens. Subsequently, the particle size was

ascertained using a Gatan ccd Camera (Baker et al., 2014).

2.4. Phenotypic and genotypic characterization of the fungal
endophyte

Phenotypic characterization was carried out by mounting part
of the viable culture and observed under microscope to deter-
mine the morphological characteristics (Naveen et al., 2010).

Genotypic characterization of fungus was carried out using
DNA isolation kit (Hi pura, HiMedia, Mumbai, India)
according to manufacturer’s instruction. In brief, isolation of

fungal genomic DNA and 18S rDNA region was amplified,
the PCR product was bi-directionally sequenced using forward
(ITS1) and reverse (ITS4) primers which produced an expected

amplicon size of �500–600 base pairs. Sequencing results were
processed using Bio Edit software (Hall, 1999). Processed
sequences were subjected to BLAST tool at NCBI to assign
putative identity, designation of operational taxonomic units

based on sequence similarity measures and phylogenetic infer-
ence. Partial nucleotide sequences were deposited in NCBI
GenBank to procure accession number. Neighbor joining anal-

ysis of endophyte mediating silver nanoparticle synthesis and
close relatives retrieved from Genbank using Clustal W and
Bio Edit softwares (Hall, 1999; Thompson et al., 1997). Align-

ments were manually edited where necessary and phylogenetic
analyses were performed to assess phylogenetic affiliation
using Molecular Evolutionary Genetics Analysis software

MEGA6 (Tamura et al., 2011).

2.5. Bactericidal activity of mycosynthesized silver nanoparticles

Bactericidal activity of mycosynthesized silver nanoparticles

was evaluated against Escherichia coli (MTCC 7410), Salmo-
nella typhi (MTCC 733), Bacillus subtilis (MTCC 121) and
Staphylococcus aureus (MTCC 7443) and all test pathogens

were procured from Microbial Type Culture Collection,
Chandigarh, India. Inoculum of test pathogens was prepared
to obtain 5 · 105 CFU (Colony forming unit) and bactericidal

activity was determined via CFU assay. In brief, Mueller–Hin-
ton agar plates were supplemented with silver nanoparticles
with different concentrations (25, 50, 75 and 100 lg/mL). Test

inoculum was smeared onto the plates and incubated for 24 h
at 37 �C and one control was maintained without addition of
silver nanoparticles. The colonies were counted and validated
with the control plate to determine the effect of nano-

particles (Sondi and Salopek-Sondi, 2004). Minimal Inhibitory



Figure 1 Color change in synthesized SNP.
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Figure 2 UV-Visible spectra of mycosynthesized silver

nanoparticles.

142 P. Azmath et al.
Concentration was determined by broth micro-dilution tech-
nique based on the protocol described by Sarker et al.
(2007). Resazurin dye was used as a growth indicator to

check the efficacy of nanoparticles against the test organisms.
Gentamicin was used as positive control and bacterial growth
in the plate was inspected visually as well as ELISA microtitre

plate reader.

2.6. DNA damage activity of mycosynthesized silver
nanoparticles

DNA damage study was demonstrated according to the proto-
col of Vahdati and Sadeghi, 2013. Silver nanoparticles were

treated with DNA isolated from Escherichia coli and incubated
for 30 min. Control DNA without treatment of nanoparticles
was served as positive control and silver nanoparticles without
bacterial DNA as negative control. Electrophoration was

carried out using 1% agarose gel at 75 V for 30 min.

3. Results and discussion

The results obtained in the present investigation attributes
toward the emerging role of endophytes for synthesis of nano-
particles. Reduction of silver nitrate to silver nanoparticles was

observed visually with change in color of the reaction mixture
to brown (Fig. 1). This is due to the surface plasmon resonance
of the silver nanoparticles (Krishnaraj et al., 2010). The synthe-

sis was rapid and completed within 20 min under optimized
condition. It was observed that the synthesis was maximum
at elevated temperature above 50 �C as the temperature
increased the synthesis was efficient and rapid which confirmed

that elevated temperature influenced the synthesis. Similarly
alkaline pH favored the synthesis compared to acidic pH, these
results are in accordance with the previous scientific reports

(Rashidipour and Heydari 2014). When cited for reports
on Colletotrichum sp., it is reported that Colletotrichum
gloeosporioides could efficiently synthesize silver nanoparticles

this finding highlights the possible metabolic process and
secretion of reducing agent as their extracellular metabolite
which is mediating the synthesis (Ravindra and Rajasab, 2014).

3.1. Biosynthesis and characterization of mycosynthesized silver

nanoparticles

Colletotrichum sp. ALF2-6 culture filtrate reduced silver

nitrate and synthesized well dispersed silver nanoparticles
which was confirmed using UV visible spectrum with peak
conferring between 300 nm and 600 nm and maximum absor-

bance at 420 nm as shown in (Fig. 2). Further possible interac-
tion of biomolecules present in the culture filtrate of
Colletotrichum sp. ALF2-6 which mediates the nanoparticle

synthesis and stabilized nanoparticles was evaluated using
FTIR spectra which displayed different vibrational stretches
between 400 and 4000 cm�1. These vibrational stretches

were predicted based on their earlier reports showed at
3325.22 cm�1 which corresponds to primary amines
(Hussein, 2010), 1635.2 cm�1 corresponds to carbonyl group
(Kunwong et al., 2011), 664.69 cm�1 and 601.63 cm�1 corre-

sponds to C–H bend alkynes (Baseri and Baker, 2011) stretch
as shown in (Fig. 4). These results obtained correlate the find-
ings of previous scientific literatures which clearly suggest the

metabolic diversity of the fungal communities responsible for
the mediating the synthesis of the nanoparticles. Earlier FTIR
analysis reveals the role of biomolecules which reduce the sil-

ver nitrate and bind onto the nanoparticles and stabilize them
which prevents the aggregation. The crystalline nature of the
synthesized nanoparticles depicted with Bragg’s peak 38.2�,
44.42�, 64.5�, 77.4� (Fig. 3) corresponding to the cubic facets
of the particles which justifies the standard diffraction pattern
of silver nanoparticles and the result obtain is in agreement

with the standard diffraction of earlier scientific reports
(Qian et al., 2013). TEM microgram revealed the polydisper-
sity of nanoparticles with size ranging from 5 to 60 nm with
myriad shapes such as spherical, near to spherical, triangular

and hexagonal (Fig. 5a). Histogram was plotted by counting
the number of silver nanoparticles and grouped according to
size as in (Fig. 5b). The extracellular synthesis of silver

nanoparticles is more advantageous owing to the fact that it
forms easy to downstream the nanoparticles compared to the
intracellular synthesis. The obtained nanoparticles will be free

from any bio-mass, toxic material and any solvent residues.



Figure 3 X-ray diffraction pattern of mycosynthesized silver

nanoparticles.
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3.2. Fungal Identification and phylogenetic affiliation

Phenotypic characteristic served conidial masses with light sal-
mon color. The size of the conidia ranged from 10 to 25 lm
Figure 4 FTIR spectra of mycos

Figure 5 TEM micrograph of myco
long with curved tapered ends, truncated base, aseptate and
hyaline. Chlamydospores were dark brown, clustered and
sometimes chained together (Fig. 6a and b). Genotypic charac-

terization was successful with PCR amplification and produc-
tion of amplicons ranging 600–700 bps. ITS sequence was
deposited in Genbank Database and avail the accession num-

ber KM113381. Phylogenetic analysis by neighbor-joining
method indicates the closest proximity and exhibited 100%
homology with Colletotrichum chlorophyti (Fig. 7).

3.3. Evaluation of antibacterial activity of mycosynthesized

silver nanoparticles.

Antibacterial activity of silver nanoparticles synthesized from
Colletotrichum sp. via colony forming unit assay showed
increased number of colonies in control plate compared to sil-
ver nanoparticles treated plates and colonies number reduced

gradually as the concentration of nanoparticles increased from
0 to 100 lg/mL as shown in the Fig. 8. Among the test patho-
gens S. aureus was more sensitive to silver nanoparticles at

50 lg/mL concentration with no growth and rest of the test
organisms were susceptible at 100 lg/mL with no colonies
observed onto the plate. This result was in accordance with
ynthesized silver nanoparticles.

synthesized silver nanoparticles.



**Colletotrichum sp. ALF2-6- Isolate studied under present study. 
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Figure 7 Neighbor-joining phylogenetic tree showing the relationship among Colletotrichum sp.

Figure 6 Morphology of Colletotrichum sp. ALF2–6.
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the findings of Sondi and Salopek-Sondi, 2004, which reports
that E. coli was susceptible at concentration 50–60 lg/mL.

Similarly minimal inhibitory concentration of silver nanoparti-
cles showed silver nanoparticles at concentration 12.5 lg/mL
were minimal to inhibit the growth of S. aureus, S. typhi, B.
Figure 8 Graphical representation for antibacterial activity of

mycosynthesizedsilver nanoparticles.
subtilis and 25 lg/mL concentration of silver nanoparticles
showed inhibition against E. coli (Table 1). The result was val-

idated with standard gentamicin.

3.4. DNA damage activity

The electrophoresis gel showed intact band with the control
DNA without silver nanoparticles. Whereas DNA treated with
silver nanoparticles showed deformed and damage of DNA

indicating the action of silver nanoparticles by forming a
smear in lane3 as shown in (Fig. 9). These results were in
accordance with the findings of the Vahdati and Sadeghi
Table 1 MIC of SNP against test pathogens.

Sl no. Test pathogens Standard

gentamicin

MIC of SNP

Colletotrichum sp.

1 B. subtilis 1.56 lg/mL 12.5 lg/mL

2 E. coli 1.56 lg/mL 25 lg/mL

3 S. aureus 1.56 lg/mL 12.5 lg/mL

4 S. typhimurium 1.56 lg/mL 12.5 lg/mL

Note: + control(Gentamicin), SNP-Silver nanoparticle.



Lane1 Lane2 Lane3

Figure 9 DNA damage study of mycosynthesized silver nano-

particles. Note: Lane1-DNA, Lane2-SNP, Lane3-SNP+DNA.
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(2013), showing action of nanoparticles on plasmid DNA of

E. coli.

4. Conclusion

Till date majority of the reports on biological synthesis of
nanoparticles have just reported the synthesis protocol and
very limited number of studies demonstrate the application

part keeping this lacuna the present study was designed and
executed to report the facile mycosynthesis of silver nanopar-
ticles using potent endophyte Colletotrichum sp. ALF2-6 The

study not only highlights the emerging role of endophytes
for the synthesis of nanoparticles but also envisions the mode
of action of these biologically synthesized nanoparticles on
DNA damage of the E. coli. Thus the present study forms first

report of endophytic Colletotrichum sp. ALF2-6 from plant
A. paniculata mediating silver nanoparticle synthesis.
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