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eζ(s)+ζ(s,α) and sin(ζ(s) + ζ(s,α)) are universal.
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1. Introduction

Let α, 0 < α � 1, be a fixed parameter, and s = σ + it be a complex variable. The Hurwitz zeta-
function ζ(s,α) is defined, for σ > 1, by Dirichlet series

ζ(s,α) =
∞∑

m=0

1

(m + α)s
,
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and is meromorphically continued to the whole complex plane. The point s = 1 is its unique simple
pole with residue 1. For α = 1, the function ζ(s,α) reduces to the Riemann zeta-function

ζ(s) =
∞∑

m=1

1

ms
, σ > 1.

It is well known that both the functions ζ(s) and ζ(s,α) with transcendental or rational parameter
α are universal in the sense that their shifts ζ(s+ iτ ) and ζ(s+ iτ ,α) approximate uniformly on com-
pact subsets of some region any analytic function. The universality property for ζ(s) was discovered
by S.M. Voronin. The last version of the Voronin theorem can be found in [6] and [14], and is stated
as follows. Let D = {s ∈ C: 1

2 < σ < 1}, and meas{A} denote the Lebesgue measure of measurable set
A ⊂ R.

Theorem 1. Let K ⊂ D be a compact subset with connected complement, and let f (s) be a continuous non-
vanishing function on K which is analytic in the interior of K . Then, for every ε > 0,

lim inf
T →∞

1

T
meas

{
τ ∈ [0, T ]: sup

s∈K

∣∣ζ(s + iτ ) − f (s)
∣∣ < ε

}
> 0.

The universality of the function ζ(s,α) is a more complicated problem, and is solved [1,4,10,13]
only in the cases of transcendental or rational parameter α. The case of algebraic irrational α remains
an open problem. So, we have the statement.

Theorem 2. Suppose that α is a transcendental or rational number �= 1, 1
2 . Let K ⊂ D be a compact subset

with connected complement, and let f (s) be a continuous function on K which is analytic in the interior of K .
Then, for every ε > 0,

lim inf
T →∞

1

T
meas

{
τ ∈ [0, T ]: sup

s∈K

∣∣ζ(s + iτ ,α) − f (s)
∣∣ < ε

}
> 0.

The cases of rational α = 1 or 1
2 are excluded in Theorem 2 because ζ(s,1) = ζ(s) and

ζ

(
s,

1

2

)
= (

2s − 1
)
ζ(s).

Note that in Theorem 2 we have so-called the strong universality of the function ζ(s,α) because,
differently from Theorem 1, the approximated function f (s) can have zeros on K .

In [12], H. Mishou obtained a very interesting theorem on the joint universality of the functions
ζ(s) and ζ(s,α). We state this theorem.

Theorem 3. (See [12].) Suppose that α is a transcendental number. Let K1 and K2 be compact subsets of the
strip D with connected complements. Moreover, for each j = 1,2, let the functions f j(s) be continuous on K j
and analytic in the interior of K j , and additionally the function f1(s) is non-vanishing on K1 . Then, for every
ε > 0,

lim inf
T →∞

1

T
meas

{
τ ∈ [0, T ]: sup

s∈K1

∣∣ζ(s + iτ ) − f1(s)
∣∣ < ε, sup

s∈K2

∣∣ζ(s + iτ ,α) − f2(s)
∣∣ < ε

}
> 0.

Universality is a very interesting and useful property of zeta-functions. Therefore, it is an important
problem to extend the class of universal functions. In [7], we began to study some classes of functions
F such that the composite function F (ζ(s)) is universal in the above sense. Let H(G) denote the space
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of analytic on G functions equipped with the topology of uniform convergence on compacta. Among
other results, we proved the following theorem. Let S = {g ∈ H(D): g−1(s) ∈ H(D) or g(s) ≡ 0}. For
F : H(D) → H(D), and a1, . . . ,ar ∈ C, denote

H F (0);a1,...,ar (D) = {
g ∈ H(D):

(
g(s) − a j

)−1 ∈ H(D), j = 1, . . . , r
} ∪ {

F (0)
}
.

Theorem 4. Suppose that F : H(D) → H(D) is a continuous function such that F (S) ⊃ H F (0);a1,...,ar (D).
For r = 1, let K ⊂ D be a compact subset with connected complement, and let f (s) be a continuous and
�= a1 function on K which is analytic in the interior of K . For r � 2, let K ⊂ D be a compact subset, and
f (s) ∈ H F (0);a1,...,ar (D). Then, for every ε > 0,

lim inf
T →∞

1

T
meas

{
τ ∈ [0, T ]: sup

s∈K

∣∣F
(
ζ(s + iτ )

) − f (s)
∣∣ < ε

}
> 0.

Theorem 4 is a slightly modified, corrected and extended version of Theorem 7 of [7]. For r = 2,
the hypotheses of Theorem 7 of [7] must be changed by those of Theorem 4 because in its proof
the function ha,b(s) can take the value b (p. 2330 of [7]). In Theorem 4, the image F (S) contains a
comparatively simple set, and this allows to obtain the universality for some elementary functions F .
For example, taking r1 = 1 and a1 = 0, we obtain the universality of the function ζn(s), n ∈N. If r = 2
and a1 = −1, a2 = 1, then we have the universality of sin ζ(s) and cos ζ(s).

In general, the following result (Theorem 5) is valid. Let C∞ = C ∪ {∞} be the Riemann sphere,
and let d denote the spherical metric, i.e., for s1, s2, s ∈ C,

d(s1, s2) = 2|s1 − s2|√
1 + |s1|2

√
1 + |s2|2

, d(s,∞) = 2√
1 + |s|2 , d(∞,∞) = 0.

Let M(D) stand for the space of meromorphic functions g : D → (C∞,d) equipped with the topology
of uniform convergence on compacta. In this topology, a sequence {gn: n ∈ N} ∈ M(D) converges to
g ∈ M(D) if, for every compact subset K ⊂ D ,

sup
s∈K

d
(

gn(s), g(s)
) −→

n→∞ 0.

H(D) is a subspace of M(D).

Theorem 5. Suppose that the function F̂ : H(D) → M(D) is continuous, f (s) ∈ F̂ (S) ∩ H(D), and K ⊂ D is
a compact subset. Then, for every ε > 0,

lim inf
T →∞

1

T
meas

{
τ ∈ [0, T ]: sup

s∈K

∣∣ F̂
(
ζ(s + iτ )

) − f (s)
∣∣ < ε

}
> 0.

For example, if f (s) is a non-vanishing analytic function on D , then f (s) can be approximated
uniformly on compact subsets K ⊂ D by shifts ζ−1(s + iτ ). The same is also true for f (s) ∈ H(D) and
ζ ′(s+iτ )
ζ(s+iτ )

.
The universality of composite functions F (ζ(s,α)) is considered in [9]. This paper, for example,

contains the following statement.

Theorem 6. (See [9].) Suppose that F : H(D) → H(D) is a continuous function such that, for each polynomial
p = p(s), the set F −1{p} is non-empty, and that α is a transcendental number. Let K and f (s) be the same as
in Theorem 2. Then, for every ε > 0,

lim inf
T →∞

1

T
meas

{
τ ∈ [0, T ]: sup

∣∣F
(
ζ(s + iτ ,α)

) − f (s)
∣∣ < ε

}
> 0.
s∈K
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For example, it follows from Theorem 6 that the function

F
(
ζ(s,α)

) = c1ζ
′(s,α) + · · · + crζ

(r)(s,α), c1, . . . , cr ∈C \ {0},

with transcendental α is universal in the sense of Theorem 6.
The aim of this paper is to consider the universality of composite functions F (ζ(s), ζ(s,α)). In

what follows, we suppose that the parameter α is transcendental.

Theorem 7. Suppose that F : H2(D) → H(D) is a continuous function such that, for every open set G ⊂ H(D),
the set (F −1G)∩ (S × H(D)) is non-empty. Let K and f (s) be the same as in Theorem 2. Then, for every ε > 0,

lim inf
T →∞

1

T
meas

{
τ ∈ [0, T ]: sup

s∈K

∣∣F
(
ζ(s + iτ ), ζ(s + iτ ,α)

) − f (s)
∣∣ < ε

}
> 0.

The hypothesis of Theorem 7 that the set (F −1G) ∩ (S × H(D)) is non-empty for every open set
G ⊂ H(D) is rather complicated and general. The next theorem gives simpler sufficient conditions for
the universality of the function F (ζ(s), ζ(s,α)). Let V be an arbitrary positive number,

D V =
{

s ∈C:
1

2
< σ < 1, |t| < V

}

and

S V = {
g ∈ H(D V ): g−1(s) ∈ H(D V ) or g(s) ≡ 0

}
.

We will use the notation H2(D V , D) = H(D V ) × H(D).

Theorem 8. Let K and f (s) be the same as in Theorem 2, and V > 0 be such that K ⊂ D V . Suppose that
F : H2(D V , D) → H(D V ) is a continuous function such that, for each polynomial p = p(s), the set (F −1{p})∩
(S V × H(D)) is non-empty. Then the assertion of Theorem 7 is true.

For example, Theorem 8 implies the universality of the functions

F
(
ζ(s), ζ(s,α)

) = c1ζ(s) + c2ζ(s,α)

and

F
(
ζ(s), ζ(s,α)

) = c1ζ
′(s) + c2ζ

′(s,α), c1, c2 ∈C \ {0}.

Now let a1, . . . ,ar be arbitrary distinct numbers, and

Hr(D) =
{

H(D) if r = 0,

{g ∈ H(D): (g(s) − a j)
−1 ∈ H(D), j = 1, . . . , r}.

Theorem 9. Suppose that F : H2(D) → H(D) is a continuous function such that F (S × H(D)) ⊃ Hr(D) (is
the set H(D) if r = 0). In the case r = 0, let K and f (s) be the same as in Theorem 2. If r = 1, let K ⊂ D be
the same as in Theorem 2, and let f (s) be a continuous and �= a1 function on K , and analytic in the interior
of K . For r � 2, let K ⊂ D be an arbitrary compact subset, and f (s) ∈ Hr(D). Then the assertion of Theorem 7
is true.
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For example, taking r = 1 and a1 = 0, we obtain the universality of the function eζ(s)+ζ(s,α) . If r = 2
and a1 = 1, a2 = −1, then we have that the shifts sinh(ζ(s + iτ ) + ζ(s + iτ ,α)) approximate analytic
functions on D which do not take values 1 and −1.

The joint universality of functions F = (F1, F2) : H2(D) → H2(D) will be considered in a forthcom-
ing paper.

2. Lemmas

For proofs of the theorems, we will apply the probabilistic approach. So, we need some definitions.
As usual, denote by B(X) the class of Borel sets of the space X . Let γ = {s ∈ C: |s| = 1} be the unit
circle on the complex plane. Define the infinite-dimensional tori

Ω1 =
∏

p

γp and Ω2 =
∞∏

m=1

γm,

where γp = γ for all primes p, and γm = γ for all m ∈ N0 = N ∪ {0}. By the Tikhonov theorem,
Ω1 and Ω2 with the product topology and pointwise multiplication are compact topological Abelian
groups. Similarly, the product Ω = Ω1 × Ω2 is also a compact topological Abelian group. There-
fore, on (Ω,B(Ω)), the probability Haar measure mH exists, and this gives the probability space
(Ω,B(Ω),mH ). Denote by ω1(p) and ω2(m) the projections of ω1 ∈ Ω1 and ω2 ∈ Ω2 to the co-
ordinate spaces γp and γm , respectively, and on the probability space (Ω,B(Ω),mH ) define the
H2(D)-valued random element ζ (s,ω), ω = (ω1,ω2) ∈ Ω , by the formula

ζ (s,ω) = (
ζ(s,ω1), ζ(s,α,ω2)

)
,

where

ζ(s,ω1) =
∏

p

(
1 − ω1(p)

ps

)−1

and

ζ(s,α,ω2) =
∞∑

m=0

ω2(m)

(m + α)s
.

We note that, for almost all ω ∈ Ω , the product and the series both converge uniformly on compact
subsets of the strip D , and thus they define an H2(D)-valued random element on the probability
space (Ω,B(Ω),mH ). Denote by Pζ the distribution of the random element ζ (s,ω), i.e.,

Pζ (A) = mH
(
ω ∈ Ω: ζ (s,ω) ∈ A

)
, A ∈ B

(
H2(D)

)
.

For A ∈ B(H2(D)), and ζ (s) = (ζ(s), ζ(s,α)), we set

P T (A) = 1

T
meas

{
τ ∈ [0, T ]: ζ (s + iτ ) ∈ A

}
.

Lemma 10. Suppose that α is a transcendental number. Then P T converges weakly to Pζ as T → ∞.

The lemma is Theorem 1 from [12].
In the sequel, we will use the following well-known fact from the theory of the weak conver-

gence of probability measures. Let X1 and X2 be two metric spaces, and let h : X1 → X2 be a
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(B(X1),B(X2))-measurable function, i.e.,

h−1B(X2) ⊂ B(X1).

Then every probability measure P on (X1,B(X1)) induces on the space (X2,B(X2)) the unique prob-
ability measure Ph−1 defined by the formula

Ph−1(A) = P
(
h−1 A

)
, A ∈ B(X2).

Clearly, if the function h : X1 → X2 is a continuous, then it is (B(X1),B(X2))-measurable.

Lemma 11. Suppose that Pn, n ∈N, and P are probability measures on (X1,B(X1)), the function h : X1 → X2
is continuous, and Pn converges weakly to P as n → ∞. Then Pnh−1 also converges weakly to Ph−1 as
n → ∞.

The lemma is a particular case of Theorem 5.1 from [2].

Lemma 12. Suppose that the function F̂ : H(D) → M(D) is continuous. Then

1

T
meas

{
τ ∈ [0, T ]: F̂

(
ζ(s + iτ )

) ∈ A
}
, A ∈ B

(
M(D)

)
,

converges weakly to the distribution of the random element F̂ (ζ(s,ω1)) as T → ∞.

Proof. The lemma is a consequence of Lemma 9 from [7], Lemma 11, and of the continuity of the
function F̂ . �

As it was mentioned above, throughout the paper we suppose that α is a transcendental number.

Lemma 13. Suppose that the function F : H2(D) → H(D) is continuous. Then

P T ,F (A)
def= 1

T
meas

{
τ ∈ [0, T ]: F

(
ζ (s + iτ )

) ∈ A
}
, A ∈ B

(
H(D)

)
,

converges weakly to the distribution of the random element F (ζ (s,ω)) as T → ∞.

Proof. Clearly, we have that P T ,F = P T F −1. The continuity of the function F together with Lem-
mas 10 and 11 yields the weak convergence of P T ,F to Pζ F −1 as T → ∞. However, for A ∈ B(H(D)),

Pζ F −1(A) = Pζ

(
F −1 A

) = mH
(
ω ∈ Ω: ζ (s,ω) ∈ F −1 A

) = mH
(
ω ∈ Ω: F

(
ζ (s,ω)

) ∈ A
)
.

This shows that Pζ F −1 is the distribution of the H(D)-valued random element F (ζ (s,ω)). �
For V > 0, denote by P T ,V and Pζ ,V the restrictions to the space (H2(D V , D),B(H2(D V , D)))

of the probability measures P T and Pζ , respectively. Let ζ
V
(s,ω) be the H2(D V , D)-valued random

element with the distribution Pζ ,V .

Lemma 14. P T ,V converges weakly to Pζ ,V as T → ∞.
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Proof. Obviously, the function hV : H2(D) → H2(D V , D) given by the formula hV (g1(s), g2(s)) =
(g1(s)|s∈D V , g2(s)), g1, g2 ∈ H(D), is continuous. Therefore, the lemma is a corollary of Lemmas 10
and 11. �
Lemma 15. Suppose that the function F : H2(D V , D) → H(D V ) is continuous. Then

1

T
meas

{
τ ∈ [0, T ]: F

(
ζ (s + iτ )

) ∈ A
}
, A ∈ B

(
H(D V )

)
,

converges weakly to the distribution of the random element F (ζ
V
(s,ω)) as T → ∞.

Proof. The lemma follows from Lemmas 14 and 11 in the same way as Lemma 13 from Lemmas 10
and 11. �

For the proof of universality theorems for zeta-functions, we also need the explicit form for the
supports of the limit measures in limit theorems in the space of analytic functions. The spaces H(D),
H2(D), H(D V ) and H2(D V , D) are separable. For brevity, denote them by H . Therefore, the support
of a probability measure P on (H,B(H)) is a minimal closed set S P ⊂ H such that P (S P ) = 1. The
set S P consists of all elements g ∈ H such that, for every open neighbourhood G of g , the inequality
P (G) > 0 is satisfied. If ξ is a random element with the distribution P , then the support of ξ is that
of the measure P .

We recall that

S = {
g ∈ H(D): g−1(s) ∈ H(D) or g(s) ≡ 0

}
.

Lemma 16. The support of the measure Pζ is the set S × H(D).

Proof. The lemma follows from [12, p. 46]. It also is a particular case of the corresponding statements
for zeta-functions with periodic coefficients [5,8]. �
Lemma 17. For arbitrary V > 0, the support of the measure Pζ ,V is the set S V × H(D).

Proof. The lemma is proved by using precisely the same arguments as in the case of the mea-
sure Pζ . �

Denote by Pζ ,F the distribution of the random element F (ζ (s,ω)).

Lemma 18. Suppose that the function F : H2(D) → H(D) satisfies the hypotheses of Theorem 7. Then the
support of the measure Pζ ,F is the whole of H(D).

Proof. Let g be an arbitrary element of the space H(D). We take an arbitrary open neighbourhood
G of the element g . Since the function F is continuous, the set F −1G is also open. Moreover, the
hypothesis

(
F −1G

) ∩ (
S × H(D)

) �= ∅

implies the existence of an element ĝ which simultaneously belongs to the sets F −1G and S × H(D).
Thus, F −1G is an open neighbourhood of the element ĝ . Therefore, in view of Lemma 16,

mH
(
ω ∈ Ω: ζ (s,ω) ∈ F −1G

)
> 0.
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Hence,

mH
(
ω ∈ Ω: F

(
ζ (s,ω)

) ∈ G
) = mH

(
ω ∈ Ω: ζ (s,ω) ∈ F −1G

)
> 0.

Since g and G are arbitrary, this gives the assertion of the lemma. �
Now we recall the Mergelyan theorem on approximation of analytic functions by polynomials [11],

see also [15].

Lemma 19. Suppose that K ⊂ C is a compact subset with connected supplement, and f (s) is a continuous
function on K which is analytic in the interior of K . Then, for every ε > 0, there exists a polynomial p(s) such
that

sup
s∈K

∣∣ f (s) − p(s)
∣∣ < ε.

Denote by Pζ ,F ,V the distribution of the random element F (ζ
V
(s,ω)).

Lemma 20. Suppose that the function F : H2(D V , D) → H(D V ) satisfies the hypotheses of Theorem 8. Then
the support of the measure Pζ ,F ,V is the whole of H(D V ).

Proof. We recall that the space H(G) is metrisable. It is well known, see, for example, [3], that there
exists a sequence {Kl: l ∈ N} ⊂ G of compact subsets such that Kl ⊂ Kl+1, l ∈ N,

G =
∞⋃

l=1

Kl,

and if K ⊂ G is a compact subset, then K ⊂ Kl for some l ∈ N. For g1, g2 ∈ H(G), define

ρ(g1, g2) =
∞∑

l=1

2−l sups∈Kl
|g1(s) − g2(s)|

1 + sups∈Kl
|g1(s) − g2(s)| .

Then, clearly, ρ is a metric on H(G) which induces the topology of uniform convergence on compacta.
It is easily seen that ρ(g1, g2) is small if sups∈Kl

|g1(s)− g2(s)| is sufficiently small for the set Kl with
rather large l ∈ N. Thus, the approximation in the space H(G) reduces to that on the sets of the
type Kl . Moreover, in the case H(D) or H(D V ) we can choose the sets Kl , l ∈ N, to be with connected
complement, for example, we can take closed rectangles.

Let g be an arbitrary element of H(D V ), and G be its arbitrary open neighbourhood. Suppose that
K ⊂ D V is a compact subset with connected complement. Then, in virtue of Lemma 19, for every
ε > 0, we can find a polynomial p = p(s) such that

sup
s∈K

∣∣g(s) − p(s)
∣∣ < ε.

Thus, if ε is small enough, we may assume that p ∈ G , too. Therefore, by the hypotheses of the
lemma, the set F −1G is open and contains an element of the set S V × H(D). So, Lemma 17 implies
the inequality

mH
(
ω ∈ Ω: ζ (s,ω) ∈ F −1G

)
> 0.
V
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Hence,

Pζ ,F ,V (G) = mH
(
ω ∈ Ω: F

(
ζ

V
(s,ω)

) ∈ G
) = mH

(
ω ∈ Ω: ζ

V
(s,ω) ∈ F −1G

)
> 0.

Since g and G are arbitrary, this proves the lemma. �
Lemma 21. Suppose that the function F : H2(D) → H(D) satisfies the hypotheses of Theorem 9. Then the
support of the measure Pζ ,F contains the closure of the set Hr(D) (is set H(D) if r = 0).

Proof. Under hypotheses of the lemma, for each element h ∈ Hr(D), there exists an element (g1, g2) ∈
S × H(D) such that F (g1, g2) = h. Thus, for every open neighbourhood G of h, the open set F −1G
contains an element of S × H(D). Therefore, by Lemma 16,

mH
(
ω ∈ Ω: ζ (s,ω) ∈ F −1G

)
> 0,

and this yields

Pζ ,F (G) = mH
(
ω ∈ Ω: F

(
ζ (s,ω)

) ∈ G
) = mH

(
ω ∈ Ω: ζ (s,ω) ∈ F −1G

)
> 0. (1)

Therefore h is an element of the support of Pζ ,F . Hence, the set Hr(D) is a subset of the support
Pζ ,F . Since the support is a closed set, the support of Pζ ,F includes the closure of Hr(D). �
3. Proofs of theorems

First we recall an equivalent in terms of open sets of the weak convergence of probability mea-
sures.

Lemma 22. Let Pn, n ∈ N, and P be probability measures on (X,B(X)). Then Pn, as n → ∞, converges weakly
to P if and only if

lim inf
n→∞ Pn(G) � P (G)

for every open set G ⊂ X.

The lemma is a part of Theorem 2.1 of [2].

Proof of Theorem 4. Denote by Pζ,F the distribution of the random element F (ζ(s,ω1)) defined on
the probability space (Ω1,B(Ω1),m1H ), where m1H is the Haar measure on (Ω1,B(Ω1)). First we
observe that the support of Pζ,F includes the closure of the set H F (0);a1,...,ar (D). Indeed, let g be an
arbitrary element of H F (0);a1,...,ar (D). Then there exists g1 ∈ S such that F (g1) = g . Since the function
F is continuous, for every open neighbourhood G of g , the set F −1G is also open and contains the
element g1. Thus, by Lemma 13 of [7],

m1H
(
ω1 ∈ Ω1: F

(
ζ(s,ω1)

) ∈ G
) = m1H

(
ω1 ∈ Ω1: ζ(s,ω1) ∈ F −1G

)
> 0.

This shows that g is an element of the support of Pζ,F . Therefore, the set H F (0);a1,...,ar (D) is a subset
of the support of Pζ,F . Thus, the support of Pζ,F contains the closure of H F (0);a1,...,ar (D).

Suppose that r = 1. By Lemma 19, there exists a polynomial p(s) such that

sup
∣∣ f (s) − p(s)

∣∣ <
ε

4
. (2)
s∈K
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Since f (s) �= a1 on K , we have that p(s) �= a1 on K as well if ε is small enough. Therefore, we can
define a continuous branch of log(p(s) − a1) which will be an analytic function in the interior of K .
By Lemma 19 again, there exists a polynomial q(s) such that

sup
s∈K

∣∣p(s) − a1 − eq(s)
∣∣ <

ε

4
. (3)

Let ha1 (s) = eq(s) + a1. Then, ha1 (s) ∈ H(D) and ha1 (s) �= a1. Therefore, by the above remark, the func-
tion ha1 (s) is an element of the support of Pζ,F . Moreover, inequalities (2) and (3) imply

sup
s∈K

∣∣ f (s) − ha1(s)
∣∣ <

ε

2
. (4)

Define

G1 =
{

g ∈ H(D): sup
s∈K

∣∣g(s) − ha1(s)
∣∣ <

ε

2

}
.

Then we have that Pζ,F (G1) > 0, and Lemma 9 of [7] together with Lemma 22 shows that

lim inf
T →∞

1

T
meas

{
τ ∈ [0, T ]: sup

s∈K

∣∣F
(
ζ(s + iτ )

) − ha1(s)
∣∣ <

ε

2

}
> 0.

This and (4) prove the theorem in the case r = 1.
Now let r � 2. Define

G2 =
{

g ∈ H(D): sup
s∈K

∣∣g(s) − f (s)
∣∣ < ε

}
.

Since f (s) ∈ H F (0);a1,...,ar (D), it is an element of the support of Pζ,F . Therefore, Pζ,F (G2) > 0, and we
have by Lemma 9 of [7] and Lemma 22 that

lim inf
T →∞

1

T
meas

{
τ ∈ [0, T ]: sup

s∈K

∣∣F
(
ζ(s + iτ )

) − f (s)
∣∣ < ε

}
> 0.

The theorem is proved. �
Proof of Theorem 5. Denote by P

ζ, F̂ the distribution of the random element F̂ (ζ(s,ω1)). It is easily

seen that the support of the measure P
ζ, F̂ is the closure of F̂ (S). If g is an arbitrary element of F̂ (S),

and G is its any open neighbourhood, then, by Lemma 13 of [7]

m1H
(
ω1 ∈ Ω1: ζ(s,ω1) ∈ F̂ −1G

)
> 0.

Therefore,

m1H
(
ω1 ∈ Ω1: F̂

(
ζ(s,ω1)

) ∈ G
) = m1H

(
ω1 ∈ Ω1: ζ(s,ω1) ∈ F̂ −1G

)
> 0.

Moreover,

m1H
(
ω1 ∈ Ω1: F̂

(
ζ(s,ω1)

) ∈ F̂ (S)
) = m1H

(
ω1 ∈ Ω1: ζ(s,ω1) ∈ S

) = 1.
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Thus, the support of P
ζ, F̂ is the closure of F̂ (S).

Since the analytic function f (s) ∈ F̂ (S), the end of the proof is the same as that of Theorem 4 in
the case r � 2. �
Proof of Theorem 7. By Lemma 19, there exists a polynomial p(s) such that

sup
s∈K

∣∣ f (s) − p(s)
∣∣ <

ε

2
. (5)

Define

G =
{

g ∈ H(D): sup
s∈K

∣∣g(s) − p(s)
∣∣ <

ε

2

}
.

In view of Lemma 18, the polynomial p(s) is an element of the support of the measure Pζ ,F . Since G
is an open neighbourhood of p(s), we have that Pζ ,F (G) > 0. Taking into account Lemmas 13 and 22,
we deduce from this that

lim inf
T →∞

1

T
meas

{
τ ∈ [0, T ]: F

(
ζ (s + iτ )

) ∈ G
}

� Pζ ,F (G) > 0.

Thus, the definition of the set G yields

lim inf
T →∞

1

T
meas

{
τ ∈ [0, T ]: sup

s∈K

∣∣F
(
ζ(s + iτ ), ζ(s + iτ ,α)

) − p(s)
∣∣ <

ε

2

}
> 0.

Combining this with (5) proves the theorem. �
Proof of Theorem 8. We follow the proof of Theorem 7, and in place of Lemmas 18 and 13, we apply
Lemmas 20 and 15, respectively. �
Proof of Theorem 9. The case r = 0 uses Lemmas 21 and 13, and completely coincides with the proof
of Theorem 7.

The case r = 1. As in the proof of Theorem 4, we find that there exists a function ha1 ∈ H(D) such
that ha1 (s) �= a1 and inequality (4) holds. Thus, by Lemma 21, ha1 (s) is an element of the support of
the measure Pζ ,F . Therefore, in notation of the proof of Theorem 4, Pζ ,F (G1) > 0. Hence, in view of
Lemmas 13 and 22,

lim inf
T →∞

1

T
meas

{
τ ∈ [0, T ]: sup

s∈K

∣∣F
(
ζ(s + iτ ), ζ(s + iτ ,α)

) − ha1(s)
∣∣ <

ε

2

}
> 0.

Combining this with (4) gives the assertion of the theorem in the case r = 1.
The case r � 2. We preserve the notation used in the proof of Theorem 4. Since f (s) ∈ Hr(D), by

Lemma 21, f (s) is an element of the support of Pζ ,F . Therefore Pζ ,F (G2) > 0. Now the definition of
G2 and Lemmas 13 and 22 yield the inequality

lim inf
T →∞

1

T
meas

{
τ ∈ [0, T ]: sup

s∈K

∣∣F
(
ζ(s + iτ ), ζ(s + iτ ,α)

) − f (s)
∣∣ < ε

}
> Pζ ,F (G2) > 0.

The theorem is proved. �
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