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INTRODUCTION 

Generalized crossed products, sometimes called strongly graded rings, 
appear quite naturally in the theory of splitting rings for Azumaya algebras 
over rings with nontrivial Picard groups. This theorey and its relation to 
the existence of the seven term exact sequence of ChaseeHarrisonRosen- 
berg has been studied by Kanzaki in [S], Caenepeel, Van den Bergh, and 
Van Oystaeyen in [3]. The aformentioned application of graded techni- 
ques is basically commutative in nature and the grading groups are usually 
finite, but also in the noncommutative case some techniques, of graded 
rings theory lead to fruitful applications, e.g., the use of generalized Rees 
rings in the study of maximal orders and their class groups, cf. [ 11, lo]. In 
the setting of orders, the class group is a more intrinsic invariant than the 
Picard group, and according to this the concept of a divisorially graded 
ring over an order is more natural than that of a generalized crossed 
product. Divisorially graded rings have been introduced by Van Oystaeyen 
(cf. [23] and in [ 1 l]), Le Bruyn and Van Oystaeyen studied divisorially 
graded P.I. rings; the more general definition, dealing with graded rings 
over a (semi-)prime Goldie ring has been introduced by Marubayashi in 
[ 121 and has also been used by Nastasescu, Nauwelaerts, and Van 
Oystaeyen in [16]. 

In this paper we study a ring A and a subring B and we derive some 
properties of divisorial B-bimodules contained in A. This leads to the con- 
struction of several groups and exact sequences relating them, much in the 
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vein of some results of Miyashita [ 131 who treated the generalized crossed 
product case in much detail. The step from the generalized crossed product 
case to the case of divisorially graded rings present some typical problems 
concerning reflexive and divisorial bimodules. On the other hand, for 
orders and lattices over orders the notion of divisoriality is well established 
and it is known to be related to the center and properties of the lattice con- 
sidered over the center by restrictions of scalars. Consequently, the fact that 
Z(A ) and Z(B) need not be related in any sense causes difficulties when we 
are considering orders, say tame orders A and B over Z(A) and Z(B), and 
the usual concepts of divisoriality. We have solved this problem by 
restricting to the so-called arithmetical situation where the extensions Z(A) 
over Z(A ) n Z(B) and Z(B) over Z(A ) n Z(B) satisfy certain conditions (of 
PDE type). The arithmetical situation occurs frequently, actually in all 
concrete situations (e.g., gradation by finite groups) this will be the case. 
We pay particular attention to the case where B is commutative but not 
necessarily central in A. 

1. PRELIMINARIES 

Let R be a ring graded by a group G such that R, is a prime Goldie ring 
with classical ring of fractions Q,,(R,) = Q,. Let E, be an injective envelope 
of the left R,-module QJR, and consider the idempotent kernel functor K 
on R,-mod with filter L(K) = {N left ideal of R,, HomRe(R,/H, E,) = 0}, in 
other words HE L(K) if and only if for r E R, and q E Q, such that 
(H : r) q c R,, q E R, follows, where (H : r) = {x E R,, xr E H}. In exactly 
the same way one defines the kernel functor K’ on right R,-modules 
associated to the injective envelope of Q,/R, as a right R,-module. Since R, 
is a prime Goldie ring we have ti(R,) = 0 and Q,(R,) = R,. For a left ideal 
L of R, we define the K-closure of L as cl(L) = {x E R,, Hx c L for some 
HE L(ti)}, We say that L is k--closed if L = cl(L). Since Q,(R,) = R, it is 
clear that cl(L) = Q,(L) in R,-mod. We say that R is divisorially graded if 
the following properties hold: 

(1) R is K and K/-torsion-free. 

(2) For all 6, r E G, QK( R, R,) = R,, = Q,,(R, R,). 

The second condition impies that Q,(R,) = R, = QJR,) for all LEG. 
From [ 161 we recall the following properties of divisorially graded rings: 

(i) For all LEG, Q,(R,R,-,)=R,, i.e., R,R,-[EL(K). 

(ii) If for some g, LEG, R,r,=O with r,E R then rO=O and 
similarly r, R, = 0 yields r,, = 0. 

(iii) The set S,. = {SE R,., s regular in R,} is a regular left and right 
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Ore set of R. The left ring of fractions with respect to S, is isomorphic to 
the right ring of fractions and it is denoted by QR. Then Qz is strongly 
graded by G and (Qg), = Q,,(R,) = Q, w h ere e is the neutral element of G. 

(iv) A strongly graded ring (i.e., R,R, = R,,, 0, z E G) is 
automatically divisorially graded. 

We now consider a subring B of A and we assume that B is a prime 
Goldie ring; let Z(B), Z(A) be the centre of B (resp. A). The theory we are 
about to expound may be developed for relative maximal orders in the 
sense of Le Bruyn, cf. [9], but here we restrict attention to a more concrete 
situation where B is a maximal order over a Krull domain Z(B) in a cen- 
tral simple algebra Q(B). By a result of Chamarie [4], see also D.1.18 in 
[26], it follows that K = K’ is a central kernel functor in this case and 
it corresponds to the prime ideals PE X”‘(Z(B)) in the sense: 
x=inf(ti,,pEX(r’(Z(B))}. F rom now on we do not distinguish between K 

and K’, and we write K, instead, thus indicating that it corresponds to 
X(l’(Z(B)). Any Z(B)-module A4 is said to be diuisoriul if it is torsion-free 
and if A4 = 0 {M,], p E X”‘(Z( B)) ). Let K be the field of fractions of Z(B), 
then we define 

Z(B): M= {J’~Horn &KC3 M, K),f’(W = Z(B)) 

and we write M* for the Z(B)-module Hom,(,,(M, Z(B)). We may view 
Z(B): (Z(B): M) as a Z(B)-submodule of KO M, as Z(B) modules, in 
natural way. If M is a Z(B)-lattice (cf. Fossum [7]) then Z(B): M is 
isomorphic to M* and M is divisorial if and only if M= M**, i.e., if 
and only if M is a reflexive Z(B)-module or if and only if 
M= n {M,, p E X(“(Z( B))}. By the assumption that B is a maximal Z(B)- 
order it follows in particular that B is divisorial Z(B)-lattice and from 
Lemma 2.5(2), p. 12 in [26, II], we maintain that a finitely generated 
reflexive B-module will also be reflexive as a Z(B)-module. Actually we 
may strenghten this result as follows: if J4 is torsion-free of finite rank (in 
particular if M is ti,-finitely generated, i.e., M contains a finitely generated 
M’ such that M/M’ is K,-torsion, then it is reflexive as a left B-module if 
and only if it is reflexive (necessarily of finite rank) as a Z(B)-module and 
reflexivity is then equivalent to M = 0 { M,/~E X”‘(Z(B))}, i.e., to 
divisoriality (see Proposition 1.8 in [26, II] or Corollary 1.9(4) on p. 240 
WI 1. 

A two-sided B-submodule P of A is said to be divisoriul in A if and only 
if P = QK,(P) and there exists a two-sided B-submodule Q of A, also satisfy- 
ing Q,,(Q) = Q, such that (*) Q,,(PQ)= QlcI(QP) = B. Clearly P (also Q) 
are torsionfree left B-modules of finite rank, so we may apply the foregoing 
remark to them. From (*) it follows that P (also Q) has “rank one” 
because for all p E X”‘(Z( B)), P, = B, in B,,-mod. Now a maximal order B 
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over a Krull domain is K,-noetherian in the sense of [26] hence every 
K ,-finitely generated left B-module is also rc,-finitely presented (Lemma 4.2 
of [26, II, p. 761) and we may apply the criterion given in 
Proposition 4.15, p. 83, of [26, II] to deduce that a P which is divisorial in 
A is k-,-invertible in the sense of [26, II] p. 50, i.e., the isomorphism class of 
the B-bimodule P represents an element of the relative Picard group 
Pic( B, K, ). By checking the definition it follows that the class of Q, [Q], is 
theinverseof [P] and Q,,(Q@P)=Q,,(QP)=B=Q,,(PQ)=Q,,(P@Q). 
In case B is commutative, Pic(B, K,) = Cl(B) the class group of the Krull 
domain B= Z(B). If B is a reflexive Azumaya algebra (cf. [25, 26, 271) 
then Pic(B, IC,) equals the central class group Ccl(B) of the maximal order 
B as defined in [9] or [26]. From the remarks and results summarized 
above it is clear that the two-sided B-submodules which are divisorial in A 
form a group D,(A). We write Aut,(A) for the group of all 
B-automorphism of A. Clearly Aut,(A) acts on D,(A) by letting 
a~Aut.(A) act on PED,(A) by PHP~. 

With assumption on B as above, if A is divisorially graded by G, such 
that A,= B, then each A,, u E G, is an element of D,(A) because 
Q,,(A,A,-l)=Qk,(Ao-lA,)=B hence a-A, determines a group 
morphism G -+ D,(A) -+j Pic(B, li,) where j(A,) = [Ad] is the iso- 
morphism class of the B-bimodule A,. First, we will derive some results 
assuming only that Q,,(A) = A. 

2. ACTIONS AND EXACT SEQUENCES 

As in Section 1 we consider a maximal order B over a Krull domain 
R = Z(B) and a ring A containing B. We assume moreover that A is 
divisorial as an R-module, i.e., A = n {A,, p E X”‘(R)} as R-modules (also 
as B-modules). 

Consider P E D,(A) and a E C,(A) = {x E A, xb = bx for every b E B}. 
Since p is central in B, A, is a BP-module and P, is an invertible 
B,-module. Therefore, to P, we may associate an automorphism 
04, E Autz(,, p(C,(A,)) which may be derived from a decomposition of 1 in 
P&P,)-‘=B,, cf. [15], such that for all DECKS, P,y=a,,(y)P, 
elementwise. Now from A = n {A,, p E X(‘)(R)} it follows that A c A, for 
all PE X”‘(R), hence C,(A) c Cs,(Ap) (note that A,, need not be a ring 
here). 

Consequently for all a E C,(A), XE P we obtain xa = o,+(a) x, because 
P c P, as P is rc,-invertible (see Sect. 1). Again by centrality of p it follows 
easily that CBp(Ap) = (C,(A)), (also using the fact that A and C,(A) are 
K,-torsion-free). Now for all x E P we obtain (~,~(a) - ~~~(a)) x = 0, p, q in 
X(‘)(R), consequently (aAr(u) - a,&~)) P = 0 and (~,~(a) -a,+(u)) PQ = 0 
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for Q such that Q,,(PQ) = B. Hence (~~,(a) - ~,~(a) E rci(K 0 R A) = 0 (note 
A is divisorial hence torsion-free as an R-module). Consequently gA (a) E 
f-l W&W,~ q~X(‘)WL h’ h w IC is contained in fi {A,, qEX(‘)(Rfi =A 
and also, ~,~(a) E C,(A). So we have obtained a uniquely determined 
automorphism (T E Aut,,,,(C,(A)) corresponding to P such that xa = 
o(a) x holds for all a E C,(A), x E P. It is obvious that we may replace A by 
any A-bimodule M, which is Z(B)-compatible, so we have 

2.1. PROPOSITION. Let P E D,(A) and let M be an A-bimodule which is 
Z( B)-compatible and divisorial as a Z( B)-module. To P we may associate an 
automorphism o(P) E Aut,,,,(C,(A)) which may be induced by taking a 
decomposition 1 = xi x,.x: in P,Q, = B, for some p in X’(R) in the sense 
that o(P)(a) = C x,ax:, and such that ,for all a E C,(A), Pa = o(P)(a) P 
elementwise. In a similar way one obtains a map o,,,(P): C,(M) + C,(M) 
which is semilinear (left and right) C,(A)-automorphism. 

Proof: For o(P) we take oA, constructed above and we already 
established that this is independent of the chosen p E X’(R). Since 
[P,] E Pic(B,) it is well known, cf. [2], that IJ~, may be defined by picking 
a decomposition 1 = C xix: as in the proposition (and oA, is of course no 
depending on the chosen decomposition). The statement concerning crM(P) 
may be proved in the same way, actually here the proof is very similar to 
the lines of proof used in [ 131. 

2.2. COROLLARY. Suppose we are given a group morphism 
@: G + D,(A), g + P, for some group G. Then there is a canonical action 
of G on C,(A) given by the composition of: 

YA: G -+ D,(A) + Aut(C,(A)) 

g--f P, --+ o(P,) = o*’ 

This action of G is compatible with the canonical action of G on C,(M) 
defined by the group morphism Y ,,,,: G + DLI(A) + Aut,,(C,(M)), where 
the latter group is the group of left and right Y’,-semilinear 
C,( A )-bimodule automorphism. 

In many concrete situations the inclusion Bc A will be an extension of 
rings in the sense of C. Procesi [ 191 (e.g., A = BC,(B)) or more general, 
Z(B) c Z(A) will hold. But this is not always the case and in particular 
when A is some graded ring over B the extension Z(B) n Z(A) -+ Z(B) 
plays an important part. In the latter case Z(A) n Z(B) will be the fixed 
ring of some action of some quotient group (? of G a finite group on most 
occasions. We say that ME D,(A) is centrally controlled if for every 
P E X’(Z( B)) localization at p = P n Z(A) requires that Mp E Pic( BP). For a 
group morphism @: G -+ D,(A) we say that G is centrally controlled if 
every P, = D(g) is centrally controlled. 
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2.3. PROPOSITION. Let 6,(A) be the subset of centrally controlled 
elements of D,(A), then 6,(A) is a subgroup qf D,(A). 

Proof: Let Pea,(A) and let P’ be the inverse of P in D,(A). By 
assumption, for every p = P n Z(A), P E X’(Z( B)), P, E Pic( BP). Since P is 
ti,-invertible it is rc,-finitely presented, i.e., P= Q,,(M) for some finitely 
presented Z(B)-module M, but using P = Hom,(Hom,(P, B) = P* * one 
easily derives that P is finitely presented itself. Since P’ = P-’ in Pic(B, K,) 
and P-‘=Hom,(P, B) holds in Pic(B, K,) (cf. [26, II]) it follows that 
(P’), = (Hom,(P, B)), = HornBp (P,, Bp)E Pic(B,). It is clear that 
K-,(Z(B)) d K,(Z(Q,) = (K,)~, hence Q,,,,,(P,Pb(QK,(PP’)) = B, and thus 
P, E DBo(A,), PI, E DBp(Ap) while Q~K,~,(PpO Pb) = QcK,,JPpPb) follows 
from the fact that B,, is a maximal Z(B),-order just like for B and D,(A) in 
Section 1. Since P, and PL are in Pic(B,) it follows that P, PL = B,, so 
P’E~~(A) is the inverse of P. If P and Q are in D,(A) then so is Q,,(PQ) 
so if P, QE~,(A) then (Q,,(PQ)),,e DBp(Ap). Since P,, Qp~ D,,(Ap) it 
follows on one hand that PQ c Q,,,,,(P,Q,) = P,Q, c (PQ), (note P,, Q, 
are invertible B,-modules by assumption). Since (IC,)~ 2 rep (note: Zcp in 
Z(A) n Z(B) yields Z(B), I is not contained in P, for all P, E X’(Z(B),) 
such that P,nZ(A)cp and thus also (~,),,=inf{~~~, P,EX’(Z(B)~), 
Pn Z(A) cp} as one easily checks) it follows from the foregoing that 
P,Q, is equal to (PQ,)T hence P,Q, = Q,,,,,(P,QJ = (Q,,(PQ),) E DBp(Ap) 
or PQ E 6,(A). 

2.4. Remark. The main technical difficulty in the above proof is that 
the localization induced by p in Z(B)-mod need not be larger than K, in 
general. If we assume that K, on Z( B)-mod is induced by K,(Z(A) n Z(B)) 
or, more generally, by K, =inf{lc,, p= Pn Z(A) for some PCl”(Z(B))} 
then is very easy to check that 6,(A) = D,(A). Indeed, for every p prime 
in Z(A)nZ(B) as above we then have that E,,~K, (E,, the induced 
kernel functor on Z(B)-mod) and consequently, from PE D,(A) and 
Q,,( P Be P’) = B it follows that P, Be, Pb = B,, hence P, E Pic(B,) or 
P&dB(A). 

Let us point out that we have K,(Z(A)~Z(B))=K,(Z(B)) in particular 
when Z(B) is integral over Z(A) n Z(B). 

2.5. PROPOSITION. If P E 6,(A) then A = QK,(P ae A) = 
Q,,(A Og P ’ 1. 

ProoJ Let us establish A = Q,,(A BP-‘), the other equality may be 
proved in exactly the same way. Localizing A @ P -’ + AP-’ at K, yields a 
B-bimodule map: y: Q,,(A @ P- ‘) + Qli,(AP- ‘) = A. Let K be the kernel of 
A@P-‘+A. Localizing at p=QnZ(A) for some QsX’(Z(B)) yields 
P; I E Pic(B,) because PE 6,(A) (and p is central in A and in B), hence 
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K,, = 0 for every such p, because A, @ 4 Pp’ = A, follows from that fact 
that P;’ is invertible in A,. In particular K has to be K-,-torsion but then it 
follows from tcl(A)=O that K= tc,(A@ P-‘). Since Im y contains AP-’ we 
finally obtain that Q,,(A 0 P-‘) = A. 

The foregoing may be used to derive a reflexive analogous of certain 
results of [13] but in doing so we will restrict attention to the so-called 
“arithmetical situation” (AS.) given by: 

(AS1 ) The extension Z(B) of C = Z(A) n Z(B) satisfies PDE and 
k- = K ,( Z(B)) (rC induced by K as in Remark 2.4). 

(AS2) The extension C -+ Z(A) satisfies PDE. 

(AS3) The ring A is a tame order over Z(A). 

It is clear that the PDE condition for Cc Z(A) yields that the kernel 
functor K,(C) induced by K(X’(C)) on Z(A)-mod satisfied K~(C)< 
ti(X’(Z(A)). In the case where Z(B) is integral over C then (ASl) holds and 
moreover ti, (C) induces K(X’(Z(B)) on Z(B)-mod. 

2.6. PROPOSITION. ( 1) Let B he a tame order over a Krull domain Z(B) 
and let the prime ring A be divisorially graded over B by a finite group G 
such that /G/ ’ E B, then A is a tame Z(A)-order, in particular Z(A) is a 
Krull domain. Moreover, both Z(B) and Z(A) are integral over 
C = Z(A) n Z(B), and we are in the arithmetical situation. 

(2) If A is divisorially graded by the torsionfree abelian group G over 
B such that B is a maximal Z(B)-order in Q,,(B) then A is a maximal order 
in Q,,(A). (The same statement holds ,for poly-infinite-cyclic groups if A is 
strongly graded). 

Proof: (I) Write A= Oocc; A,. Since A, is a divisorial B-bimodule 
and B is a tame order over Z(B), it follows that A is finitely generated (and 
not only relatively finitely generated) as a B-module. Since B = A, is a P.I. 
ring which is integral over Z(B) while Z(B) is integral over Z(B)G (the fix 
ring of the canonical action of G) it follows that B is integral over Z(B)‘. If 
r. E A,, for any c E G, then rz E B for some n 1 /G/. Hence r, is integral over 
Z(B)“. If O#rEA, say r=r,,+ ... +rflk, let T=Z(B)G(r,I,...,r,k} be the 
Z(B)“-subalgebra of A generated by {To,,..., ras}. Since T is a P.I. ring and 
monomials in ro, ,..., rnk are integral over Z(B)G it follows from [21, p. 1523 
that T is finitely generated as a Z(B)G-module, hence r is integral over 
Z(B)” and in particular Z(B) and Z(A) are integral over Z(A) n Z(B) = 
Z(B)G. This proves that we are in the arithmetical situation. The rest of the 
proof is identical to the proof of Theorem 3.1 in [ 173 if one takes into 
account that for every q E X’(Z(B)‘), A, is strongly graded over B, so that 
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the properties used “locally” in the proof of Theorem 3.1 in [ 171 are still 
valid in this case. 

(2) (cf. [16]). Note that in this case Z(A) is G-graded over Z(A),= 
Z(A) n Z(B) and it is possible to prove that Z(A) is integral over a subring 
D which is divisorially graded over Z(A),; at qEX’(Z(B)), A, is strongly 
graded and Z(A,) is a scaled Rees ring in the sense of [23]. Consequently 
Z(B) and Z(A) will have PDE over Z(A), = Z(B)‘. If the A, are centrally 
controled for all cr E G then we are again in the arithmetical situation. 

Now we consider B-bimodules P, P’ and A-bimodules Q, Q’ together 
with left and right B-linear maps q5: P-+ Q and d’: P’ -+ Q’. An 
isomorphism between & P + Q and d’: P’ + Q’ is then given by a com- 
mutative diagram 

P “+Q 
;I Y 
1 I 
P’ ” * Q’ 

where f is a B-bimodule isomorphism, g an A-bimodule isomorphism and 
all (iso)morphisms are defined over C. A substantial part of the theory may 
now be developed in the absence of (AS2) but since we are focussing on 
the divisorial techniques in this paper it is not very restrictive to impose 
condition (AS2). The situation of Proposition 2.6( 1) is the most interesting 
for us. 

Let R,(A) be the set of isomorphism classes [#I of 4: P + Q as 
introduced above, where PE Pit,(,) (B, rc,(Z(B)) and Q is an A-bimodule 
aver Z(A) such that the morphism (A Oe P)** -+ Q induced by 
a@p + a&p) is an isomorphism. In the AS situation x1 = rcl(Z(B)) equals 
to the kernel functor induced on Z( B)-mod by K,(C). We may therefore 
induce an operation in R,(A) by taking ( 0 )* * where (P Oe P’)** = 
Q,,(P@, P’) = P 1, P’, (Q@, Q’)** = QK,~z~a~~(QOA Q’) since A is tame, 
and (b@#‘)** is defined by taking the composition, 

(f’@, f”)** + Qti,(Q @a Q’) = Q,(Q@, Q’) 

-+ Q~~,,(QOA Q’) = (Q @A Q’)**. 

We simply write [d][d’] = [# I 4’1 for this operation. Since 
(A@, (PaB P’)**)** = (A@, PBe P’)** = ((A@, P)@/, (A@, P’))** 
= (Q@Q’,**, where ** at the end of the formula refers to the ** in 
A-mod, it follows that [4 I@] is indeed an element of R,(A). The 
inclusion B -+ A is the identity for this operation; for & P + Q such that 
[#] ER,(A) one easily verifies that [d*] with d*: P* + Q* (where 
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P* = Hom,(,P, BB), Q* =Hom,(,Q, ,.,A) and d*(p*) defined by 
a&p) -+ up*(p) for all a E A, p E P) is an inverse for [I$] in R,(A). If we 
only assume that A and B are tame and Z(A) and Z(B) satisfy PDE over 
C while K 1 (Z( A )) is larger than the kernel functor induced by K , (Z( B)) on 
A-mod we say that we are in the weak AS. 

The definition of centrally controlled elements of D,(A) may be extended 
to elements of Pic,.(B, ti,) in the obvious way, so that we obtain a sub- 
group’ pic,( B, K ,) which coincides with Pic,(B, K,) in the AS situation. 
The subset p,(A) of R,(A) consisting those [b] ERR such that 
d: P --f Q is such that P E pic( B, K, ) is easily seen to be a subgroup of 
R,(A) in the weak AS situation (check that (4 I $‘)** as defined above 
still makes sense in the weak AS situation), denoted by p,(A), which 
equals R,(A) in the AS situation. 

2.7. THEOREM. In the weak AS situation we obtain the ,following exact 
sequences: 

(a) ~~U(Z(A))~U(C,(B))~“~,(A)~P~~,(B,K,), 

(b) 1 + U(Z(A)) --f U(C,(B)) +‘j Aut,(A) --t Pic,(A, K,(Z(A)), 

(c) 1 + U(Z(A)) U(Z(B)) -+ U(Z(A)) --f’ 6,(A) -+’ p,(A) -Ike 
Pic,.(A, K,(Z(A ))I, 

(d) 1 + U(Z(A)) U(Z(B)) --f U(Z(B) -+[’ Aut,(A) -+‘1 p,(A) +XB 
bc(B, K,). 

In the AS situation we may replace 6,(A) by D,(A), p,(A) by R,(A) and 
P&.(B, k,) by Pic,(B, K,). 

ProqJ Once all maps are defined, verification of exactness of the 
sequence is straightforward and left to the reader, so we just point out the 
definition of the nonobvious maps here. 

(a) For dE U(C,(B)) define cl(d) = Bd. 

(b) For de U(C,(B)) define fl(d)(a)=dud-’ and we note that the 
inner automorphism of A given by d maps to the trivial element in 
Pic,.(A, ti,(Z(A)). 

(c) If PE 6,(A) then e(P) = [i] where i is the inclusion i: P -+ A. If 
4: P + Q represents [z5] E p,(A) then 7cA( [d]) = [Q]. 

(d) To f‘~Aut~(A) we associate [$I where $: B+ Auf, b--t bu.,, 
where Auf = , A,, i.e., Auf. a = Af(a) U, for all a E A. (Note that [II/] E p,(A) 
since B is centrally controlled). If [4] E p,(A) then rrB(d) = [PI, where 
4: P + Q represents [I]. 
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In the arithmetical situation we have already seen that 6,(A) = D,(A), 
p,(A) = R,(A), and F&(B, IC,) = Pic(B, IC,). 

When B is commutative we also have Pic( B, K~) = Cl(B) and this yields 
interesting results, e.g., when A is a reflexive Azumaya algebra over B or 
just any maximal order. 

We include another particular result in case B is commutative. 

2.8. THEOREM. Suppose that P E Z,(A), i.e., P is invertible in the absolute 
sense, and B is commutative. Let the automorphism induced by P on 
Z(B) = B be denoted by G, then ,for every p E P, p’ E Pm ’ w’e have 
a(p’p) =pp’; moreover {f C aia,! = 1 is a decomposition of 1 in PP- ’ = B 
then also C a,!ai = 1. A similar statement is still true if we only assume that 
P E 6,(A) in the arithmetical situation. 

Proof First, note that it suffices to establish the result in the case 
where PE Z,(A) because by the usual localization argument at 
p~X’(z(A)n Z(B)), combined with the remarks at the beginning of Sec- 
tion 2 the divisorial case will follow. So fix C a,a: = 1 with a, E P, a,’ E P- ‘. 
Since B c C,(A) we obtain for every b E B that a(b) = C a;bal. Consider 
P’EP-‘, PEP, then with n=Caia;:(*) o(p’p) = Ca,p’pa,’ = Cpa,!a;p 
= pip’ = pp’c(I.). On the other hand, pp’ = Cpp’aia: = o(p’a,)pa: and 
also abo(p’a,)=p’a,ab for each a; E P-‘; thus a;pp’ = x a;a(p’a,) a: = 
Cp’a,a; pa: = 2 p’pa,ala; = p’pia,. For any ak E P we obtain: 
a,a;pp’= a,p’pAa,. By taking ak =a,, a; = a,! and summing over i: (**) 
pp’=Cp’pAa’=o(p’p)o(A). From (*) and (**) we obtain pp’=pp’a(,I)* 
and as elements of the form pp’ generate B additively the foregoing relation 
leads to a’(l) = 1. Now pp’=pp’= a(pp’)pp’=pp’a(A)pp’= ~(/l.)(pp’)~. 
Consequently 1 -a(l) annihilates (pp’)* for all p E P, p’ E P I. Write 
p,=a,al.Then1=y,+...+p,and1=l’+‘=Cppl...p~whereeachviis 
at least 2. Therefore (1 -a(,?)). 1 = 0 (since p, ,..., p, commute). So a(1) = 1, 
hence j+ = 1 and (* ) yields a(p’p) = pp’. 

3. GROUPS ASSOCIATED TO DIVISORALLY GRADED RINGS 

In this section we consider a maximal order over a Krull domain Z(B) 
and a given homomorphism @: G + Pic(B, k.,) such that the composition 
G+ Pic(B, ~,)+Aut(z(B)) defines an action of G on Z(B) with the 
property that Z(B) satisfies (ASl) over Z(B)G (e.g., if Z(B) is integral over 
Z(B)G, so in particular when G maps to a finite subgroup of Aut(Z(B))). 
We define the divisorially graded ring B(b) as O,, G J,, fixing represen- 
tatives J, for @(a) and B-bimodule isomorphism .f,., : Q,,(J, Be J,) + J,, 
which may be used to determine the multiplication in B(Q) as follows: for 
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x, E J,, y, E J, put X, y, =fO,,(x, 0 y,) extended B-bilinearly and extended 
to the localization in the canonical way. Now we consider the inclusion 
B+ lqds). 

3.1. LEMMA. The group morphism @: G + Pic(B, Icl) (as above) gioes rise 
to a commutative diagram of group morphisms 

Proqj: Define $‘:G-+6,(@)) by a-+J,; note that J,E~,(@@)) 
because of the (AS1 ) condition for the extension Z(B)” -+ Z(B). Hence it is 
also clear that @(a) = [J,] is in &(B, K,) and even in PiCXCBj~( B, K ,) 
because each J,, commutes with Z(B)“. 

In the sequel we will write A = f?(G) and @ for the morphism G + 6,(A), 
for notational convenience. Let us point out that any condition on G (and) 
or on B that makes A into a tame order will entail the weak-AS situation 
for B + A whereas for a finite group with /G/-’ E B we are in the AS 
situation by Proposition 2.6. For B-bimodules N and M we say that N 1 M 
if N is a direct summand of a finite number of copies of M. We say that N 
is similar to M, written N - M if N 1 M and M 1 N. Extending the definition 
we will say that N IX, M if there exists a B-bilinear surjection 
M@ . . @M -+ N + 0 which splits locally at every p = P n Z(B)” for 
PE X’(Z(B)). We say that M is divisorially similar to N if N Iti, M and 
M Ih., N. 

3.2. LEMMA. Let M he divisorially similur to N, then 

(1) If [N] E Pic(B, K,) then [M] E Pic(B, K,). 

(2) Zf [N] E Pit aCR,~(B, K,) then also [M]. 

Proof: If we are in the situation of (1) or (2) then N is K,-finitely 
(presented) generated and from the existence of a morphism 
N @ . @ N + M -+ 0 it follows that M is K-,-finitely (presented) generated 
too (note: since B is a tame order the foregoing statement holds over B as 
well as over Z(B)). By Proposition 4.15. [26, II] it suffices to check 
whether M, E Pic(B,) for all PE X’(Z(B)) to prove (1) and M, E Pic(B,) 
for all p of the form p = P n Z(B)“, P E X’(Z(B)) in order to establish (2). 
In each of the cases considered these properties follow from the 
corresponding properties for N, and M, and the suitable exact localization 
of the sequences defining the divisorial similarity of M and N. 
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We define y,(d) to be the set of graded isomorphism classes of 
divisorially graded rings 0, t G H, over B = H, such that, for all c E G we 
have H, -K, J,. 

The multiplication of OoEG H, is given by a “factor set” 
h,,, : Q,,(H, 0 Hz) + Ho, and we will write (H, h) for this divisorially 
graded ring and [H, h] for its graded isomorphism class, so in particular 
A = (J,f) will be denoted by (J, j) for symmetry reasons. We now define an 
operation in y,(A) as follows. Consider [V, o] and [ W, w] in y,(A) and 
define their product [ CJ, u] by putting U, = Q,,( V, Be J,- I Be W,) and 
11 = Q(u,, @j,-+ I 0 u’,,); let us check that we have done well, by 
pzviding some easy lemmas. 

3.3. LEMMA. (1) If A4 is a divisorial Z(B)-module such that 
~4 Ix, Z(B), then QK,(EndB(B(BOZ~B~ W)) = Q,,(BO,,,, End,,,,(W), and 
Q,,(BO,,,, M) IK, B. Also Ce(BZcBj M) = M and if ME Pic(Z(B), rcr) = 
Cl(Z(B)) then B@,(,, ME Pic(B, rc,). 

(2) If M Ih, B then M= Q,,(B. C,(M)) = Q,,(BO C,(M) and 
C,(M) lli, Z(B). A lso EndzcB,(CB(W) g EndA,Md, End,(&) g 
Q&,( B,(,, End,(M)). If A4 I K, B and M’ 11(, B then the B-bimodules M and A4 
are isomorphic if and only if C,(M) z C,( M’) are Z( B)-isomorphic. 

(3) If ~4 Ix, B, and M’ IK, B then QK,(C,(M Be M’) E Q,,(CB(W 
@Z(B) C(M)) and there exists an isomorphism t: QK,(A4@,M’) + 
Q,,(M@,M), m@m’ + m’@m, where m E A4, m’ E C,(M’) (extended 
linearly to the whole Q,,( M@ M’) after localizing). 

Proof, If A4 I ti, B then from the B-bilinear B@ ... @B + M it follows 
that M is generated as a left (or right) B-module by C,(M), i.e., 
M= BC,(M) (even if we write M= Q,,(BC,(M)) sometimes). All the 
statements of the lemma may be derived from of Lemmas 2.3 and 2.4 and 
Corollaries 1, 2, 3, in [ 133 (note: it is essential here that K, is a central 
localization). 

For the definition of (U, U) we now note: 

Q,,(Qq(V,@,J, 10s Wo) @,Q,,(~rOsJr-~Oe W,) 

= Qm(V,OBJ,-10, WOO, v,@eJ,-~Og J+‘,). 

Furthermore Q,,( V, @JJ, ‘) I r, B and QK,(J,-, og W,) I K, B and 

Qti,(J,-I@, W,)O,Qh-,(f’,@,J,-1) 

+ Q,,(vi@~ Jz-~)@,Qeq(Jc~@s Wcr). 
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By localizing u,,, @j,- I,~ I 0 w,,, we obtain a B-linear 

Q,,(v,,, Oej,- 1.0 1 Oe u‘o,, ): Qti,(V,@, V,OeJ,-163eJ,-10e WnOe W,) 

+ Q,,( Vu, 0~ J,,,,r1 Oe Wm 

which defines 

One easily checks that u,,, is a factor set and using the transposition map t 
one may establish that we have obtained an associative operation on yB(A) 
such that [A] = [J,j] is the unit element. The inverse of [V, u] is defined 
by putting W, = Qk,( J, @ Vg @ J,) where V,* = Hom,( B V,, BB) E 
Pic( B, Kl ), and 

is obtained via the transposition map, because the &,,,,c(B, ti,) --f ye(A), 
IPI -+ COosG Q,,(pOJ,O* P),.jfrl, where jm,: Qh’(POJ, @* POP0 
J,O* P) -+ Q,,(P@ J,O J,@* P) -+ QK,(P@ J,@* P) defines the multi- 
plication of the divisorially graded ring 0, E Ci Q,,(P@ Jo* p). We have 
obtained 

3.4. PROPOSITION. There is a commutative diagram of ahelian groups 

In p,(d) we define pe(d)“)= { Cdl E P,(A), d: P--t ~4 Q,,(JAP)) = 
$,,(qS(P) J,) for all 0 E G}. Note that the ti,-flatness of A over B entails that 
the kernel of P + A 0 P is K-,-torsion, i.e., zero since P is k-,-closed, so 
P -+ Q,,(d @P) = A4 and therefore we may identify P and d(P) in M. 

It is the clear that [c$] E pe(d)(“’ exactly when there exists a B-bimodule 
isomorphism f, : P + Q,,( J, 0 P 0 J, I) such that the following diagram is 
commutative: 

(*) 
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where “~(x,O~Ox&~~)=x~~(~)xk~, for all x,EJ,, PEP, x~-~EJ,-,. 
Indeed if for all LEG we have Q,,(J,&P))= Q,,(#(P)J,) then from 
Q,,(J,, 0 P) + Q,,(d 0 P) = M we obtain that QK,(J, 0 P) = Q,,(J,d(P)); 
on the other hand, if K is the kernel of the map 4(P) @ J, -+ M, p @ x +px 
then by localization at p = P n Z(B)“, P E X’(Z(B)), if follows that K is 
ti,-torsion and then Qh-,(&P)@J,) = QK,(qb(P) J,), i.e., we obtain 

Qfi,(4(P)OJ,) = Qr,(d(P) Jo) = Q,,(JAP)) = Q,,(J,@d(P)). 

Identifying P and b(P) in M we thus obtain 

P=Q,,(f’OJ,OJ, O=Q,,(Q,,(POJ,)OJ, l)=Q^-,(Q,,(PJ,,oJ,~l, 

=Q~-,(J,OPOJ,~I), 

which defines the B-bimodule isomorphism f,. Again by localizing at all 
p= PnZ(B)” for all PEX’(Z(B)) it follows easily that (*) leads to 
Q,,(PJ,) = Q,,(J,P) for all (TE G. Considering Q,,((*)@J,) yields 

where ~1 is the localization of m @ x, + mx,; m E M, x E J,, and u is the 
composition pQh-,(d 0 J,). We have Im u = Im u. Clearly Q,,(Zm u) = 
Q,,(PJ,). On the other hand, the definition of “4 is such that one can easily 
verify that Q,,(Im u) = Q,,(J,P) and hence Im u = Im u entails: 
Q,,(J, P) = Q,,(PJ,). (Note: it is possible to derive these equivalences from 
Miyashita’s results by the usual “local” argumentation). The foregoing 
argumentation also applies to P* representing the inverse of [P] and it is 
not hard to check that d*: P* + M*, where M* = Hom,(, M, dd) is again 
representing an element of pe(d)(“‘. Therefore P~(LI)‘~’ is closed under tak- 
ing inverses and so it is a subgroup of p,(d) (this statement can also be 
checked “locally” in the trivial way). Writing Aut,(d)‘G’ = (a E Aut.(d), 
c(( J,) = J, for all cr E G} we obtain 

3.5. PROPOSITION. There is an exact sequence: 

1 + U(Z(B)‘“‘)+ U(Z(B))~Aut,(n)~p.(d)‘G’~PicZ(B)”(B,K-,)’G) 
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Proof: The above sequence is a subsequence of the one in 
Theorem 2.6(d) and it will suffice to establish that anfGAut,(d) maps in 
p,(d). Now q(,f): B+ , A, is in p,(d) (G) if and only if ,f(J,) = J, for all 
g E G. 

3.6. LEMMA. The maps in Proposition 3.4 yield an exact sequence 

Proof: Let $: P + M represent some [$] E p;(d)“‘, then [P] E 
Pit Z(B1~J(B, til) and it maps to [Q,,(POJ,O* P), “j]. Now Q,,(P@ 
J,@* P)= Q,,(QK,(J,@ P@J,-l)@J,@* P) since [I/] ~p~(d)(“‘, and the 
latter is further isomorphic to Q,,(J,@ P@J,-,@J,@* P) = Q,,(J, @ P 
0 Q,,(J, I 0 J,)O* P) = Qh-,(J,@Q,,(PO*P)) =J,, as B-bimodules. 

Let h,: Q,,( P@J, @I* P) -+ J, be the above isomorphism, then we 
obtain a commutative diagram 

Q,,(Q,,(POJ,O* P)OQ,,(POJ,O* f’~ Qh,(f’OJ,,O* PI 

I 

“r 

! 
Q.,(J,@J,) /“T )JfTr 

If [PI EPIC~&B, K, 1 is in the kernel of i: then d’ = 
(0 bt(; Q,,(PO J,O* P), P,) = (BOitG J,,j). First, we establish that 
d’ = End,(Q,,(P@d),,), then it is evident that the fact that d’ = d entails 
Qh-,(POd)EPicz(B)[,(d, K,(Z(A))) d an so the canonical 4: P+ Q,,(P@A) 
determines an element [4] E Pe(d )‘G) mapping to [PI. 

For p@x@p’~P@J,@* P we define, for all LEG, p@x@p’: PO 
J, + PO J,,, qOy+pOxp’(q)y, thus Q,,(pO~Op’):Q,,(PoJ,)~ 
Q,,(P@ J,,) determines an element of degree cr in HOM,(Q,,(P@d), 
Qh-,(POd)) and Hom,(Q,,(POd), Q,,(Pod))=HOM,(Q,,(POd), 
Q,,(P@A)) follows from the fact that P@A is k-,-finitely generated and 
the divisorial version of the well-known graded result concerning Horn and 
HOM, Corollary 1.2.11 in [lS]. Note that HOM,(Q,,(P@d), Q,,(P@d)) 
is a ti,-closed B-module by Corollary 1.14 in [26, II]. It is obvious to check 
that we have actually defined a graded ring morphism (of degree zero): 

Q: 0 Q,,(poJ,O*p),HOM,(Q,,(POd),, Q.,(POd),). 
I7 t G 

Both rings are divisorially graded by G over B. First, Sz is monomorphism; 
pick x, y E Q,,(P@ J, @* P) such that Q(x) = 52(y), then f2(Qti,(P@ 
J, -I @* P) x) = sZ(Q,,(P@ J,-I @* P) y). Since Sz 1 B is an isomorphism it 
follows that Q,,(P@J,-I@* P)(x-y)=O and further Q,,(P@J@* P@ 
P @ J, I @* P)(x - y) = 0, i.e., x -I’ = 0. Now divisorially graded rings over 
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the same ring in degree zero such that one constains the other are 
necessarily equal, so 52 is an isomorphism. 

Define p,(d) by the exact sequence 

P&(/@, Kp -+ Ye(A) 2 BAA 1 

3.1. PROPOSITION. There is an exact sequence: 

picz(/j,c(E, K, )(C’ -+ YN I--) BAA 1. 

Proof: Semi-exactness is obvious. If [OotG. J,,f,,,] is in the kernel 
of t then there exists a [P] in Pic,,,,c(B, IC,)[~~ such that [PI -+ COasG JO,&] under the map PicZ&B, r~,)~~l -y,(d). So we 
have that Q,,(P@J,@* P)=J, and Q,,(J,.I@P@J~@* P)=B, so 
Qh,(J, l@P@J,@* P)@P=P and hence QK,(Jgm~@P@J,)=P or 
[P] E PicZ(B,c,(B ,)‘(;I. 

We now extendKfurther some definitions and results of Miyashita [13]. 
Put P&(B, ti,)= {[P] E&~(~)G(B, K,), P-, BS. Since this group con- 

sist of classes of B-bimodules A4 which are of the form 
M = Q&,(B@ C,(M)) = BC,(M), it is obvious that P&(B, ti,) = 
Pit zredZ(W till. 

We may now define a group homomorphism: 

Y,(A) +-a& Pic”(& K,)), 

which obviously gives rise to the exact sequence: 

1 --f l;;(d) + y,(d) -+ Z’(G, Pic,(B, Ic,). 

If we define R’(G, F’&(B, K, ) by the exact sequence 

Pit Z,B)“(K Xl I- Z’(G, P&(B, K,) - R’(G, l’&,(B, K,). 

This will lead to the exactness of the sequence: 

ydd) --, B,(A) --t H’(G, PicdB, FC~) + H3(G, U(Z(B))). 

Combining these sequences we obtain a seven terms exact sequence 
generalizing the Chase-Rosenberg sequence of the reflexive Brauer group 
of a Krull domain: 
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3.8. THEOREM. Let B be a maximal order over a Krull domain Z(B); let 
@: G + Pic( B, K, ) be a given such that G -+ Pic(B, JC~) --, Aut(Z(B) defines 
an action of G on Z(B) such that Z(B) satisfies (ASl) over Z(B)” then for 
A = B(Q), the following sequence is exact: 

1 --f U(Z(B)“) -+ U(Z(B)) + Aut.(d)” + &A)‘“’ 

-+ Piczw(B, K I) --f Ye --+ BAA 1 + i?‘(G, F’&(B, IC,) 

+ H3(G, U(Z(B)). 

Further research of some terms in this sequense may prove to be 
interesting, in particular the groups y,(A), p,(A) may be of interest even if 
B is commutative (hence a Krull domain in our situation) or when d is a 
reflexive Azumaya algebra. If B is a Galois extension of BG and a maximal 
commutative subring of the reflexive Azumaya algebra A then the sequence 
in Theorem 3.8 reduces to the reflexive version of the Chase-Rosenberg 
sequence (and the related generalized crossed product results) expounded 
in [24]. 
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