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Abstract

Singular monopoles are nonabelian monopoles with prescribed Dirac-type singularities. All of them are
delivered by Nahm’s construction. In practice, however, the effectiveness of the latter is limited to the
cases of one or two singularities. We present an alternative construction of singular monopoles formulated
in terms of Cheshire bows. To illustrate the advantages of our bow construction we obtain an explicit
expression for one U(2) gauge group monopole with any given number of singularities of Dirac type.
© 2010 Elsevier B.V.

1. Introduction

We formulate a new construction of singular monopoles and illustrate its every step by ex-
plicitly computing one monopole with k Dirac-type singularities as an example. Until now the
conventional techniques were limited to k = 1 and k = 2 cases. Our construction is equally
effective for any number of singularities. The elements of our construction are conveniently or-
ganized in terms of bows, which are generalizations of quivers, introduced in [1–3]. Originally
bows were introduced in order to find Yang–Mills instantons on curved backgrounds of asymp-
totically locally flat gravitational instantons. As we argue here, by restricting attention in this
bow construction to what we call Cheshire bow representations one obtains an alternative way of
finding all singular monopoles.
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1.1. The use of singular monopoles

Singular monopoles play an important role in a number of physical problems and have diverse
mathematical applications. These classical Yang–Mills–Higgs configurations are directly related
to

· the vacua and the low energy behavior of supersymmetric gauge theories in three dimensions,
· the electric-magnetic duality of maximally supersymmetric Yang–Mills in four space–time

dimensions,
· Yang–Mills instantons on curved backgrounds,
· string theory brane configurations, and
· gravitational instantons.

As first suggested in [4] and explored in e.g. [5–7], the moduli spaces of vacua of the quan-
tum three-dimensional N = 4 supersymmetric gauge theories are given by the moduli spaces
of singular monopoles. In particular the quantum moduli space of vacua of the N = 4 U(n)

super-Yang–Mills theory with k matter hypermultiplets in the fundamental representation is the
classical moduli space of U(2) monopoles of nonabelian charge n with k minimal singularities.
In the exploration [8,9] of the Montonen–Olive duality [10], or more exactly its supersymmet-
ric version [11], the Goddard–Nuyts–Olive (GNO) singularities [12] of the type we study here
represent ’t Hooft operators that are dual to the Wilson operators. In fact it is the study of
the monopole singularities in [12] that prompted the discovery of the electric-magnetic dual-
ity [10]. On the other hand, it was demonstrated in [13] that one of the consequences of the
electric-magnetic duality of the maximally supersymmetric Yang–Mills theory is the geometric
Langlands correspondence. As a result, singular monopoles are significant in the study of the
geometric Langlands duality; in particular, in [13] the moduli spaces of singular monopoles were
identified with the spaces of Hecke transformations. Such a close relationship was also observed
in [14].

There is a very close connection between monopoles and instantons. For example an instanton
on a space with a periodic direction, called a caloron, can be thought of as a nonlinear superpo-
sition of monopoles and antimonopoles [15,16]. In a different view [17,18] a caloron with a
gauge group G can be thought as a monopole with the loop group of G as its structure group.
One can envisage an extension of these results to instantons on a multi-Taub–NUT space (T Nk)
with k Taub–NUT centers. We conjecture that the corresponding generalization of the former
statement is that an instanton on T Nk is a nonlinear superposition of singular monopoles and an-
timonopoles. And the analogue of the latter statement is that an instanton on T Nk with a gauge
group G is a singular monopole with the loop group of G as its structure group.

Singular monopoles describe Chalmers–Hanany–Witten brane configurations of the type IIB
string theory [4,6] and are very useful in exploring their various properties. In [19] they were
instrumental in obtaining the twistor spaces of Gravitational Instantons, metrics on which were
found in [20].

The twistor theory and the moduli spaces of singular monopoles were first studied in [21].
In particular the moduli space of one U(2) monopole with k minimal singularities, which is
the configuration we explicitly obtain here, is the k-centered multi-Taub–NUT space [21]. The
centered moduli space of two U(2) monopoles with k singularities is the Dk ALF space [19,20].

These are some of the uses of singular monopoles. Now we turn describing the singular
monopole configurations and their construction.
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1.2. Singular monopole constructions

By a BPS monopole [22,23]2 we understand a pair (A,Φ) of a hermitian connection A and a
hermitian Higgs field Φ satisfying the Bogomolny equation

Fab +
3∑

c=1

εabc[Dc,Φ] = 0, (1)

where F is the curvature of A. Using differential forms this equation is written as F +∗DΦ = 0,
where ∗ is the Hodge start operator. A singular monopole with singularities at points �νj ∈ R

3,
j = 1, . . . , k is a BPS monopole with A and Φ regular everywhere except at points �νj , where
locally they are required to have the prescribed behavior

Φ(�t) = (1 + \n)

4|�t − �νj | + O
(|�t − �νj |0

)
, A(�t) = 1 + \n

2
ωj + O

(|�t − �νj |0
)
. (2)

Here �n = (n1, n2, n3) is a unit vector and we are using the notation \n = n1σ1 +n2σ2 +n3σ3 with
σ1, σ2, σ3 the Pauli matrices. This is exactly the Dirac monopole at each �νj embedded into the

gauge group U(2) with, for example, ωj = − ( �T ×�tj )·d�t
2tj (T tj − �T ·�tj )

for some choice of �T .

The technique for constructing a general regular monopole was discovered by Nahm [24,25].
For a U(2) monopole with k singularities this technique was used in [19,26] to study the metric
on their moduli space. The starting point of the Nahm’s construction of singular monopoles is a
solution of the Nahm equations either on a real line or on a semi-infinite interval. While being
very efficient in the study of the moduli spaces, it would be difficult to apply this construction
if one is to find the monopole configurations themselves for arbitrary number of singularities.
For the case of one or two singularities this construction is tractable and was employed in [27,
28] producing explicit solutions. Unfortunately, for a more general case, the difficulty is that
the Nahm data, which is the starting point of the construction, contains a rank k solution of the
Nahm equations on a semi-infinite interval. For k > 2 such solutions are difficult to construct and
to work with.

In order to circumvent this difficulty, we shall employ the novel technique of bow diagrams
introduced in [3] and developed in [1,2]. Bow diagrams were introduced in order to construct all
instantons, i.e. solutions of the Yang–Mills self-duality equation, on the multi-Taub–NUT space
T Nk . All such instantons of given charges are given by a bow representation of the Ak−1 bow,
also called T Nk bow, such as in Fig. 3. A representation is determined by a collection of points
on a bow and the ranks of bundles over the intervals between these points. The positions of these
points correspond to the eigenvalues of the Polyakov loop at infinity of T Nk , while the bundle
ranks determine the charges.

What does the bow construction for instantons has to do with the singular monopole problem
we are considering here? In [21] Kronheimer observed that any self-dual connection on a k-
centered multi-Taub–NUT space that is invariant under the triholomorphic isometry of the multi-
Taub–NUT space is equivalent to a solution of the Bogomolny equation F = −∗DΦ on R

3, with
k singularities corresponding to the Taub–NUT center locations. Thus our problem of singular

2 Normally one requires a monopole to have finite energy
∫
R3 tr(F ∧ ∗F + DΦ ∧ ∗DΦ). For singular monopoles,

however, this condition is relaxed. Instead one excises small balls Bj centered around the points νj and requires the
energy outside

∫
3 ⋃ tr(F ∧ ∗F + DΦ ∧ ∗DΦ) to be finite, while the singularity inside each ball Bj is prescribed.
R \ j Bj



C.D.A. Blair, S.A. Cherkis / Nuclear Physics B 845 [PM] (2011) 140–164 143
Fig. 1. The relative positions of the observation point �t , the monopole − �T , and one of the singularities �νj . The distances

are tj = |�t − �νj |, Tj = | �T + �νj |, and z = |�t + �T |.

monopoles with k singularities is equivalent to the problem of θ -independent instantons on T Nk .
In terms of the bow representation the condition that guarantees the invariance of the resulting
solution under the isometry is that one of the ranks determining the bow representation is zero.
We call such a representation a Cheshire representation. This is exactly what one needs to find the
singular monopole solutions we seek. As a matter of fact this representation provides a general
construction for singular monopoles of any charge.

In the following sections we present the Ak−1 bow and explain its relation to the multi-
Taub–NUT space and abelian instantons on it. In Section 4 we identify the relevant Cheshire
representations of the bow and its data, and outline the transform of [2] which in this case pro-
duces singular monopole solutions. We then apply this transform to obtain one generic U(2)

monopole solution with k minimal singularities positioned at �νj , j = 1,2, . . . , k.
We find its Higgs field and connection to have a relatively simple form:

Φ(�t) =
([

λ +
k∑

j=1

1

4tj

]
coth 2(λ + α)z − 1

2z

)
\z
z

+ z

sinh 2(λ + α)z

k∑
j=1

\T j⊥
2tj ((Tj + tj )2 − z2)

+
k∑

j=1

1

4tj
, (3)

A(�t) =
(

1

2z
− 1

sinh 2(λ + α)z

[
λ +

k∑
j=1

Tj + tj

2((Tj + tj )2 − z2)

])
i[\z, d \t]

2z

+ z

sinh 2(λ + α)z

k∑
j=1

i[\t j , d \t]⊥
4tj ((Tj + tj )2 − z2)

−
(

1 + \z
z

coth 2(λ + α)z

) k∑
j=1

( �Tj × �tj ) · d�t
2tj ((Tj + tj )2 − z2)

, (4)

where the function α is given by

exp(4αz) =
∏ Tj + tj + z

Tj + tj − z
. (5)
j
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The eigenvalues of the Higgs field at infinity are ±λ and − �T determines the position of the
nonabelian monopole, as in Fig. 1.

We would like to emphasize that the Cheshire bow construction we formulate here delivers
all singular monopoles. We focus on one singular monopole as an illustrative example making
every detail explicit.

2. Cheshire bow construction

The core idea of this work combines the observation of Kronheimer relating singular
monopoles with instantons on multi-Taub–NUT space together with the bow construction of such
instantons. Let us begin by formulating the conventional Nahm transform for singular monopoles
and highlighting the technical difficulties one faces in its practical application. Then we proceed
by presenting Kronheimer’s relation and formulating our generalization of the Nahm transform.
This gives an alternative construction of singular monopoles.

2.1. The Nahm transform

In order to construct a U(2) monopole of nonabelian charge m with k singularities using
the conventional Nahm transform one begins by finding the Nahm data (T1(s), T2(s), T3(s))

consisting of three hermitian matrix valued functions of one variable s that satisfy the Nahm
equations

d

ds
T1 = i[T2, T3], (6)

d

ds
T2 = i[T3, T1], (7)

d

ds
T3 = i[T1, T2]. (8)

If the asymptotic eigenvalues of the monopole Higgs field we are constructing are λ1 and λ2
with λ1 < λ2, then the Nahm data is of rank m on the interval [λ1, λ2] and rank k on the semi-
infinite interval (λ2,+∞). For concreteness, let us presume that k > m, then at λ2 the matching
condition states that the smaller rank T is a block in of the larger rank T , so that, for s > λ2

Ta(s) =
(

ρa

s−λ2
+ O(1) O((s − λ2)

k−m−1
2 )

O((s − λ2)
k−m−1

2 ) Ta(λ2) + O(s − λ2)

)
, (9)

where the residues ρ1, ρ2, and ρ3 satisfy [ρa,ρb] = ∑
c εabciρc, forming a (k − m)-dimensional

irreducible representation of su(2) generators. The condition at λ1 is that

Ta(s) = ρ′
a

s − λ1
, (10)

with ρ′
a forming an m-dimensional irreducible representation of the su(2) generators. If the po-

sitions of the monopole singularities are �νj , then the conditions one imposes on the eigenvalues
of the Nahm data at s = ∞ are

lim
s→+∞ EigValTa(s) = diag

(
νa

1 , νa
2 , . . . , νa

k

)
. (11)

Given any such solution (T1, T2, T3) Nahm constructs a family of Dirac (or Weyl) operators
parameterized by �t ∈ R

3: \D = − d − \T −\t , and a family of conjugate operators

ds
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\D† = d

ds
− \T −\t . (12)

These operators act on L2 fundamental spinors over the interval (λ1,+∞). All such fundamental
spinor-valued functions form a trivial bundle over the R

3 parameterized by �t , and the kernel of
\D† is a subbundle of this trivial bundle. For each value of �t the kernel is two-dimensional. If
ψ1(s, �t) and ψ2(s, �t) form an orthonormal basis of this kernel, then one forms the Higgs field
Φ = (Φαβ) and the connection A = (Aαβ) with components

Φαβ(�t) =
+∞∫
λ1

sψ†
αψβ ds, Aa

αβ(�t) = i

+∞∫
λ1

ψ†
α

∂

∂ta
ψβ ds, (13)

which together constitute a singular monopole. This is the conventional Nahm transform [24,25]
as formulated in [26]. For every gauge equivalence class of solutions of the Nahm equations with
the boundary conditions specified above it produces a U(2) singular monopole with minimal
singularities at �νj and nonabelian charge m.

This transform was successfully applied to find singular monopoles with one [28] and two
singularities [27]. As we already pointed out, it is substantially more difficult, though not im-
possible, to use for a larger number of singularities. This is one of the reasons we proceed to
introduce an alternative construction of singular monopoles, which we now outline.

2.2. Kronheimer’s correspondence

The multi-Taub–NUT space is a four-dimensional space with the metric

ds2 = V d�t 2 + (dθ + ω)2

V
, (14)

with θ of period 2π , V = l + ∑k
j=1

1
2|�t−�νj | , and dω = − ∗3 dV . A Yang–Mills connection Â on

this space can be written in the form

Â = A − Φ
dθ + ω

V
. (15)

As observed in [21], if this connection satisfies the self-duality equation on the multi-Taub–NUT
space and if there is a gauge transformation that makes A and Φ θ -independent, then we can
understand the fields A and Φ as a connection and a Higgs field on R

3 satisfying the Bogomolny
equation

FA + ∗[DA,Φ] = 0. (16)

If before the gauge transformation the field Â was smooth and had a finite action, then the re-
sulting configuration (A,Φ) is a singular monopole with singularities at the positions of the
Taub–NUT centers �νj . It is the action of this gauge transformation at the points �νj that deter-
mines the charges of the singularities [21].

With this in mind, instead of searching for singular monopoles we can try to solve an equiv-
alent, though at first sight more complicated looking, problem of finding instantons on the
multi-Taub–NUT space that are θ -independent.
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Fig. 2. An example of the affine Ak−1 quiver. This is an A8 affine quiver giving the A8 ALE space and instantons on it.

2.3. Bows and instantons on multi-Taub–NUT

A multi-Taub–NUT space with k Taub–NUT centers is a close cousin of the Ak−1 Asymptot-
ically Locally Euclidean (ALE) space. This space is given by the metric (14) with the parameter
l = 0. The asymptotic form of its metric approaches the flat metric on R

4/Zk . The instantons
on the Ak−1 ALE space, and on all ALE spaces, were constructed by Kronheimer and Nakajima
[29]. This construction is formulated in terms of quivers. The relevant quiver is the affine Ak−1
quiver, such as the one in Fig. 2.

The recent construction of instantons on multi-Taub–NUT spaces [1–3] generalizes the notion
of quivers to the notion of bows. If a quiver consists of points and oriented edges connecting them,
a bow consists of intervals and oriented edges connecting them. We refer to [1] for the exact
definitions. An Ak−1 bow appears in Fig. 3. It has various representations, each representation of
a bow corresponding to a class of all instantons with given topological charges. A representation
of a bow is a collection of points λα belonging to its intervals and a collection of vector bundles
over the subintervals into which these intervals are divided by the λ-points. In particular some of
these bundles can have rank zero, in which case their corresponding subintervals play no role and
do not contribute to the final instanton connection. If this is indeed the case and a representation
has at least one of its bundles of rank zero we call it a Cheshire representation.

Now, among all of the bow representations it remains to single out those that produce self-dual
connections that are θ -independent. How does the θ dependence arise?

To implement this construction one needs two representations of the same T Nk bow. We call
them large and small representations. A data of the large representation determines the instanton,
while the data of the small representation parameterizes the multi-Taub–NUT space. For a small
representation on each of the bow intervals one considers the Nahm data consisting of the abelian
U(1) connection t0 and three abelian Higgs fields t1, t2, t3. The three Higgs fields give rise to
the three of the multi-Taub–NUT coordinates assembled into a vector �t , while the coordinate θ is
the logarithm of the Polyakov loop

∫
t0(s) ds. Our construction is gauge invariant and therefore

we can locally adjust the values of t0, even gauging it away on some intervals completely. The
only objects that remains invariant under the gauge transformations are the Polyakov loop and
t1, t2, and t3. Given the large bow representation data we form a family of operators similar to
the \D† operators of Eq. (12) that appeared in the conventional Nahm transform of Section 2.1.
These operators depend only on the values of t0 on the subintervals where the rank of the large
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Fig. 3. Ak−1 Bow. It has multi-Taub–NUT space with k centers as the moduli space of its small representation. Any
other representation of this bow delivers self-dual connections on this multi-Taub–NUT space.

representation bundle is nonzero. Therefore, if all ranks of the large representation are positive,
then the resulting connection does depend on t0 and therefore on θ . If one of the ranks is zero,
however, then we can work in a gauge where t0 is gauged away on all sub-intervals, except the
one carrying the zero rank bundle. As a result the kernel of our operators will be independent of
θ and so will be the resulting connection.

3. The multi-Taub–NUT space

A general definition of a bow, its representation, and its data can be found in [1]. Here we
focus on the Ak−1 bow, also called the T Nk bow, given in Fig. 3. It consists of k intervals Ij ,
j = 1, . . . , k, denoted by wavy lines and k oriented edges denoted by the arrows connecting the
ends of the wavy lines. We parameterize the intervals by the variable s, and for concreteness
denote the left end of Ij by pL

j and the right end by pR
j so that Ij = [pL

j ,pR
j ]. In what follows

we can understand the variable s to be parameterizing a circle of circumference l. This circle is
divided into intervals Ij , and even though in this picture any two neighboring intervals Ij−1 and
Ij appear to share an endpoint, we still treat the ends of any two intervals pR

j−1 and pL
j as distinct

points. One of the simplest representations of this bow has rank one bundles on each interval and
no λ-points. We call this the small representation and denote the associated data by small letters
t and b. Let us begin by discussing this representation in detail and by finding its moduli space.

Each interval Ij has an associated line bundle ej → Ij with connection d
ds

− it0(s) and three
Higgs fields t1(s), t2(s), t3(s). Each edge, say the j th edge, connects the intervals j − 1 and j

as in Fig. 4, with the tail t (j) being the right end of the (j − 1)st interval, pR
j−1 = t (j), and the

head h(j) being the left end of the j th interval, pL
j = h(j). If et(j) denotes the fiber of ej−1 at

the right end of the interval Ij−1 and eh(j) denotes the fiber of the bundle ej at the left end of the
interval Ij , then we consider linear maps

bLR
j : et(j) → eh(j) and bRL

j : eh(j) → et(j), (17)

associated with the j th edge.
These are assembled into b+

j and b−
j as

b+
j =

(
bRL
j

−bLR
j

)
and b−

j =
(

bLR
j

bRL
j

)
. (18)

Fig. 5 assembles all this data into a decorated bow. The collection of the connections, the Higgs
fields, and the linear maps is a point in the affine space of the small representation data.
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Fig. 4. An edge.

Fig. 5. Small bow representation: This bow has k intervals. Assigning a line bundle to each defines a representation with
k-centered Taub–NUT as its moduli space.

3.1. Moment map conditions

According to [1] the moduli space of the small bow representation is obtained by imposing
the moment map conditions

\μ(t, b) =
k∑

j=1

(
δ
(
s − t (j)

) − δ
(
s − h(j)

))\νj , (19)

and dividing by the action of the gauge group. The moment map arises from considering the
space of representation data, which is an affine hyper-Kähler space, and the natural action of the
gauge group on it. The space being hyper-Kähler it has three symplectic structures and these are
respected by the gauge transformations. It is the three Hamiltonians μ1, μ2, and μ3 generating
this action that form the moment map values arranged into \μ = ∑

a μaσa yelding

\μ(t, b) = − d

ds
\t +

k∑
j=1

(
δ
(
s − t (j)

)
b−
j

(
b−
j

)† + δ
(
s − h(j)

)
b+
j

(
b+
j

)†)
. (20)

Within each interval this condition implies that the data satisfies the Nahm equations, which,
since tμ(s) is abelian read d

ds
ti = 0 for i = 1,2,3. Thus within each interval �t = (t1, t2, t3) is

constant. At the tail t (j) Eqs. (19) and (20) read

b+
j

(
b+
j

)† = ∣∣�t(t (j)
) − �νj

∣∣ + (\t(t (j)
) − \νj

)
, (21)

and at the head h(j)
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b−
j (b−

j )† = ∣∣�t(h(j)
) − �νj

∣∣ − (\t(h(j)
) − \νj

)
. (22)

In particular these equations imply that \t(t (j)) = \t(h(j)) and thus �t(s) = �t is not only constant
within each interval, but, has the same value across all intervals for all values of s. Once this is
established let us simplify our notation slightly by introducing

�tj = �t − �νj and, accordingly, \tj = \t −\νj . (23)

The remaining gauge freedom can be used to completely gauge away the connection component
t0 within each interval, absorbing it into the phase factors of b±

j . At this point the calculation
reduces to that of [31].

As a result we obtain the moduli space of this small representation at level \ν that is four-
real-dimensional. This space can be parameterized by �t and the invariant combination of t0 and
complex phases of bj , leading to the Gibbons–Hawking form of the metric

ds2 = V d�t 2 + 1

V
(dθ + ω)2, (24)

with V = l + ∑
j

1
2| �tj | , θ ∼ θ + 2π , and the one-form ω satisfying ∗dV = −dω. Here l is the

sum of the lengths lj of the intervals Ij .
One can now see the significance of the values �νj of the moment map – these become the

positions of the Taub–NUT centers. The perimeter 2π/
√

l of the Taub–NUT circle at infinity on
the other hand is determined by the total sum of lengths of all intervals in the bow l.

Since this four-dimensional space is obtained as a moduli space of a bow representation it
comes equipped with a family of self-dual connections parameterized by the union of all intervals
of the bow. In our case all of these connections are abelian instantons on T Nk . These abelian
instantons are instrumental in our construction and we derive them now.

3.2. Natural line bundles and self-dual connections

The exact abelian instanton connection will depend on how we parameterize the intervals in
the bow. Let us call the point at which s = 0 the distinguished point. We shall be interested in the
connection associated to some point s = s0. Let us call this point the marked point.

Let us consider a general position of the distinguished point on the kth interval, dividing
it into left and right intervals on lengths u and l0 − u. The marked point s0 is in a general
position belonging to the interval number int(s0): s0 ∈ Iint(s0). The distinguished point and the
marked point divide the T Nk bow into two parts. Let us call the part forming the path from
the distinguished point to the marked point the left path, and the part forming the path from the
marked point to the distinguished point the right path. The total length of the intervals belonging
to the left path is s0 and the total length of the intervals belonging to the right path is l − s0,
with l = l1 + · · · + lk . We shall use the corresponding subscripts l and r to denote the quantities
relating to these two parts. For example, we denote the data of the left path by Datl and the data
of the right path by Datr .

The data of the bow can be viewed as the direct product of the data of the left and right
paths with zero-level hyper-Kähler reduction by the action of the gauge group Gs0 at the marked
point. Since the moment map for Gs0 is \t(s0+) − \t(s0−) this ensures continuity at s0. Thus we
have Dat = (Datl × Datr )///Gs0 . Moreover, if Gs0 is the group of gauge transformations that act
trivially at the marked and at the distinguished point then it can be viewed as a direct product of
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similar groups Gl and Gr acting on the left and right path data respectively with trivial action at
the marked and distinguished points.

The moduli space M of the small bow can thus be represented as a hyper-Kähler quotient in
a number of ways:

M = Dat///G = Dat///(Gs0 × Gs0) = (
(Datl///Gl ) × (Datr///Gr )

)
///Gs0 . (25)

Here /// denotes the hyper-Kähler reduction of [30]. Let us denote the moduli space of respec-
tively the left and the right paths by Ml and Mr so that Ml = Datl///Gl and Mr = Datr///Gr .
Performing hyper-Kähler reduction within each interval reduces the Nahm data on each interval
to R

3 × S1. The remaining quotient by the gauge groups acting at the ends of the intervals
amounts to the quotient considered in [31] which results in a multi-Taub–NUT space. Thus
Ml = TNs0 and Mr = TNl−s0 with metrics

ds2
l = Vl d�t 2

j + 1

Vl

(dβ + ωl)
2, ds2

r = Vr d�t ′2
j + 1

Vr

(dα + ωr)
2, (26)

here α and β have period 2π and

Vl = s0 +
int(s0)∑
j=1

1

2tj
, Vr = l − s0 +

k∑
j=int(s0)+1

1

2tk
, (27)

∗3 dωl = −dVl, ∗3dωr = −dVr . (28)

The action of the Gs0 = U(1) is by (α,β) → (α − φ,β + φ), the invariant of this action is
θ = α +β and the moment map is �t ′int(s0)

− �tint(s0). Putting the moment map to zero we obtain the
metric on the five-real-dimensional zero level set of Gs0

ds2 = V d�t 2 + 1

V
(dθ + ω)2 + V

VlVr

(
dβ + ωl − Vl

V
(dθ + ω)

)2

, (29)

where V = Vl + Vr is the harmonic function of the k-centered Taub–NUT, ω = ωl + ωr , �t =
�tint(s0) = �t ′int(s0)

. Viewing this as a metric on the principal U(1)s0 bundle over M we have the
natural connection as0 on this bundle

as0 = ωl − Vl

(dθ + ω)

V
. (30)

It is natural to associate the one-form connection a(j) = ωj − 1
2tj

dθ+ω
V

, with dωj = − ∗3 d 1
2tj

,
to each of the Taub–NUT centers, then the above connection (30) in the chosen trivialization has
the form

as = −s
dθ + ω

V
+

int(s)∑
j=1

a(j), (31)

for s = s0. This abelian connection has self-dual curvature. Thus each point of a bow has an
associated abelian instanton given by Eq. (31).

4. Cheshire representation and the monopole

In order to obtain a singular monopole solution of nonabelian charge m we begin with the
Large Representation of the T Nk bow of Fig. 6. For the sake of symmetry let us choose the
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Fig. 6. Large bow representation: This bow has k edges and k + 1 intervals, and assigns a rank m vector bundle to each
of the intervals. A solution of this bow determines a nonabelian charge m monopole with k Dirac singularities.

distinguished point with s = 0 to be in the middle of the kth interval Ik . This representation
has two λ-points at s = ±λ.3 All bundles Ej → Ij have rank m, except the interval Ik is now
divided into three subintervals with the left and right subintervals each carrying a rank m bundle,
while the bundle over the middle subinterval [−λ,λ] has rank zero. This latter subinterval has
the λ-points as its ends. Since the rank zero bundle has no data associated to it, this interval is
not drawn in Fig. 6. This is a Cheshire representation, which ensures that the resulting instanton
on the multi-Taub–NUT can be written in the form

Â = A − Φ
dθ + ω

V
, (32)

with A and Φ independent of the variable θ . The fact that Â has self-dual curvature in ori-
entation (dt1, dt2, dt3, dθ) is equivalent [21] to A and Φ satisfying the Bogomolny equation
∗3F = −[DA,Φ]. One can see from the form of Eq. (32) that in such a reduction of a smooth
self-dual connection to a monopole the resulting monopole can have 1

tj
type singularities at the

positions of the Taub–NUT centers.
More generally, if one is to construct a monopole with the U(n) gauge group, one should

consider a Cheshire bow with n λ-points with various bundle ranks equal to the nonabelian
monopole charges and, of course, one of the bundles of rank zero.

The data we associate to the large representation is denoted by capital letters T and B , as in
Fig. 7. As before we assign the Nahm matrix-values functions T1(s), T2(s), and T3(s) to each
interval and to each edge we associate linear maps

BLR
j :Et(j) → Eh(j), BRL

j :Eh(j) → Et(j) (33)

which we assemble into

B+
j =

(
(BRL

j )†

BLR
j

)
, B−

j =
(

(BLR
j )†

−BRL
j

)
. (34)

The moment map conditions we impose for this data are

\μ(B,T ) = −
∑
j

(
δ
(
s − t (j)

) − δ
(
s − h(j)

))\νj , (35)

3 This choice of λ-points makes it simpler to extract an SU(2) singular monopole expression from our answer. A priori
any two points can be chosen as λ-points.
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Fig. 7. The large bow representation with its data. Black dots are the λ-points at s = ±λ.

which are negative of those for the small bow of Eq. (19). Since the gauge group action on
the large representation data (T ,B) has the same form as on the small representation data the
moment map is given by the same expression, which for an arbitrary rank bow data takes the
form

\μ(T ,B) = − d

ds
\T +vec\T \T

+
k∑

j=1

(
δ
(
s − t (j)

)
B−

j

(
B−

j

)† + δ
(
s − h(j)

)
B+

j

(
B+

j

)†)
. (36)

Here vec\T \T = iεabc[Ta,Tb]σc , which, we note, vanishes for the rank one large representa-
tion. At the λ-points Ta(s) has to satisfy the condition Ta(s) = ρ(σa)

2(s±λ)
+ O(s ± λ)0, with ρ an

irreducible representation of su(2) and σa a Pauli matrix. The gauge equivalence classes of solu-
tions to the moment map equation (35) are in one-to-one correspondence with the U(2) singular
monopoles with k minimal singularities, with the positions of the singularities fixed to be �νj .

For a single U(2) monopole with k singularities we choose the large representation with
line bundles over the intervals as in Fig. 6 putting m = 1. This figure for m = 1 also illustrates
the reason why our method has an advantage over the conventional Nahm transform. In the
conventional Nahm data for a monopole with k singularities one has to work with the rank k

Nahm data, which makes it into a highly nonlinear problem. In the Cheshire bow formulation,
even though one still constructs a monopole with k singularities, only abelian rank one data
appears on the intervals, which makes the whole construction relatively simple.

4.1. The transform

Given any solution (T ,B) of the moment map conditions (35) and (36), we can construct a
singular monopole solution by considering the twisted Dirac (or Weyl) operator

D† =
(

d

ds
− \t −\T

)
+

∑
j

δ
(
s − t (j)

)
(b−

j ,B−
j ) +

∑
j

δ
(
s − h(j)

)(
B+

j , b+
j

)
. (37)

This operator acts on Ψ = (ψ(s), vj ) with ψ(s) a section of Ej ⊗ ej ⊗ S, where Ej → Ij is
the line bundle of the large representation over the interval Ij , ej → Ij is the line bundle of the
small representation over the interval Ij , and S is the two-dimensional chiral spin bundle, while

vj = ( v+
j

v−
)

with v+
j ∈ eh(j) ⊗ Et(j), v−

j ∈ Eh(j) ⊗ et(j). We have

j
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D†Ψ =
(

d

ds
− \t −\T

)
ψ +

∑
j

δ
(
s − t (j)

)(
b−
j v+

j + B−
j v−

j

)

+
∑
j

δ
(
s − h(j)

)(
B+

j v+
j + b+

j v−
j

)
. (38)

Note that the large Nahm data in general have rank m and \T acts on Ej ⊗ S, so in Eq. (37)
we understand \T to be acting on ej ⊗ Ej ⊗ S by 1e ⊗ \T with the identity action on the small
representation bundle. Similar comments apply to \t , b±

j , and B±
j in Eq. (37). We omit these 1e

and 1E factors here to avoid cumbersome notation and also because when we specify to a charge
one U(2) monopole we will only deal with abelian Nahm data, in which case the above operator
makes perfect sense as it is written.

The equation D†Ψ = 0 amounts to(
d

ds
− \t −\T

)
ψ(s) = 0, (39)

within each interval and at the interval ends

ψ
(
t (j)

) = (
b−
j ,B−

j

)
vj , ψ

(
h(j)

) = −(
B+

j , b+
j

)
vj . (40)

If the columns of Ψ form an orthonormal basis of solutions of D†Ψ = 0, then the resulting
self-dual connection [1] on the multi-Taub–NUT is

Â =
(

Ψ ,

(
idta

d

dta
+ as

)
Ψ

)
. (41)

Here we use the most natural norm

(Ψ,Ψ ) =
∫

ψ†(s)ψ(s) ds +
k∑

j=1

v
†
j vj . (42)

Together with Kronheimer’s reduction (32) and the expression for the abelian instanton as of
Eq. (31) this leads to the monopole expression

Φ =
(

Ψ ,

(
s +

int(s)∑
j=1

1

2tj

)
Ψ

)
, (43)

A =
(

Ψ ,

(
idta

d

dta
+

int(s)∑
j=1

ωj

)
Ψ

)
. (44)

4.2. One singular monopole

We will now demonstrate the usefulness of the construction we have described by using it to
obtain a charge one U(2) singular monopole with k singularities located at �t = �νj , j = 1, . . . , k.
In this case the large representation is given by Fig. 6 with m = 1, and we have abelian Nahm
data �T associated to each interval. The Nahm equations imply that �T is constant on each interval.
The moment map condition of Eq. (35) reads

B±B
±† = | �T + �νj | ± (\T +\νj ), (45)
j j
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which implies that �T is not only constant within each interval but also has the same value across
all intervals. To simplify our notation we introduce

�Tj = �T + �νj , so that \T j = \T +\νj . (46)

We interpret − �T as the monopole position parameter, and introduce the relative position �z =
�t + �T . In Section 3.1 we also introduced the positions relative to the singularities, �tj = �t − �νj ,

and the moment map relations for the small bow were b±
j b

±†
j = tj ± \tj , where tj = |�tj |.

Before we proceed solving for Ψ we introduce Pj =
√

2(tj Tj − �tj · �Tj ) =
√

(tj + Tj )2 − z2

and observe the following useful relations

Pj = B
±†
j b∓

j = b
±†
j B∓

j = B+
j b

−†
j + b+

j B
−†
j = B−

j b
+†
j + b−

j B
+†
j , (47)(

b−
j ,B−

j

)(
b−
j ,B−

j

)† = Tj + tj − \z, (
B+

j , b+
j

)(
B+

j , b+
j

)† = Tj + tj + \z, (48)

and

Pj = (
b−
j ,B−

j

)(
B+

j , b+
j

)† = (
B+

j , b+
j

)†(
b−
j ,B−

j

)
, (49)

Pj = (
B+

j , b+
j

)
(b−

j ,B−
j )† = (b−

j ,B−
j )†(B+

j , b+
j

)
. (50)

In a way Eqs. (47) hold up to a phase factor eiφ . We set this factor equal to one, which amounts
to choosing a gauge in which our solution will be written.

On each interval the Weyl equation of Eq. (39) is simply ( d
ds

−\z)ψ(s) = 0, hence within each
interval ψ(s) = es \zΠj for some s-independent Πj , while the matching conditions (40) give

vj = (B+
j , b+

j )†

Pj

ψ
(
t (j)

)
and ψ

(
h(j)

) = −Tj + tj + \z
Pj

ψ
(
t (j)

)
. (51)

Therefore the factors Πj on consecutive intervals are related by

Πj = −Tj + tj + \z
Pj

Πj−1, (52)

so that the choice of Π0 (or indeed of any one of the factors Πj ) completely determines the
solution Ψ . As we shall need an orthonormal basis of solutions we shall fix Π0 accordingly,
choosing its value so that the normalisation factor

N2 = (Ψ ,Ψ ) =
k∑

j=0

pR
j∫

pL
j

ds Π
†
j e2s \zΠj +

k∑
j=1

v†
j vj , (53)

is just a scalar factor (times the identity matrix I2×2).
The normalised solution in this case can be written as Ψ N = 1

N
Ψ . Differentiating (Ψ N,Ψ N)

= 1, one verifies that(
Ψ N,

d

dta
Ψ N

)
= 1

2

((
Ψ N,

d

dta
Ψ N

)
−

(
d

dta
Ψ N,Ψ N

))

= 1
2

((
Ψ ,

d
Ψ

)
−

(
d

Ψ ,Ψ

))
. (54)
2N dta dta
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These relations allow us to work with the solution Ψ satisfying (Ψ ,Ψ ) = N2 when we compute
the Higgs field and the connection below.

From Eq. (52) we see that the factor Tj + tj + \z plays a special role in our computation, and
with this in mind we observe that

Tj + tj ± \z = Pj e
±2αj \z, (55)

where

αj = 1

4z
ln

Tj + tj + z

Tj + tj − z
. (56)

We also introduce the function α = ∑k
j=1 αj which will appear prominently in our final answer.

We now give the expressions for the monopole fields following from Eq. (43). The Higgs field
satisfies

N2Φ =
k∑

j=0

pR
j∫

pL
j

ds Π
†
j se2s \zΠj +

k∑
j=1

v†
j

(
pL

j 0

0 pR
j−1

)
vj

+
k∑

j=1

1

2tj

(
k∑

i=j+1

v†
i vi + (

v+
j

)†v+
j

)
+

k∑
j=1

j∑
i=1

1

2ti

pR
j∫

pL
j

ds Π
†
j e2s \zΠj (57)

and the connection satisfies

N2A = i

2

k∑
j=0

pR
j∫

pL
j

ds
(
ψ

†
j (s) dψj (s) − dψ

†
j (s)ψj (s)

) + i

2

k∑
j=1

(
v†
j dvj − dv†

j vj

)

+
k∑

j=1

ωj

(
k∑

i=j+1

v†
i vi + (

v+
j

)†v+
j

)
+

k∑
j=1

j∑
i=1

ωi

pR
j∫

pL
j

ds Π
†
j e2s \zΠj (58)

where ψj (s) = es \zΠj , with Πj = (−1)j e2(α1+···+αj )\zΠ0 and

vj =
(

v+
j

v−
j

)
= (−1)j

(b−
j ,B−

j )†

Pj

e
pR

j−1 \z
e2(α1+···+αj )\zΠ0. (59)

Except for the total length of all the intervals in the bow, the sizes of the individual intervals
did not play any role in our discussion so far. Nor will they. From this point on we put all of the
intervals in the bow to zero size with the exception of the one interval Ik that contains the two λ-
points. This interval is of length l. The other intervals, now shrunk to a point, are located at s = 0.
This amounts to putting pL

0 = −λ, pR
k = λ, and all other pL

j−1 = pR
j = 0, which substantially

simplifies our computation.4 The resulting Cheshire bow representation is shown in Fig. 8.

4 Note that in contrast to the choice of the distinguished point at the beginning of this section, here we choose the
distinguished point with s = 0 to be the diametrically opposite to the middle of the interval Ik .
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Fig. 8. The Cheshire representation of Fig. 7 with all but one interval shrunk to zero size. It is important to keep in mind
the relation of this diagram with the T Nk bow, which is better illustrated by Fig. 7.

4.2.1. Normalization
The normalisation factor (53) is now given by

N2 = (Ψ ,Ψ ) =
0∫

−λ

ds Π
†
0 e2s \zΠ0 +

λ∫
0

ds Π
†
k e2s \zΠk +

k∑
j=1

v†
j vj . (60)

The integrals over s are straightforward and one can show that the contribution from the s = 0
endpoints cancels with the sum of vj terms; this latter calculation in fact implies the useful
relation

k∑
i=j+1

v†
i vi = 1

2z2

(
Π

†
k \zΠk − Π

†
j \zΠj

)
. (61)

Using the fact that Πk = (−1)ke2α \zΠ0 one ends up with an expression for N2 which is pro-
portional to Π

†
0 e2α \zΠ0. This suggests a natural choice of orthogonal basis of solutions given by

Π0 = e−α \z. In this basis the normalization factor is indeed a scalar

N =
√

sinh 2(λ + α)z

z
, (62)

and all basis elements have the same norm N and are orthogonal to each other.

4.2.2. Higgs field
The Higgs field Φ of Eq. (57) becomes

N2Φ =
0∫

−λ

ds Π
†
0 se2s \zΠ0 +

λ∫
0

ds Π
†
k se2s \zΠk

+
(

k∑
j=1

1

2tj

) λ∫
ds Π

†
k e2s \zΠk +

k∑
j=1

1

2tj

((
v+
j

)†v+
j +

k∑
i=j+1

v†
i vi

)
, (63)
0
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Our choice Π0 = e−α \z makes computation of the integrals especially simple, as one is now
dealing only with exponentials of 2(s ± α)\z. The result of the integration is

Φ =
k∑

j=1

1

4tj
+

([
λ +

k∑
j=1

1

4tj

]
coth 2(λ + α)z − 1

2z

)
\z
z

+ z

sinh 2(λ + α)z

[
\z

2z3
sinh 2αz − \z

z2
e2α \z

k∑
j=1

1

4tj

+
k∑

j=1

1

2tj

((
v+
j

)†v+
j +

k∑
i=j+1

v†
i vi

)]
. (64)

The
∑

i v†
i vi term can be replaced with a much simpler expression using Eq. (61). After

substituting v+
j = (−1)j (b−

j )†e−α \ze2(α1+···+αj )\z and bringing the remaining pieces together one
finds, after some manipulation of sums of exponentials of slashed terms, that the final expression
is

Φ =
k∑

j=1

1

4tj
+

((
λ +

k∑
j=1

1

4tj

)
coth 2(λ + α)z − 1

2z

)
\z
z

+ z

sinh 2(λ + α)z

k∑
j=1

1

2tj P 2
j

\T j⊥ . (65)

The second term in the first line of this expression is reminiscent of the Higgs field of the
’t Hooft–Polyakov monopole:

Φ(�z) =
(

λ coth 2λz − 1

2z

)\z
z
. (66)

One can see for this example that the size of the nonabelian monopole is modulated by the
presence of the singularities with λ + ∑k

j=1 αj playing the role of the size controlling λ in the
’t Hooft–Polyakov case. This size dependence and the singularity screening effect was explored
in detail in [28].

4.2.3. Vector potential
From Eq. (58) we see that the vector potential is now given by

N2A = i

2

0∫
−λ

ds
(
ψ†

0(s)dψ0(s) − h.c.
) + i

2

λ∫
0

ds
(
ψ†

k(s)dψk(s) − h.c.
)

+
k∑

j=1

ωj

λ∫
0

ds Π
†
k e2s \zΠk +

k∑
j=1

ωj

((
v+
j

)†v+
j +

k∑
i=j+1

v†
i vi

)

+ i

2

k∑(
v†
j dvj − h.c.

)
. (67)
j=1
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The integrals in the first line are straightforward to compute after writing ψ0(s) = e(s−α)\z and
ψk(s) = (−1)ke(s+α)\z, while the integral and the summation in the second line are the same as
those that occur in the calculation of Φ . One also needs

v†
j dvj − dv†

j vj = 1

P 2
j

e−(α−2[α1+···+αj ])\z(b−
j db

−†
j − db−

j b
−†
j

)
e−(α−2[α1+···+αj ])\z

+ 1

Pj

[\z, d \z]
z2

sinh
[(

α − 2[α1 + · · · + αj−1]
)
z
]

× sinh
[(

α − 2[α1 + · · · + αj ]
)
z
]
, (68)

and

b−
j db

−†
j − db−

j b
−†
j = 2iωj (tj − \tj ) + 1

2tj
[\t j , d \tj ]. (69)

Using these and the explicit expression ωj = − 1
P 2

j tj
�z · (�tj × d�tj ) it is straightforward to simplify

the remaining terms obtaining the final form of the connection

A = i

2z
[\z, d \z]

(
− 1

sinh 2(λ + α)z

[
λ +

k∑
j=1

Tj + tj

2P 2
j

]
+ 1

2z

)

+
k∑

j=1

ωj

2
+

k∑
j=1

ωj

2

\z
z

coth 2(λ + α)z + z

sinh 2(λ + α)z

k∑
j=1

i[\t j , d \t j ]⊥
4P 2

j tj
. (70)

Our results, Eqs. (65) and (70), deliver a one monopole with k minimal Dirac singularities at
�νj points. The monopole position is parameterized by − �T , and we used �Tj = �T +�νj , �tj = �t −�νj ,
and P 2

j = (Tj + tj )
2 − z2.

5. Conclusions

We formulate an alternative Nahm transform for monopoles. This new version of the Nahm
transform that we apply here amounts to finding a solution (T ,B) of the moment maps of a large
Cheshire bow representation and forming a family of Dirac operators D† determined by the
solution (T ,B) and twisted by the small representation data (t, b). The moment map values of
the two representations were carefully chosen to be the negatives of each other. An orthonormal
basis of solutions Ψ of the Dirac equation D†Ψ = 0 gives a singular monopole with

Φ =
(

Ψ ,

(
s +

∑
j�int(s)

1

2tj

)
Ψ

)
, A = i(Ψ ,∇aΨ ) dta, (71)

with the covariant derivative ∇a = ∂
∂ta

− iaa . One can think of these expressions as an induced

Higgs field and connection on the kernel of D† from the simple abelian monopole family

φ = s +
int(s)∑
j=1

1

2tj
, a =

int(s)∑
j=1

ωj . (72)

This construction in principle delivers all singular monopoles of any charge, singularity num-
ber, and with unitary gauge group. As an illustration, we worked out the example of one U(2)
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monopole with k singularities is complete detail. The resulting Higgs field and connection are
given in Eqs. (65) and (70).

In [32] we use this solution to obtain an SU(2) monopole with k minimal singularities and
analyze its properties.
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Appendix A

We describe here in detail the calculations which lead to our expressions for Φ and A. We
have set pL

0 = −λ, pR
k = λ and all other points pL

j = pR
j = 0. Solving the Dirac equation (39)

and (40) we write our data Ψ = (ψ(s),vj ) in the form

ψ(s) =
{

es \zΠ0, −λ < s < 0,

es \zΠk, 0 < s < λ,
(73)

vj =
(

v+
j

v−
j

)
= (−1)j

Pj

(
b−
j ,B−

j

)†
e2[α1+···+αj ] \zΠ0, (74)

with αj such that exp(2αjz) =
√

Tj +tj +z

Tj +tj −z
, so that

cosh 2αjz = Tj + tj

Pj

, sinh 2αjz = z

Pj

, (75)

cosh 4αjz = (Tj + tj )
2 + z2

P 2
j

, sinh 4αjz = 2z(Tj + tj )

P 2
j

. (76)

Note as well from (52) that Πk = (−1)ke2α \zΠ0.

A.1. Normalisation

The first step in our construction is to compute the normalisation factor N2 = (Ψ ,Ψ ) =∫
ds (ψ(s))†ψ(s) + ∑

j (vj )
†vj . From Eq. (60) this is given by

N2 =
0∫

−λ

ds Π
†
0 e2s \zΠ0 +

λ∫
0

ds Π
†
k e2s \zΠk +

k∑
j=1

v†
j vj

= 1

2z

([
Π

†
0 Π0 + Π

†
k Πk

]
sinh 2λz + [

Π
†
k \zΠk − Π

†
0 \zΠ0

]1

z
cosh 2λz

)

+ 1

2z2
Π

†
0 \zΠ0 − 1

2z2
Π

†
k \zΠk +

k∑
j=1

v†
j vj . (77)

We can write the last three terms as 1
2 Π

†
C(k)Π0 with
2z 0
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C(k) = \z(1 − e4(α1+···+αk)\z) + 2z2
k∑

j=1

1

Pj

e4(α1+···+αj )\ze−2αj \z. (78)

Then the difference C(k) − C(k − 1) can be written as

C(k) − C(k − 1) = e4(α1+···+αk−1)\z
(

−\z e4αk \z + \z+2z2

Pk

e2αk \z
)

, (79)

which vanishes, as can be checked by expanding the exponentials and using the relations (75) and

(76). Thus C(k) = C(k − 1) = · · · = C(1) = (−\z e4α1 \z + \z+ 2z2

P1
e2α1 \z) = 0, so we have shown

that the last line in Eq. (77) vanishes. Hence, using Πk = (−1)ke2α \zΠ0, Eq. (77) becomes

N2 = 1

2z
Π

†
0

(
sinh 2λz

(
e4α \z + 1

) + \z
z

cosh 2λz
(
e4α \z − 1

))
Π0

= 1

z
(sinh 2λz cosh 2αz + cosh 2λz sinh 2αz)Π

†
0 e2α \zΠ0. (80)

This expression suggests a natural choice of orthogonal basis of solutions delivered by Π0 =
e−α \z. In this basis the normalization factor satisfies

N2 = 1

z
sinh 2(λ + α)z. (81)

A.2. Higgs field

Our Higgs field was given by (63):

N2Φ =
0∫

−λ

ds Π
†
0 se2s \zΠ0 +

λ∫
0

ds Π
†
k se2s \zΠk +

(
k∑

j=1

1

2tj

) λ∫
0

ds Π
†
k e2s \zΠk

+
k∑

j=1

1

2tj

((
v+
j

)†v+
j +

k∑
i=j+1

v†
i vi

)
. (82)

The integrals are straightforward to compute upon substituting Π0 = e−α \z, Πk = eα \z. One finds

Φ =
k∑

j=1

1

4tj
+

([
λ +

k∑
j=1

1

4tj

]
coth 2(λ + α)z − 1

2z

)
\z
z

+ z

sinh 2(λ + α)z

(
1

2z3
\z sinh 2αz − \z

z2
e2α \z

k∑
j=1

1

4tj

+
k∑

j=1

1

2tj

[(
v+
j

)†v+
j +

k∑
i=j+1

v†
i vi

])
. (83)

Now vanishing of the last three terms in Eq. (77) implies

k∑
v†
i vi = 1

2z2

(
Π

†
k \zΠk − Π

†
j \zΠj

) = 1

2z2
\z e2α \z − \z

2z2
e−2α \ze4(α1+···+αj )\z. (84)
i=j+1
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The Dirac equation (51) gives us vj and its first component

v+
j = (−1)j

Pj

(
b−
j

)†
e−α \ze2(α1+···+αj )\z, (85)

and a short calculation shows that

(
v+
j

)†v+
j = 1

P 2
j

\T j⊥ + 1

P 2
j

(
tj − �z · �tj

z

\z
z

)
e−2α \ze4(α1+···+αj )\z. (86)

Combining these two observations

Φ =
k∑

j=1

1

4tj
+

((
λ +

k∑
j=1

1

4tj

)
coth 2(λ + α)z − 1

2z

)
\z
z

+ z

sinh 2(λ + α)z

k∑
j=1

1

2tj P 2
j

\T j⊥ + z

sinh 2(λ + α)z

{
\z

2z3
sinh 2αz

+
k∑

j=1

1

2tj
e−2α \ze4(α1+···+αj )\z

(
1

P 2
j

(
tj − �z · �tj

z

\z
z

)
− \z

2z2

)}
. (87)

The last line is simplified using

1

2tj

(
1

P 2
j

(
tj − �z · �tj

z

\z
z

)
− \z

2z2

)
= − 1

2Pj

\z
z2

e−2αj \z, (88)

and in fact the sum of the terms in the curly brackets in Eq. (87) vanishes if

sinh 2αz =
k∑

j=1

sinh 2αjze
2(α1+···+αj−1)\z−2(αj+1+···+αk)\z. (89)

This is indeed the case since

k∑
j=1

(
e2αj \z − e−2αj \z)e2(α1+···+αj−1−αj+1−···−αk)\z

=
k∑

j=1

(
e4(α1+···+αj−1+αj )\z − e4(α1+···+αj−1)\z)e−2α \z

= (
e4(α1+···+αk)\z − 1

)
e−2α \z = e2α \z − e−2α \z. (90)

A.3. Vector potential

The connection A is given by Eq. (67) so that

N2A = i

2

0∫
ds

(
ψ

†
0(s)dψ0(s) − h.c.

) + i

2

λ∫
ds

(
ψ

†
k(s)dψk(s) − h.c.

)

−λ 0
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+ i

2

k∑
j=1

(
v†
j dvj − h.c.

) +
k∑

j=1

ωj

λ∫
0

ds Π
†
k e2s \zΠk

+
k∑

j=1

ωj

((
v+
j

)†v+
j +

k∑
i=j+1

v†
i vi

)
. (91)

We can now insert v†
j dvj − dv†

j vj from Eq. (68) to find

A = i

2z
[\z, d \z]

(
1

2z
+ 1

sinh 2(λ + α)z

[
−λ − sinh 2αz

2z

+
k∑

j=1

1

Pj

sinh
[(

α − 2[α1 + · · · + αj−1]
)
z
]

sinh
[(

α − 2[α1 + · · · + αj ]
)
z
]])

+
k∑

j=1

1

2
ωj +

k∑
j=1

1

2
ωj

\z
z

coth 2(λ + α)z + z

sinh 2(λ + α)z

k∑
j=1

1

P 2
j

ωj \T j⊥

+ z

sinh 2(λ + α)z

k∑
j=1

{
ωj

(
1

P 2
j

(
tj − �z · �tj

z

\z
z

)
− 1

2z2
\z
)

e−2α \ze4(α1+···+αj )\z

+ i

2P 2
j

e−(α−2[α1+···+αj ])\z(b−
j db

−†
j − db−

j b
−†
j

)
e−(α−2[α1+···+αj ])\z

}
. (92)

Simple trigonometric identities and Eq. (75) give

k∑
j=1

1

Pj

sinh
(
α − 2[α1 + · · · + αj−1]

)
z sinh

(
α − 2[α1 + · · · + αj ]

)
z − sinh 2αz

2z

= −1

2

k∑
j=1

Tj + tj

P 2
j

+ 1

2

k∑
j=1

1

Pj

cosh
(
2α − 4[α1 + · · · + αj−1] − 2αj

)
z

− sinh 2αz

2z
. (93)

Now, cosh(2α−4[α1 +· · ·+αj−1]−2αj )z = cosh[−2(α1 +· · ·+αj−1)z+2(αj+1 +· · ·+αk)z],
and the sum of hyperbolic cosines in (93) cancels against the sinh 2αz factor due to the trace part
of Eq. (89).

This simplifies the [\z, d \z] terms of Eq. (92). Using Eq. (69) for the b−
j terms and then applying

eβ \z \a eβ \z = \a⊥ + �a·�z
z

\z
z
e2β \z, \t j⊥ = −\T j⊥ and ωj = − 1

P 2
j tj

�z · (�tj × d�tj ) we obtain

A = i

2z
[\z, d \z]

(
− 1

sinh 2(λ + α)z

[
λ +

k∑
j=1

Tj + tj

2P 2
j

]
+ 1

2z

)
+

k∑
j=1

1

2
ωj

+
k∑

j=1

1

2
ωj

\z
z

coth 2(λ + α)z + z

sinh 2(λ + α)z

k∑
j=1

i

4P 2
j tj

[\t j , d \t j ]⊥. (94)
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