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FXYD1 (phospholemman) is a member of an evolutionarily conserved family of membrane proteins that
regulate the function of the Na,K-ATPase enzyme complex in specific tissues and specific physiological states.
In heart and skeletal muscle sarcolemma, FXYD1 is also the principal substrate of hormone-regulated
phosphorylation by c-AMP dependent protein kinase A and by protein kinase C, which phosphorylate the
protein at conserved Ser residues in its cytoplasmic domain, altering its Na,K-ATPase regulatory activity.
Keywords: FXYD1 adopts an L-shaped o-helical structure with the transmembrane helix loosely connected to a
FXYD cytoplasmic amphipathic helix that rests on the membrane surface. In this paper we describe NMR expe-
riments showing that neither PKA phosphorylation at Ser68 nor the physiologically relevant phosphorylation
mimicking mutation Ser68Asp induces major changes in the protein conformation. The results, viewed in
light of a model of FXYD1 associated with the Na,K-ATPase o and (3 subunits, indicate that the effects of
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NMR phosphorylation on the Na,K-ATPase regulatory activity of FXYD1 could be due primarily to changes in
Micelle electrostatic potential near the membrane surface and near the Na* /K™ ion binding site of the Na,K-ATPase
« subunit.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The FXYD proteins constitute a family of regulatory subunits of the
Na,K-ATPase ion pump, the principal enzyme responsible for main-
taining the gradient of Na™ and K™ ion concentrations across cell
membranes [1-3]. The enzyme complex is formed by a catalytic o
subunit (110 kDa), an auxiliary 3 subunit (31-kDa), and a regulatory
FXYD subunit (7-17 kDa). The known isoforms of the three subunits,
al-04, R1-p3, and FXYD1-FXYD10, show a high level of subunit-
specific sequence similarity and their expression is tissue-specific as
well as developmentally regulated [4,5]. The energy required to ex-
change 3 Na™ ions for 2 K* ions across the plasma membrane is
generated by the hydrolysis of ATP in the cytosol, through a process
involving distinct intermediate states of the enzyme that is regulated
by the FXYD proteins.

The FXYD family proteins have been reported to induce distinct,
and sometimes opposing, effects on the enzyme's rate constant and on
its affinity for intracellular Na* or extracellular K* ions [1-3]. These
differences have been ascribed to specific differences in the amino
acid sequences of the FXYD transmembrane domains, which are
otherwise highly conserved throughout the protein family, and to
differences in the cytoplasmic domains, whose sequences vary widely
among the FXYD family members. The FXYD structures mirror the

* Corresponding author. Tel.: +1 858 795 5282; fax: +1 858 713 6268.
E-mail address: fmarassi@burnham.org (F.M. Marassi).

0005-2736/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.bbamem.2009.09.001

intron-exon arrangements of their corresponding genes, suggesting
that the polypeptides are assembled from discrete structured domains
that may have evolved to confer different functional properties in
various physiological settings [6]. The EXYD activities are also modu-
lated by post-translational modifications, including phosphorylation
(FXYD1) and glycosylation (FXYDS5). For example, in heart and ske-
letal muscle, FXYD1 (PLM; phospholemman) is the principal substrate
of hormone-stimulated phosphorylation by c-AMP dependent protein
kinase A (PKA) and protein kinase C (PKC), which specifically phos-
phorylate the protein either at Ser68 (PKA), or at Ser63, Ser68 and
Thr69 (PKC) in its cytoplasmic domain [7-9]. Functional studies in
cells indicate that phosphorylation of FXYD1 can influence the protein
activity in at least two ways: either indirectly, by regulating the level
of FXYD1 expression at the plasma membrane, or directly, by altering
the functional properties of FXYD1 associated with the Na,K-ATPase at
the plasma membrane [9,10].

Phosphorylation of FXYD1 is a key factor regulating the delivery of
FXYD1 from the endoplasmic reticulum (ER) to the plasma membrane
[9]. The last three arginines at the C-terminus of FXYD1 resemble the
RXR motif implicated in the ER retention of multimeric membrane
proteins (reviewed in [11]). Notably, the ER-retention sequence of
one such protein, the NR1 subunit of the NMDA receptor, is regulated
by coordinated PKA/PKC phosphorylation at specific sites in its vici-
nity [12]; phosphorylation is thought to screen the positively charged
ER-retention signal and, thus, enable the NR1 subunit to traffic from
the ER. PKA phosphorylation of NR1 appears to be constitutive in all
secretory compartments and to be required for efficient PKC
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phosphorylation, however, once PKA/PKC-phosphorylated NR1 exits
the ER it is rapidly dephosphorylated at PKC sites. Interestingly, the
amount of FXYD1 expressed in oocyte membranes is increased by
co-expression of PKA [13]. Furthermore, the pattern of PKA/PKC
phosphorylation in the C-terminus of FXYD1 resembles that of the
NMDA NR1 ER-retention sequence (Fig. 1), suggesting that a similar
mechanism may operate to regulate FXYD1 export from the ER to the
plasma membrane. Further underscoring the importance of the
indirect effects of phosphorylation on pump activity, PKA/PKC
phosphorylation of the Na,K-ATPase a subunit has also been shown
to regulate trafficking of the pump from intracellular organelles to the
plasma membrane, thereby affecting the pump expression level and
activity [14].

FXYD1 phosphorylation has also been reported to relieve FXYD1
inhibition of the Na,K-ATPase through the direct functional
interaction of FXYD1 with the pump [10,15-19]. Specifically, the
co-expression of FXYD1 with a1/p1 or a2/B1 isozymes in oocytes
or in Hela cells causes a significant decrease in the affinity of the
Na,K-ATPase for Na™ ions, with a smaller decrease in their affinity
for K* ions and little effect on the transport rate [20,21], and both
a1, which is found in nearly all animal tissues, and o2, which is
highly expressed in heart and skeletal muscle, are specifically
stabilized by FXYD1 [22]. PKA phosphorylation of FXYD1 reverses
these effects, increasing the apparent Na™ affinity of both a1/p1
and «2/p1 isozymes, with no effect on their apparent K™ affinity
nor on their maximal transport activity, whereas PKC phosphory-
lation selectively increases the maximal pump current of the a2/31
but not a1/R31 isozyme [10]. These effects of phosphorylated FXYD1
(pFXYD1) on Na,K-ATPase activity are recapitulated in a mutant
form of FXYD1 where Ser63 and Ser68 were changed to Asp to
mimic the effects of phosphorylation [10]. Finally, in cardiac myo-
cytes isolated from FXYD1 knockout mice, the Na,K-ATPase activity
was increased significantly [15,17,18,23], indicating that FXYD1 plays
an important role in heart contractile function. In contrast, over-
expression of FXYD1 in wild-type myocytes reduced Na,K-ATPase
activity [24], while FXYD1 phosphorylation by PKA and PKC increased
it [15-19].

The direct effects of FXYD1 phosphorylation on Na,K-ATPase
activity have been proposed to reflect a major change in the con-
formation of FXYD1, however, no structural information has been
available for the phosphorylated protein and the nature of the con-
formational change is not known. In this paper we report the effects of
PKA phosphorylation on the three-dimensional structure of FXYD1
examined by NMR spectroscopy.

Two crystal structures of the Na,K-ATPase were recently reported,
one determined at 3.5 A resolution for the a1/31/FXYD2 complex
isolated from pig kidney [25], and the other determined at 2.4 A
resolution for the a3/31/FXYD10 complex isolated from shark rectal
glands [26]. In both structures, the pump is in the E2 occluded ion
conformation and is in complex with occluded Rb™ ions acting as
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substitutes for the K* ions that would be found in vivo. The structures
identify the arrangement of the cytoplasmic domain and ten trans-
membrane helices of the o subunit, and show that the p subunit
transmembrane helix associates with transmembrane helices aaM7
and aM10, while the FXYD protein transmembrane helix associates
with transmembrane helix aM9. However, no structural information
could be obtained for the 3 and EXYD cytoplasmic domains due to lack
of electron density.

Recently, we determined the NMR structure of non-phosphory-
lated FXYD1 in detergent micelles [27]. The N-terminal transmem-
brane domain forms three rigidly connected helices (h1, h2, h3) and
shares both significant amino acid sequence homology [5] as well as
structural similarity [6,28] with the other FXYD proteins (Fig. 1). It is
loosely connected to a 10-residue C-terminal cytoplasmic helix (h4)
with a sequence unique to FXYD1, which contains the phosphoryla-
tion domain. Helix h4 is flanked by an N-terminal acidic sequence
(DEEE) and a C-terminal basic ER-retention sequence (RRR) that are
important for mediating trafficking from the ER [9], and rests on the
membrane surface exposing the phosphorylation sites (Ser63, Ser68
and Thr69) to the aqueous phase. This helix is highly basic, which
helps explain its propensity to associate with a negatively charged
micelle/membrane surface, however, it is connected to the rest of the
protein by a relatively long flexible linker, indicating that it would be
capable of adopting a different orientation in its interaction with the
Na,K-ATPase o subunit and of undergoing reorientation upon
phosphorylation.

We find that neither phosphorylation at Ser68 nor the Ser68Asp
mutation mimicking PKA phosphorylation cause major changes in
protein conformation, and that both appear to induce only a modest
increase in the mobility of the cytoplasmic helix. Together with a
model of FXYD1 bound to the NaK-ATPase o subunit, the NMR
results indicate that the effects of phosphorylation on the NaK-
ATPase regulatory activity of FXYD1 could be due primarily to the
localization and movement of charged residues at the membrane
surface and, possibly, near the Nat/K* ion binding sites of the

pump.
2. Materials and methods
2.1. Sample preparation

Uniformly 'N-labeled FXYD1 and FXYD1(S68D) were expressed,
purified, and characterized as described previously [29]. The Ser68Asp
mutation was generated using the QuickChange mutagenesis kit
(Stratagene) and verified by DNA sequencing. Purified FXYD1 was
phosphorylated with PKA by dissolving 1 mg of protein in 2 mL of
buffer A (50 mM HEPES, pH 5; 25 mM MgCl,, 25 mM NaF, 1 mM EGTA,
0.1% triton X-100, 1 mM ATP), adding 20 pg of PKA, and gently mixing
for 5 h at 30 °C. To stop the reaction, PKA was inactivated by adding
SDS to a final concentration of 4 mM. pFXYD1 was isolated from the
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Fig. 1. Amino acid sequence and secondary structure of human FXYD1 (NCBI: NP_068702) and comparison with human NMDA receptor NR1 subunit (NCBI: NP_015566). (A) Mature
full length FXYD1. The S63, S68, T69 phosphorylation sites are marked with arrows. Acidic (DEEE) and basic (RRR) sequences important for ER export are underlined. (B)
Phosphorylation domains of FXYD1 and NMDA NR1. Arrows mark the PKA and PKC phosphorylation sites. The ER-retention signals (RRR) are underlined.
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reaction mixture by size exclusion chromatography (Sephacryl S-300,
Amersham) in buffer B (10 mM sodium phosphate, pH 7.5, 12 mM
DTT, 4 mM SDS). The fractions containing pFXYD1 were pooled and
concentrated to 1 mL in a stirred cell (Amicon) with a dialysis mem-
brane of 5 kDa molecular weight cutoff. After a brief (5 h) dialysis
against water, the resulting solution was lyophilized and stored at
—20°C.

Previous analysis with an antibody specific for Ser68-phosphory-
lated FXYD1 demonstrated that this procedure phosphorylates FXYD1
specifically at Ser68 [30]. Phosphorylation was ascertained by SDS-
PAGE, by MALDI-TOF mass spectrometry performed as described
previously [29], by performing a pilot reaction with >2P-labeled ATP,
and by 3'P NMR spectroscopy (Fig. 2). SDS-PAGE was performed with
the Tris-Tricine system [31].

Solution NMR samples were prepared by dissolving pure lyoph-
ilized protein in 300 pL of NMR buffer (20 mM sodium citrate pH 5,
10 mM DTT, 10% D,0, and 500 mM SDS). High purity (>98%) SDS
(obtained from Calbiochem or Cambridge Isotopes Laboratories) was
used for protein purification and for the NMR samples.

2.2. NMR experiments and data analysis

The 'H/'N NMR correlation spectra were obtained with the
standard fast HSQC (heteronuclear single quantum coherence)
experiment [32]. Backbone resonances of pFXYD1 and FXYD1(S68D)
were assigned using the three-dimensional >N-NOESY-HSQC exper-
iment [33] with a NOESY mixing time of 150 ms, and by comparison
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Fig. 2. PKA phosphorylates FXYD1 at a single site and induces a mobility shift of the
FXYD1 band on SDS-PAGE. (A) Coomassie stained SDS polyacrylamide gel showing
bands for molecular weight standards (lane 1), FXYD1 (lane 2), and pFXYD1 (lane 3).
(B) Visualization of 32P-labeled pFXYD1 by radio imaging. (C) MALDI-TOF spectra of
PFXYD1 and FXYD1. (D) 3'P NMR of pFXYD1 in micelles.

with the spectrum of FXYD1 which had been previously assigned
[6,27]. For the MnCl, paramagnetic broadening experiments, the
resonance intensities in the 'H/'>N HSQC spectrum of FXYD1(S68D)
were measured with a sample containing 1.8 mM MnCl,. All NMR
experiments were performed at 40 °C on a Bruker AVANCE 600 MHz
spectrometer. Chemical shifts were referenced to the H,O resonance
set to its expected position at 40 °C [34]. 3'P NMR spectra were
referenced with phosphoric acid. The NMR data were processed using
NMRPipe [35], and the spectra were assigned and analyzed using
Sparky [36].

Dihedral angles were derived from analysis of the NMR chemical
shifts with the program TALOS [37]. The program uses chemical shifts
and amino acid sequence information to search a database of protein
structures and chemical shifts, and predicts the protein backbone
dihedral angles ¢ and . For oa-helices, TALOS predictions are
typically classified as “good” if all of the 10 best database matches
occur in the phi<0 half of the Ramachandran plot, and at least 9 of
the 10 best matches are in a consistent (within a 35° standard
deviation) ¢/ region. However, if the 10 best matches have mutu-
ally inconsistent values of ¢ and s, the results are classified as
ambiguous, and no dihedral angle prediction is made. Fig. 5B shows
“good” TALOS predictions obtained for FXYD1 and pFXYD1 using only
N and HA chemical shifts, and compares the results to those obtained
for FXYD1 using the previously measured N, HA, CA and CB chemical
shifts [27].

2.3. Computational methods

Calculations to generate a molecular model of the o/B/FXYD1 Na,
K-ATPase complex were performed using XPLOR-NIH [38]. The model
was generated using the NMR structure of FXYD1 (PDB: 2JO1) [27],
which includes all 72 residues of FXYD1, and the crystal structure of
the pig kidney Na,K-ATPase (PDB: 3BSE) [25], which consists of
residues 19-1016 of the 1016-residue a1 subunit, transmembrane
residues 28-73 of the 303-residue 1 subunit, and transmembrane
residues 23-51 of the 66-residue FXYD2a subunit. Missing hydrogens
were added using XPLOR-NIH.

First, the coordinates of FXYD2 in the crystal structure were
replaced with those of FXYD1 by aligning the CA atoms of their
homologous transmembrane helices (FXYD1 residues Gly19-Gly31,
FXYD2 residues G29-G41). The average RMSD between the trans-
membrane CA atoms of the two aligned segments was 1.19 A.

Second, the resulting coordinates for the o/p/FXYD1 complex
were subjected to 4 stages of Cartesian coordinate Powell mini-
mization, where energy terms for covalent and non bonded inter-
actions were introduced gradually as follows: 100 steps with a term
for covalent bonds (k=1); 500 steps with terms for covalent bonds
and bond angles; 500 steps with terms for covalent bonds, bond
angles and improper dihedral angles; and 500 steps with terms for
covalent bonds, bond angles, improper dihedral angles, and weak non-
bonded van der Waals interactions (kypw=0.01 kcal mol~! A=%;
krad = 08)

Third, this minimized starting structure was subjected to a high-
temperature semi-rigid body simulated annealing [39], using internal
coordinates dynamics [40], to optimize the interface between FXYD1
and the « subunit. In this step, all the o, 3, and FXYD1 atoms were
held fixed, except those of the side chains (from CG onward) of FXYD1
and of the aM9 transmembrane helix (Lys945-Tyr963). These side
chains were allowed both rotational and translational degrees of
freedom. The energy function included terms for covalent geometry,
Van der Waals contacts, and the torsion angle database Rama
potential [41], to select preferred side chain conformations relative
to the backbone dihedral angles. The energy terms were ramped as:
Kang =0.4-1.0 kcal mol~ ' deg™2; Kimp=0.1-1.0 kcal mol~ ' deg™?;
kRAMA:0.0Z—O.Z; ,<VDW:0-002_4-0 kcal ITlOl_1 A_4; krad:0.4—0.8.
The final model consists of nearly the entire o subunit (998 out of
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1016 residues), the transmembrane domain of the 3 subunit (46 out
of 303 residues), and the entire FXYD1 subunit (72 residues).
Compared to the coordinates of the original NMR and crystal
structures deposited in the PDB, the final coordinates for «, 3, and
FXYD1 have respective average pairwise RMSDs of 0.27 A, 0.32 A, and
0.17 A for the backbone atoms, and of 0.49 A, 0.46 A, and 1.74 A for
non-hydrogen atoms.

Molecular structures were visualized with the program Pymol
[42]. Electrostatic potentials were calculated in units of kT/e, where k
is the Boltzmann constant, T is the absolute temperature, and e is the
proton charge, using the program PDB2PQR [43]. Electrostatic poten-
tials were projected on the solvent accessible surfaces using the
program APBS [44]. XPLOR and PDB2PQR calculations with pFXYD1
were performed after replacing Ser68 with mono-protonated phos-
phoserine, as expected at pH 5.

3. Results and discussion
3.1. Phosphorylation of FXYD1 by PKA

In vitro phosphorylation by PKA caused FXYD1 to migrate at a
slightly higher apparent molecular weight on SDS-PAGE (Fig. 2A).
This effect is likely due to the 80 Da mass increase from the addition
of HPO3, combined with the negative charge of the phosphate group
causing less SDS to bind the protein. The absence of a band at lower
molecular weight indicates that large-scale phosphorylation of
FXYD1 is obtained with nearly 100% efficiency, since the size ex-
clusion chromatography step used to isolate pFXYD1 from the enzy-
matic reaction mixture would not be able to separate the phos-
phorylated and non-phosphorylated proteins. Phosphorylation was
also assessed by 2P radio imaging (Fig. 2B) and by mass spec-
trometry, which shows the characteristic 80 Da mass increase within
the +£0.05% range of the experimental error (Fig. 2C). In the NMR
sample, single site phosphorylation was further confirmed by the 3'P
NMR spectrum of pFXYD1 in micelles (Fig. 2D), which displays a
single peak at the expected chemical shift frequency for phospho-
serine at pH 5 [45,46].
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3.2. Effects of Ser68 phosphorylation on FXYD1 conformation

To examine the effects of PKA phosphorylation we first compared
the 'H/'>N HSQC NMR spectra of FXYD1, pFXYD1 and the mutant
FXYD1(S68D). 'H and '°N chemical shifts from protein backbone
amide groups are very sensitive to changes in chemical environment
and in protein conformation and, in other proteins, phosphorylation
has been shown to induce chemical shift changes as large as several
ppm due to electrostatic effects or to minor local conformational
changes in the vicinity of the negatively charged phosphate group
[47-52].

The HSQC spectra of FXYD1, pFXYD1 and FXYD1(S68D) all exhi-
bit excellent frequency dispersion and a single peak for each amide
site (Fig. 3), indicating that both pFXYD1 and FXYD1(S68D) adopt
uniquely folded conformations. Furthermore, the spectrum of
PFXYD1 shows no evidence of peaks from non-phosphorylated
protein, confirming the presence of a single (>90%) phosphorylated
species in the sample. Both the spectra of pFXYD1 and FXYD1(S68D)
exhibit extensive overlap with the spectrum of FXYDI1, indicating
that the protein does not undergo a major conformational change
upon either Ser68 phosphorylation or mutation to Asp. Peaks from
residues 1-54, which include the transmembrane domain, are not
perturbed at all and could be assigned to specific amino acids by
direct comparison with the previously assigned spectrum of FXYD1
[27]. However, peaks from the cytoplasmic helix (h4), which
contains the phosphorylation site, exhibited significant changes in
both 'H and "N chemical shifts. These peaks could not be assigned
by direct comparison and required the use of H/'>N NOESY-HSQC
experiments.

Maps of the chemical shift changes resulting from phosphorylation
or Asp mutation in the NMR spectra of pFXYD1 and EXYD1(S68D)
show that the perturbation at Ser68 is detected throughout the length
of helix h4 (Fig. 4). To determine whether the NMR frequency changes
reflect a conformational change in this region or the electrostatics
effects of the negatively charged phosphate group, we examined
several key NMR indicators of structure (Fig. 5). The short range NOEs
obtained from a three-dimensional 'H/ >N NOESY-HSQC spectrum for

1A - pFXYD1|{ B © PFXYD1
105 FXYD1 |- FXYD1(S68D)
- - -] L]
i 625
N 69T]
110
4 <
i @
N [ -]
115+ 59T 71R
: ® 635
i 8
1e 671
1204 .g/
. o/, \e
4 64l
(ppm) T T T T
9.0 8.0 1H (ppm)

Fig. 3. NMR "H/'>N HSQC spectra of uniformly '°N-labeled FXYD1 (black), pFXYD1 (red) and FXYD1(S68D) (blue). Residues 59 to 72 including helix h4 are indicated. (A) Overlapped

spectra of FXYD1 and pFXYD1. (B) Overlapped spectra of pFXYD1 and FXYD1(S68D).
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resonances.

amide sites that are less than 4 residues apart have a similar pattern in
both FXYD1 and pFXYD1, indicating the absence of conformational
change in h4 after phosphorylation (Fig. 5A). Furthermore, a
comparative TALOS analysis of the chemical shifts measured for
pFXYD1 and FXYD1 indicates that residues 60 to 70 retain an a-helical
conformation after Ser68 phosphorylation (Fig. 5B). Although this
analysis was limited to HN and HA chemical shifts, all of the helical
regions, including h4, that were previously determined in the
structure of FXYD1, using the complete set of 13C, >N, and 'H che-
mical shifts plus RDCs and NOEs [6,27], were correctly identified in
both FXYD1 and pEXYD1.

The paramagnetic electrons in the Mn?* ion induce distance-
dependent broadening of peaks from protein sites that are solvent-
exposed, without affecting those from sites in the hydrophobic
interior of the micelle. The addition of MnCl, to FXYD1(S68D) resulted
in substantial line broadening and disappearance of peaks from
residues in the N- and C-terminal regions and in the flexible linker,
while peaks from the transmembrane region and from helix h4
retained significant or full intensity, indicative of strong association
with the hydrophobic micelle. This is similar to our previous
observations for FXYD1 in micelles [27] and to previous observations
for FXYD1 in lipid bilayers [53,54]. The data indicate that the basic L-
shaped arrangement of the protein, with one transmembrane
segment and helix h4 embedded parallel to the micelle/ membrane
surface, is not significantly perturbed by the presence of a negative
charge at residue 68. Thus, since the protein conformation is not
significantly altered, we conclude that the observed frequency

changes in the spectra of pFXYD1 and FXYD1(S68D) must be due to
the introduction of a negative charge at residue 68.

The significant downfield shifts (to higher frequency) observed for
the amide resonance of Ser68 after phosphorylation (ASH=0.24 ppm;
ASN=1.57 ppm), or after mutation to Asp (AS6H=0.09 ppm;
ASN =4.84 ppm), reflect a deshielding of the corresponding amide
site from the external magnetic field (Fig. 4C-F). The inductive
electron-withdrawing effect of the negatively charged phosphate may
be expected to influence the amide hydrogen bonds of residue Ser68,
as well as those of Thr69 and Arg70. Indeed, the 'H frequencies of
these residues are all shifted downfield compared to their positions in
the spectrum of FXYD1 and a similar effect is observed for the 'H
frequencies of Thr69 and Arg70 in the spectrum of FXYD1(S68D). The
frequency changes extend along the length of helix h4, and decrease
in magnitude with increasing spatial distance from residue 68.
Interestingly, the frequency changes follow a general trend with
peaks from amides on the C-terminal side of Ser68 moving downfield,
and peaks from amides N-terminal to Ser68 moving upfield (to lower
frequency). This polarized peak perturbation pattern may reflect the
interactions of the negatively charged phosphate or Asp with the
macrodipole of helix h4, affecting the electronic environment
throughout the helix, as previously suggested for the Ser-phosphor-
ylated form of His-containing protein [49].

It is also interesting to note that both Ser68 phosphorylation and
Asp mutation induce very significant upfield frequency changes for
the peak of Ser63, a residue that is phosphorylated by PKC. Although
the significance of this effect cannot be determined from the present
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Fig. 5. Effects of S68 phosphorylation or S68D mutation on the conformation of FXYD1.
(A) Sequential and medium range H-H NOEs measured for FXYD1 (black) and pFXYD1
(white). (B) TALOS analysis using N, HA, CA, and CB chemical shifts of FXYD1 (top), only
N and HA chemical shifts of FXYD1 (middle), or only N and HA chemical shifts of
pFXYD1 (bottom). For each residue only “good” TALOS results with 9 or more matches
to the database having dihedral angles in a consistent region of the Ramachandran plot
are shown (see Materials and methods). The average backbone dihedral angles,
obtained for residues 60-70 in helix h4, are reported in each panel. The helical regions
determined in the structure of FXYD1 are shown at the top. (C) Residual peak intensity
(Ires) measured for FXYD1(S68D) after addition of 1.8 mM MnCl, (Ires =1 yn/Lmn)-

data, this may point to a synergistic relationship between PKA and
PKC phosphorylation, where PKA phosphorylation at Ser68 primes
helix h4 for subsequent PKC phosphorylation at other sites. This could
be important for regulating the transport of FXYD1 from the ER to the
plasma membrane, as proposed for the NMDA NR1 subunit [12].
Previously, we have used 'H/' N HSQC peak intensities and
heteronuclear 'H-'>N NOEs to characterize the backbone dynamics of

B~O
N

FXYD1 in micelles [6,27]. Resonance intensities correlate with
resonance line widths, which are excellent indicators of local
backbone dynamics and can be easily measured as peak heights in
the HSQC spectra of proteins. Large-amplitude backbone motions that
are rapid compared to the overall reorientation rate of the protein
reduce the line widths and increase the peak intensities, while lower
intensities are observed for less mobile regions or sites undergoing
chemical exchange in the intermediate range of the ps-ms time scale.

For FXYD1, helices h2 and h3 in the transmembrane region are
rigidly connected and have peaks with similar intensities that plateau
at a minimum value in the membrane interior. In contrast, h1 and h4
are somewhat more dynamic, while residues in the termini and in the
linker between h3 and h4 have peaks with much greater intensities,
reflecting much greater local dynamics (Figs. 4G and H, black). PKA
phosphorylation and Ser68Asp mutation both produce a very modest
increase in intensity for peaks from h4 (Fig. 4G and H, white),
consistent with a modest increase in backbone dynamics in this
region of the protein. A change in the orientation of h4 relative to the
diffusion tensor of the protein/micelle assembly could produce line
narrowing effects similar to those observed for pFXYD1 and FXYD1
(S68D). However, the observation of significant protection from
Mn?*-induced paramagnetic broadening in h4 indicates that a major
change in the helix orientation away from the micelle/membrane
surface is not the cause of line narrowing in the spectra of pFXYD1 and
FXYD1(S68D).

Our previous NMR studies of FXYD1 indicated that helix h4 could
undergo rotational excursions as large as 40° around its long axis
(Fig. 6A), while maintaining the helix amphiphilic polarity relative to
the micelle surface, with apolar residues facing the micelle lipophilic
interior and polar residues facing the aqueous environment [27]. The
peak intensity profiles suggest that this is not dramatically changed by
PKA phosphorylation. However, a slight increase in dynamics after
phosphorylation could reflect a slightly increased rate of excursions of
helix h4 away from the micelle/membrane surface into the cytoplasm
(Fig. 6B), or a slightly increased rate of helix reorientation in the plane
of the membrane surface (Fig. 6C). For phospholamban, the analogous
but unrelated regulator of the sarcoplasmic reticulum Ca-ATPase,
phosphorylation at Ser16 and its phosphorylation mimicking muta-
tion to Glu also induce a modest change in protein backbone dynamics
near residue 16 [50,55].

3.3. Implications for the interactions of FXYD1 with the Na,K-ATPase

Taken together, the absence of chemical shift or peak intensity
changes outside helix h4, the polarized pattern of chemical shift
perturbations along the helix length, and the modest increase in h4
backbone dynamics, all indicate that PKA phosphorylation does not
induce major changes in either the backbone conformation or

Fig. 6. Three types of helix h4 reorientation that could give rise to increased rate of dynamics while maintaining the membrane surface association of helix h4. (A) Reorientation
around the helix long axis. (B) Rotational excursions away from the membrane surface. (C) Reorientation in the plane of the membrane surface viewed from the cytoplasm.
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dynamics of FXYD1. Neither the helical structure nor the location of h4
at the micelle-water interface appears to be significantly perturbed by
phosphorylation. A predisposition for membrane surface association
is indicated by the amphiphilic character of h4 and demonstrated by
the NMR structure of FXYD1 in micelles [27] as well as by solid-state
NMR data in lipid bilayers [53,54]. The MnCl, broadening profile
observed for EXYD1(S68D) (Fig. 5C) indicates that this arrangement is
unchanged by phosphorylation. It is possible that helix h4 adopts a
different orientation in the presence of the Na,K-ATPase o subunit
from that observed for isolated FXYD1. However, the lack of electron
density for the cytoplasmic domains of FXYD?2 in the crystal structure
of pig kidney Na,K-ATPase, and of FXYD10 in the structure of the shark
rectal gland Na,K-ATPase, indicates the absence of a strong structural
interaction between the FXYD cytoplasmic domains and o.

A major phosphorylation-induced conformational change of
FXYD1 was proposed in a recent study measuring fluorescence
energy transfer between two fluorescent proteins, one linked to the
C-terminus of FXYD1 and the other to the N-terminus of a1 [56].
These experiments are complicated by the very large sizes of the
fluorescent proteins (~30 kDa) compared to the size of FXYD1
(~8 kDa), and also by the dependence of the Na,K-ATPase and FXYD1
plasma membrane expression levels on PKA and PKC phosphorylation
[9,14]. However, phosphorylation at more than one of the three sites
(Ser63, Ser69, Thr69) could be required to trigger a conformational
change in FXYD1. Furthermore, a conformational change involving
reorientation of helix h4 in the plane of the micelle/membrane
surface (i.e. around an axis perpendicular to the membrane plane, as
shown in Figs. 6C or 8B) would maintain its amphiphilic polarity at the
membrane surface, and cannot be excluded based on the NMR data
reported in this study.

The NMR data together with a comparison of the calculated surface
electrostatic potentials for FXYD1 and pFXYD1 indicate that the effects
of PKA phosphorylation could be due to the presence of the negative
charged phosphate group at the membrane surface, which could
influence the interactions of residues in h4 with each other, with «,
and with the membrane phospholipid headgroups. Electrostatic
repulsions between the negatively charged phosphate and the
negatively charged micelle/membrane surface, together with poten-
tial changes in the hydrogen bonding pattern, may be sufficient to
account for a slight increase in conformational dynamics of h4. Since
the Na,K-ATPase is sensitive to membrane potential [57,58], these
combined changes in electrostatics at the membrane surface could
also account for the opposing effects of FXYD1 and pFXYD1 on the
functional properties of the pump.

3.4. Structural model of the o/ 3/FXYD1 complex

As an initial step toward understanding the association of FXYD1
with the NaK-ATPase, we generated a model of the a/B/FXYD1
complex by replacing the coordinates of endogenous FXYD2 in the
crystal structure of the pump from pig kidney [25] with those of
FXYD1 determined by NMR [27], and performing molecular dynamics
to optimize the oo/ FXYD1 interface (Figs. 7, 8A). The crystal structures
indicate an intimate association between the FXYD and aM9
transmembrane helices, mediated by two glycines that are fully
conserved in all FXYD proteins (FXYD1 Gly20 and Gly31). Because
only the side chains of FXYD1 and M9 were allowed rotational and
translational degrees of freedom during the calculation, the backbone
conformations of the o, 3 and FXYD1 subunits in the resulting model
are unchanged from those of the starting coordinates, and the
orientation of helix h4 on the membrane surface is the same as that
originally determined by the combination of solid-state NMR in lipid
bilayers and solution NMR in micelles [27,54]. Notably, the resulting
model indicates that the membrane surface orientation of helix h4 is
compatible with the FEXYD1/aM9 transmembrane association medi-
ated by Gly20 and Gly31. It is also interesting to note that the

V sensor

G31

Fig. 7. Structural model of the ot/(3/FXYD1 Na,K-ATPase complex. FXYD1 (teal), and o 3
(gray) transmembrane helices are shown within the solvent-accessible surface of the
complex. Arg and Lys side chains at the cytoplasmic membrane surface are blue.
Occluded Rb*/K™ ions identified in the crystal structure of kidney Na,K-ATPase are
yellow. The proposed voltage-sensing module is at the end of «M10. CA atoms of
FXYD1 Gly20 and Gly31 and FXYD1 Ser68 phosphate (red) are shown as spheres. The
gray slab represents the membrane thickness.

orientation of FXYD1 in the model is the same as the orientation that
was determined for isolated FXYD1 in lipid bilayer membranes
[27,54]. This suggests that the structure of isolated FXYD1 is
representative of the Na,K-ATPase-bound structure and that, aside
from the Gly-mediated association with M9, there could be other
EXYD-specific factors (e.g. electrostatics) that predispose FXYD1 to
adopt a specific orientation within the membrane.

The crystal structure of pig kidney Na,K-ATPase highlighted a
highly electropositive region near the cytoplasmic membrane surface
and the Na™/K* ion binding sites of the o subunit. This region is
composed of Arg and Lys residues located at the cytoplasmic ends of
the o transmembrane helices and in their cytoplasmic connecting
loops, and includes Arg1003, Arg1004 and Arg1005 at the end of
aM10, which were proposed to constitute a voltage-sensing module
[25] analogous to the voltage sensors of potassium channels [59,60].
In the at/3/FXYD1 model the membrane surface location of FXYD1 h4
further contributes to this network of positive charges, suggesting
that FXYD1 could influence Na,K-ATPase ion transport by regulating
the membrane electrostatic potential near the ion binding sites
(Figs. 7, 8A). The introduction of negative charge by phosphorylation
would alter the surface electrostatics in h4 and this could have
profound effects on ion binding and transport by the o subunit.

In FXYD1 and in other FXYD proteins the short helical extension
(h3) of the transmembrane helix (h2) could also contribute to this
effect, due to its highly basic nature and membrane-surface location.
In all the FXYD proteins h3 is encoded by a single exon [6] and its
amino acid sequence varies in its use of Arg and Lys residues. Although
both are positively charged, these residues differ in their ability to
form hydrogen bonds (Arg>Lys) and in their charge delocalization
(Arg>Lys). Thus, their discrete use among the FXYD family members
could provide a further means of modulating their activities.
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Fig. 8. Structural model of the a/3/FXYD1 complex and potential alternative orientation of FXYD1 helix h4. (A) 90° views showing the backbone of FXYD1 (teal), and the solvent
accessible surface of a/[3 colored by electrostatic potential, with blue to red color gradation spanning a range of + 15 KT/e from positive to negative potential. FXYD1 helix h4 is in the
conformation determined in the NMR structure and the FXYD1/aM9 interfaced was optimized by molecular dynamics. Arg and Lys side chains in h3 and h4 are in blue. (B)
Alternative conformation of FXYD1 where h4 associates with both the membrane surface and the negatively charged crevice (dashed arrow) leading to the ion binding pocket in

center of o

Recent simulations by Jogini and Roux [60] indicate that specific
Arg side chains in the KvAP channel voltage sensor are paired with
one or more lipid phosphodiester groups at the membrane-water
interface, dramatically influencing the local electric field. This is
consistent with recent findings of a negatively charged lipid phos-
phodiester requirement for channel function [61] and provides an
attractive explanation for the voltage sensor mechanism. Similar
requirements for negatively charged phospholipids have been
reported for optimal Na,K-ATPase activity (see [22,62] and references
therein), and Arg residues in FXYD1 h3 and h4 could interact with the
lipid headgroups at the membrane-water interface, to modulate the
membrane electrostatics near the Na/K-ATPase ion binding sites.
Furthermore, in the KvAP simulation small vertical motions of the Arg
guanidinium groups along the direction of the membrane normal are
predicted to produce large transmembrane charge fluctuations.
Similarly, the slightly increased dynamics observed for Ser68
phosphorylation, combined with the addition of a negatively charged
phosphate group, could produce transmembrane charge fluctuations
with profound consequences for Na,K-ATPase ion transport.

Phosphorylation of the Ca-ATPase regulator phospholamban also
induces a small increase in backbone dynamics [50,55]. This is accom-
panied by a partial unwinding [50] or loosening [51] of the cytoplasmic
helix in the monomeric form of the protein, while the pentameric form
is reported to exhibit little evidence of conformational change [55] and
to conserve the a-helical structure around the Ser16 phosphorylation
site [63]. Furthermore, Ser16 phosphorylation does not appear to
affect the membrane surface association of the isolated cytoplasmic
domain of phospholamban [53]. Interestingly, the Ser16 phosphory-
lation site of phospholamban is in a short linker between the trans-
membrane and cytoplasmic helices, and situated near the membrane
surface just like Ser68 in FXYD1. Thus, the modulation of membrane
surface potential may be a common mechanism for the regulation of P-
type ATPases by their accessory proteins.

Finally we note that alternative orientations of h4 that maintain
the helix amphiphilic polarity and its membrane surface association
can be envisioned including one that would place helix h4 near a
negatively charged crevice formed by transmembrane helices aM2,
aM4, and aM6, leading to the ion binding pocket in center of the o
subunit (e.g. Fig. 8B). Acidic residues in this region of o are conserved
to allow the approach of cations but exclude anions through the

pump, and reversing the charge at just one of those positions converts
the Na,K-ATPase channel from cation selective to anion selective [64].
The net positive charge of helix h4 and its modulation by
phosphorylation could have a major influence on the electrostatics
around the o anionic crevice, with potentially important conse-
quences for ion binding. Three-dimensional structure determination
of the FXYD1/Na,K-ATPase complex is essential for understanding the
function of FXYD1 and the role of FXYD1 phosphorylation. The o/p/
FXYD1 structural model and the data presented in this study provide
some initial insights.
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