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ABSTRACT 

This is a survey of several topics in probability and statistics in which permanents 

seem to have a role. The topics covered include multiparameter versions of the 

multinomial and the negative multinomial distributions, arrangement-decreasing func- 

tions, order statistics for nonidentically distributed random variables, sequential 

experiments with feedback, and sampling. It is shown by means of examples how 

Alexandroff’s inequality can be applied to demonstrate log-concavity of certain 

sequences in some of these areas. 

1. INTRODUCTION 

If A is an n X n matrix, then the permanent of A, denoted by per A, is 
defined as 

where S, is the set of permutations of 1,2,. . . , n. Thus the definition of the 
permanent is similar to that of the determinant except that all terms in the 
expansion get a positive sign. 

The permanent function was introduced by Binet and independently by 
Cauchy as early as in 1812, more or less simultaneously with the determinant. 
However, the major developments in the theory of permanents have taken 
place only in the last twenty years or so. Much of this development was 
inspired by a famous conjecture posed by van der Waerden in 1926 concern- 
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ing the minimum permanent over the set of doubly stochastic matrices. The 
conjecture was solved by Egorychev, and independently by Falikman, around 
1980, and that led to increased activity in the area. The book Permanents by 
Mint [20] and the survey papers by Mint [21,22] provide an excellent source 
of references on permanents. 

The purpose of this paper is to describe various topics in probability and 
statistics where permanents seem to have a role. It appears that there are two 
main advantages of employing permanents in these areas. Firstly the perma- 
nent serves as a convenient notational device which facilitates manipulation 
of complicated expressions. The second advantage is more important. In all 
the areas described in this paper the matrices that appear are nonnegative. 
Thus it is possible to apply results from the theory of permanents of 
nonnegative matrices. For instance, several applications of Alexandroff’s 
inequality are illustrated. 

This is intended as a survey paper, and the results are stated mostly 
without proof, giving references to other sources for more details. 

2. LOG-CONCAVE SEQUENCES 

A sequence of nonnegative numbers oi, (~a,. . . , a, is said to be log-con- 
cave if af>a,_,ai+i, i=2,3 ,..., n - 1. Log-concave sequences arise fre- 
quently in statistics and in combinatorics. In the next result we summarize a 
number of elementary properties of such sequences. 

LEMMA 2.1. Let aI,. . , a,; PI,. . . , &, be log-concave sequences. Then 
the following assertions are true. 

(i) If ai > 0, i = 1,2,. . ., n, then 

ai ai+l 
i=2,...,n-1, 

ai-l ai ’ 

z.e., ai/a, _ 1 is nonincreasing in i. 
(ii) Zf ai > 0, i = 1,2,. . . , n, then aI,. . . , (Y, is u&nodal, i.e., for some k, 

l<k<n, 

(iii) orPi ,..., (Y,& is log-concave. 
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(iv) yl,. . . , y, is log-concave, where 

Yk= i aibk+l-i, k=1,2 ,..., n. 
i=l 

(v) a,,a,+a, ,..., a,+ ... +a, ad CX~,CK,+CX_~,...,~~+ ... +a, 
are both log-concave. 

(vi) The sequence 

n ( 1 i ’ 
i=O,l ,...,n, 

is log-concave. 

We offer some remarks concerning the proof of Lemma 2.1. Assertions (i), 
(iii), (vi) are elementary. To prove (ii), note that by (i), 

and there must exist k, 1~ k < n, such that 

Assertion (iv) can be proved by showing yt > Yk_rYk+ 1, and this involves 
making a careful pairing of terms on the two sides of the inequality. Then by 
taking pi = 1, i = 1,2,. . . , n, we get the first part of (v). Since (Y,,,. . . , al is 
also log-concave, we have the second part of (v). 

An important result in the theory of permanents of nonnegative matrices 
is the Alexandroff inequality, which we state next. We refer to van Lint [25] 
for a proof. 

THEOREM 2.2. Let A = (al,. . . , a,,) be a nonnegative n x n matrix. Then 

(perA)‘> per(al,...,a._2,a._l,a._l) per(a,,...,a._,,a.,a,). (2.1) 

Alexandroff’s inequality has an interesting history. It was proved by A. D. 
Alexandroff [l] in 1938 for a more general function called the “mixed 
discriminant.” In fact there is no mention of permanents in [l]. Then, after 
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almost forty years, Egorychev realized that the result specializes to a perma- 
nental inequality and it provided exactly what was needed for him to 
complete the proof of the famous van der Waerden conjecture. 

Alexandroff’s inequality provides a powerful tool for producing log-con- 
cave sequences, and this will be illustrated in the present paper by means of 
several examples. A typical way in which one obtains log-concave sequences 
using (2.1) is as follows. 

Suppose B is a nonnegative n x m matrix, m < n, and let x > 0, y 2 0 be 
vectors in R”. Let 

(~,=per B,x ,..., x, y ,..., 
t 

r=O,l ,...,n - m. 

r n-*--r 

Then by (2.1), (~a, or,. . . , a, _m is log-concave. 

3. THE MULTIPARAMETER MULTINOMIAL DISTRIBUTION 

Suppose a coin turns up heads with probability p on any single toss. Let 
the coin be tossed n times, and let X denote the number of heads obtained in 
the n tosses. Then X has the binomial distribution with parameters n, p, and 
the density function of X is given by 

Pr(X=x)= x!(ntrA r>l P”(l- P>“-“T x=0,1 )...) n. 

This density can be expressed in terms of permanents as follows: 

i. 

. . . 
P 

lpp . . . 

1 
P l--P 

Pr(X=x) = 
x!( n - x)! 

per f . . 

P 

- I* -: - . . . 
P 

lep . . . :- 1-P 

r n--r I 

The expression (3.1) admits generalizations. For example, suppose n 
coins, not necessarily identical, are tossed once, and let X be the number of 
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heads obtained. If pi is the probability of heads on a single toss of the ith 
coin, i=1,2 ,..., n, then it can be verified that 

1 
Pr(X=x)= 

r!( n - x)! per 

p, Pl l-p, ... 1 - Pl 

P” . . . Pn l-p, ... 1 - Pn 

x n--r 1. 
(3.2) 

We now consider a further generalization. Thus, suppose an experiment 
can result in any one of r possible outcomes, and suppose n trials of the 
experiment are performed. Let pij be the probability that the experiment 
resultsinthejthoutcomeattheithtrial,i=1,2 ,..., n,j=1,2 ,..., r.LetP 
denote the n x r matrix ( pij), which, of course, is row-stochastic. Let Xj 
denote the number of times the jth outcome is obtained in the n trials, 
j=1,2 , . . . , T; and let X = (Xi,. . . , X,). In this setup X is said to have the 
multiparameter multinomial distribution with the parameter matrix P. If the 
rows of P are all identical, then X has the usual multinomial distribution. Let 

xn,, = k = (i-c,,..., k,) : ki 2 0, integers, i ki = n 
i=l 

If A is an m X r matrix and if k E Xn,,, then A(k) will denote the m X n 
matrix obtained by taking k j copies of the jth column of A, j = 1,2,. . . , r. 
Also, for k E A’& we define k! = k,! . . . k,!. 

If X has the multiparameter multinomial distribution with the n X r 
parameter matrix P, then as a simple generalization of (3.2) we have 

Pr(X= k) = GperP(k), 

An alternative way of arriving at (3.3) is 
generating function of X is given by 

k E K,r (3.3) 

the following. The probability 

(3.4) 

Equation (3.3) thus says that for any k E X”,, the coefficient of sfl . . . s,“l in 
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(3.4) is (k!)- ’ perP( k). This statement is well known and is related to 
MacMahon’s master theorem (see, for example, [6; 24, p. 151). 

We now introduce the concept of matrix majorization. If P, Q are n X r 
matrices, we say that Q is majorized by P (Q -C P ) if Q is obtained from P 
by a repeated averaging of rows. To say this more formally, let 9” denote the 
class of n x n doubly stochastic matrices which can be written as a product 
of matrices of the form tI +(l - t)T, 0 < t < 1, where T is an n X n 

permutation matrix that interchanges only two coordinates. Then we have 
the following. 

DEFINITION. Let P, Q be n x r matrices. Then Q < P if and only if 
Q = DP for some D E B,,. The same concept has been called chain majoriza- 
tion by Marshall and Olkin [19, p. 4301. 

DEFINITION. A function g defined on a set of n X r matrices is said to 
be (multivariate) Schur-concave if Q < P implies g(Q) > g(P). Similarly g is 
said to be Schur-convex if Q -C P implies g(Q) < g(P). 

DEFINITION. Let A be a real, symmetric n x n matrix. Then A is said 
to be conditionally positive definite if x’Ax > 0 for any x satisfying Cy= ix, = 0. 

If kg%,,!, then we set ki j = k + e, + ei, where e, denotes the ith row of 
the r x r identity matrix for any i. It is important to keep in mind that for 
each i, j (i = 1,2 ,..., r, j = 1,2 ,..., r), kij has been defined as a vector, 
although the notation is perhaps a bit misleading. 

DEFINITION. Let 4: -X,, , + ( - co, co). Then $ is said to be positive 
semidefinite (conditionally positive definite) if for any k E XnnP,,, the matrix 
(+( kij)) is positive semidefinite (conditionally positive definite). 

Suppose +(k) = Pr( X = k), given in (3.3). The representation (3.3) along 
with some results on permanents has been used in [3] to show that log G(k) is 
conditionally positive definite. This leads to a proof of a conjecture made by 
Karlin and Rinott [16] concerning the Schur-concavity of the entropy of a 
multiparameter multinomial. We only state the result here and refer to [3, 161 
for further details. 

THEOREM 3.1. Zf P is a row-stochastic n X r matrix, let g(P) denote the 

entropy function 

g(P) = - c Pr(X=k)logPr(X= k), 

ke-‘C., 
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where X has the multiparameter multinomial distribution with the parameter 

matrix P. Then 

(a) g is Schur-concave; 

(b) if Q is the n x r matrix with nqii = ,E;=Iplj for all i, j, then 

g(Q) 2 g(P); 

(c) the maximum of g(P) over all n X r row-stochastic matrices P is 
attained when pij = l/r for all i, j. 

It is easy to see that the binomial density is log-concave. In the next result 
we give an analogous statement for the multiparameter multinomial. 

LEMMA 3.2. Let X=(X,,..., X,) have the multiparameter multinomial 

distribution with the n x r parameter matrix P. Let x3,. . . , x, be nonnegative 

integers such that y = x3 + . . . + x, < n, and let 

f(x)=Pr(X,=x, X,=n-y-x/X,=x,,..., Xr=X,), 

x=0,1 ,..., n-y. 

Then f(O), . , f( n - y) is log-concave. 

Proof. Let 

g(x) = Pr(X,= 1c, X,=n-y-x, X,=x, ,..., Xr=X,). 

Then by (3.3) 

1 
g(x) = x!( n - y - x)!r,!. . . r,! 

perP(x,n-y-x,x, ,..., x,). 

By Alexandroff’s inequality, perP(x, n - y - x, x3,. . . , x,), r = O,l,. . . , n - y, 
is a log-concave sequence. The sequence { r!( n - y - x)!} -l, x = 0, 1,. . . , 
n - y, is log-concave by Lemma 2.l(vi), and then, by Lemma 2.l(iii), 
g(x) (x=0,1,..., n - y) is log-concave. 

Since 

1 
f(x)= Pr(X,=x,,..., Xr=X,) g(x), 

it follows that f(x), x = 0, 1,. . . , n - y, is log-concave. n 
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The next result illustrates yet another application of Alexandroff’s inequal- 
ity. 

LEMMA 3.3. Suppose there are n coins, of which m are identical with 
the same probability of heads equal to p, whereas the remaining n - m have 

the same probability of heads equal to p’. Let x be fixed, 0 < x < n, and let 

f(m) denote the probability of getting x heads when the n coins are tossed. 

Then f(O), . . . , f(m) is log-concave. 

Proof. By (3.3) we have 

f(m)= ’ 
x!(n-x)! pe’ 

P . . . 
P 1-P 

P . . . 
P 1-P 

p’ . . . p’ 1 - p’ 

p’ . . . p’ 1 - p’ 

. . . 
1-P 

. . . 
1-P 

. . . 1 - p’ 

. . . 1 - p’ 

x n-x 

Since the permanent of a matrix is equal to that of its transpose, we can 
write down a version of Alexandroff’s inequality in which rows are repeated 
instead of columns. The log-concavity of f(O),. . . , f(m) then easily follows 
from that version in view of (3.5). w 

Lemma 3.2 and 3.3 appear in [2], and it may be remarked that the proof 
of Lemma 3.3 contained there is incorrect. Part of the material covered in 
this and in the next section has appeared in a rather condensed form in 
[5, p. 2011. 

The relationship between permanents and the multiparameter multino- 
mial has been noted by Gleason [lo]. The main emphasis in [lo] is on 
providing a probabilistic interpretation of the van der Waerden conjecture. 
We now give an outline of the interpretation. We first recall the 
van der Waerden conjecture (now a theorem due to Egorychev and 
Falikman), which asserts that the minimum permanent over the set of n x n 
doubly stochastic matrices is attained only at _I,,, the n X n matrix wiLl all 
entries l/n. 

Consider n urns, and balls of n colors distributed in the urns in such a 
way that the probability of drawing a ball of color j from urn i is pii. Then 
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clearly P = ( pii) is a row-stochastic n X n matrix. If a ball is drawn at 
random from each urn, then the probability that the balls are all of different 
colors is per P. The expected number of balls of color j is given by the j th 
column sum of P. Now suppose P is doubly stochastic. This amounts to the 
assumption that the expected number of balls of each color is one. Now 
according to the van der Waerden conjecture the probability that the balls 
are all of different colors is minimized when and only when the compositions 
of the urns are identical. Gleason [lo] also gives an analogous statement when 
balls of only r ( < n ) colors are available. 

Gyires [12, 131 has used permanents to define a class of distributions more 
general than the multiparameter multinomial (3.3). Before defining the class 
we recall the Cauchy-Binet formula for the permanent [20, p. 171. 

LEMMA 3.4. Let A, B be n x r matrices. Then 

perAB’= c lperA(k)perB(k). 
ks.& ‘! 

DEFINITION. Let A, B be n X r nonnegative matrices, and suppose 
AB’= E, the matrix with all 1’s. We say that the random vector X = 

(X i,. . . , X,) has th e multinomial distribution generated by A, B if 

Pr(X=k)= -&perA(k)perB(k), k E %,V (3.6) 
. . 

Note that by Lemma 3.4 Pr(X = k) defined in (3.6) is a density. If A is a 
row-stochastic n x r matrix and if B has all entries equal to 1, then the 
density (3.6) reduces to the multiparameter multinomial density (3.3). 

If X has density (3.6), then Gyires [12] has shown that the characteristic 
function of X is given by 

+(t B’. 

The proof again uses Lemma 3.4. It is then possible to obtain the moments. 
For example, it turns out that 

E(X,) = $ ,$ ajl t bjl> 1=1,2,...,r 
]=l j=l 
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In [ 131 Gyires has studied the asymptotic distribution of X’, . . . , X”, . . . , 
where each X”’ has a density of the form (3.6). Here we give one result as an 
example and refer to [13] for the proof and for other related results. 

Let A be a positive row-stochastic matrix with infinitely many rows and r 
columns. Let A” denote the submatrix of A formed by the first m rows, 
m=1,2 )... . Suppose for each k = 1,2,. . . , T; the limit of a jk as j + co exists 
and is positive. Let X “’ = (X7,. . . , Xy) have the multiparameter multinomial 
distribution with parameter matrix A”, m = 1,2,. . . . 

Let 

Then [ 13, Theorem 51 the asymptotic distribution of B,[ X”’ - E( Xm)]’ as 
m + 00 is multivariate normal. 

We conclude this section by describing a recent result due to Boland and 
Proschan [7, p. 2921. A real-valued function f(x,, . . . , xs) of n-dimensional 
vector arguments xi,. . . , x, is said to be arrangement-decreasing if the 
function decreases in value as the components of the vectors xi,. . . , x, 
become “ more similarly arranged.” We refer to [7] for a formal definition. 

The next result is equivalent to the assertion that the permanent of a 
nonnegative n x n matrix is an arrangement-decreasing function of its 
columns (equivalently, its rows). 

THEOREM 3.5. Let A be a nonnegative n X n matrix. Let 1 Q I< m < n 
be fixed, and let B = ( bij) be obtained from A by the following rule: fm 
k = 1,2,..., n, interchange alk and amk if alk > amk. Then per B < perA. 

Proof. The proof given here is somewhat easier than the one in [7]. 
First let n = 2, so that 

If a,, < a2, and ui2 < a22 or if ali 2 a2i and ui2 >, u22, then clearly perB = 
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per A. So suppose, without loss of generality, that a 11 < azl and aI2 > a 22. 
Then 

We have 

PerA - PerB = a,,(+2 - a12) + adal - ad 

= (all - az1)(a22 - alA 2- 0. 

For n > 2 we may assume, without loss of generality, that 1= 1, m = 2. Now 
expand both per A, per B in terms of the last n - 2 rows and use the result 
obtained for 2 X 2 matrices. That completes the proof. n 

A probabilistic interpretation of the result, given by Boland and Proschan 
[7], but slightly rephrased here, is as follows. As before, consider n urns 
containing balls of n different colors. Let the probability of drawing a ball of 
color j from urn i be given by pii. Then P = (pii) is row-stochastic, and the 
probability of getting balls of n distinct colors when one ball is drawn from 
each urn is per P. Let Q = (qij) be defined by letting qii > . . . > qin be a 
rearrangement of pii,. . . , pi, for each i. Since the permanent is an arrange- 
ment-decreasing function of the rows as well, per Q < per P. Thus, as we 
intuitively expect, the probability of getting balls of n distinct colors cannot 
increase. 

4 THE MULTIPARAMETER NEGATIVE-MULTINOMIAL 
DISTRIBUTION 

Suppose we have m dice, each with r + 1 faces. We assume that each die 
has one face marked with an asterisk *, whereas the remaining faces carry 
1,2,..., r spots. Suppose pij > 0 is the probability of getting j spots when the 
ithdieisrolled, i=1,2 ,..., n, j=1,2 ,..., r. Let P denote the m x T matrix 
( pii). Let pi, be the probability of getting an * when the ith die is rolled, 
i = 1,2 >*.., m. Then clearly 

Pi0 = ’ - C Pij' i=1,2 ,..., m. 
j=l 
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The following experiment is conducted. The first die is rolled until it 
shows *. Then we switch over to the second die and roU it until an * is 
obtained, whence we take up the third die. The process is repeated, and the 
experiment stops when we have rolled all the m dice, obtaining m * ‘s. Let 
Xj denote the number of times we get j spots in the experiment, i = 1,2,. . . , T, 
and let X=(X,,..., X,). In this setup X is said to have the multiparameter 
negative-multinomial distribution with the m X r parameter matrix P. Just 
like (3.3), we have a permanent representation for the density function of X 
as follows. Let k = (k, ,..., k,) E X *,,. Then 

where the summation is over aU vectors 1 = (II,. . . , I,) E Xn, “,. We refer to 
[2] for a proof. 

In this situation a result analogous to Theorem 3.1 is not yet proved. It 
has been conjectured by Karlin and Rinott [16] that the entropy function in 
this case is Schur-convex. To settle this conjecture it must be shown that 
- log+(k) is conditionally positive definite on 2, T for any n, where 
+(k) = Pr(X = k) (see [16, Conjecture 3.21). We ndw give a proof of a 
slightly different assertion. It will be shown that G(k) = k! Pr(X = k) is 
positive semidefinite on Y,% ~ for any n. The result appears to be new. 

If A is an n X r matrix, let perA denote the sum of all n x n subperma- 
nents of A, where repetition of columns is permitted. More formally, we 
define 

GA= c perA( 
lE3Y,., 

Then (4.1) can be expressed as 

Pr( X = k) = ‘lo ‘ii pm, G P(k)‘. (4.2) 

THEOREM 4.1. Let +:Xn r j(--,~~),andforanynxrmatrixA, let 

#(A)= c G(k) 
per A(k). 

k=X,,, ’ 

(i) lf + is conditionally positive definite on %I,,, then 4 is Schur-con- 
cave on the set of n x r row-stochastic matrices. 

(ii) Zf + is positive semidefinite on Yn, ,, then # is Schur-concave on the 
set of n X r nonnegative matrices. 
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Theorem 4.1(i) is the same as Theorem 2.1 in [ 161, and (ii) can be proved 
along similar lines. 

THEOREM 4.2. Let X have the multiparameter negative multinomial 
distribution with the m x r parameter matrix P. Then for any positive integer 
n>, 2 and for any kEYn_P,r, the matrix (kij!Pr(X = kij)) is positive 
semidefinite. 

Proof. We will first show that the quadratic form 

t(x) = f+4, x, x)‘, XERrn, 

is positive semidefinite for any nonnegative m x (n - 2) matrix A. 
A simple calculation shows that C#B( k) = k! is positive semidefinite on 

.%&. Hence by Theorem 4.l(ii), $(b) =GB is multivariate Schur-concave 
on the set of nonnegative matrices. Therefore for any nonnegative m x (n - 2) 
matrix A and for any nonnegative vectors x, y, 

i 

x+y x+y ’ 
& A,2,- 

2 1 
> &(A, x, y)‘. (4.3) 

Since p”’ is a multilinear function of the rows, (4.3) simplifies to 

and this is equivalent to showing that [ is positive semidefinite. 
Now let Pi denote the jth column of P, so that P = (PI,. . . , P,). Let e, 

denote the ith column of the m x m identity matrix, i = 1,2,. . . , m, and let 
H = (hi j) be the m x m matrix defined as 

hij=per(P(k),ei,ej)‘, i, j = 1,2 ,...,m. 

Then clearly t(x) = x’Hx, and hence H is positive semidefinite. 
Now observe that 

( kij! Pr( X = kij)) = pl, . . . p,, G P( kij)’ 

=p,,.. * Pm, E(P(k), Pi> Pj)’ 

= P,,.. . p,,(PHP’). 

Since H is positive semidefinite, so is PHP’, and the proof is complete. 
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By Theorem 4.2 any 2 X 2 principal minor of ( ki j! Pr( X = ki j)) must be 
nonnegative, and hence we obtain the inequality 

{kij!Pr(X=kij)}‘< {kii!Pr(X=kii)}{kji!Pr(X=kjj)}. (4.4) 

Suppose Zi, i = 1,2,. . . , m, are independent random variables following a 
simple geometric distribution such that 

P(Zi = k) = p;qi, k=0,1,2,..., qi=l-pi. 

Then Z = Z, + . . . + Z,, has the multiparameter negative binomial distribu- 
tion. It is known [15, p. 104; 14, p. 1641 that 

Pr(Z=k)2< 
(k+l)(n+k-1) 

k(n + k) 
Pr(Z=k-l)Pr(Z=k+l). 

In particular, 

{k!Pr(Z=k)}2< {(k-l)!Pr(Z=k-l)}{(k+l)!Pr(Z=k+l)}. 

(4.5) 

Thus (4.4) can be thought of as a multivariate analog of (4.5). 

5. ORDER STATISTICS 

Permanents provide an effective tool in dealing with order statistics 
corresponding to random variables which are independent but possibly 
nonidentically distributed. Let Xi,. . . , X, be independent random variables 
with distribution functions F,, . . . , F,, respectively, and let Y, < . . . < Y, 
denote the corresponding order statistics. Suppose the densities fi,. . . , f, of 
X i,. . . , X, exist. Vaughan and Venables [26] have shown that the density of 
any order statistic or the joint density of several order statistics is conve- 
niently expressed in terms of a permanent. For example, the density of Y, is 
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given by 

17 

l-NY) -*. l-F,(Y) 

l-&(y) .** l-in(y) 

n--* 

(5.1) 

Similarly the distribution function of Y, or that of a subset of Y,, . . . , Y,, 
may be expressed in terms of permanents. For example, as indicated in [4], 
the distribution function of Y, is given by 

Pr(Y,<y)= f ’ 
i=r i!(n-i)! 

F,(Y) ..’ -h(Y) l-F,(Y) .*. l-F,(Y) 

Xper f I\ Fl(Y) ... F,(Y) 

1 :-\: - 

l-F,(y) .*. l-in(y) 

:- n-i 1. 

(5.2) 

There are a number of recurrence relations for order statistics in the 
literature. Almost all of these are for the case of i.i.d. Xi,. . . , X,. Using (5.1), 
(5.2) it is possible to get refined versions of some of these recurrence relations 
corresponding to the case of nonidentical Xi,. . . , X,. The proof usually 
involves simple manipulations with the permanent using the Laplace expan- 
sion. We refer to [4] for some examples. 

If it is desired to incorporate the possibility of one or more outhers being 
present in X,,..., X,, then one naturally arrives at the situation where 
X i, . , . , X, are nonidentically distributed. It is common practice to restrict the 
analysis to the case of one outlier, since for more outliers the treatment 
becomes complicated. The permanent representations may be of help in 
making further progress. In some instances F,, . . . , F, may be believed to be 
of the same functional form but with different values of the parameters 
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involved. For example, Xi,. . . , X, may all be exponential random variables 
with parameters Xi, . . . , h n respectively. Then some further simplification 
results while manipulating the permanents in (5.1) (5.2). We refer to Gross, 
Hunt, and Odeh [ 1 l] for an example. 

The next result from [4] illustrates more applications of Alexandroff’s 
inequality. 

THEOREM 5.1. random variables 
distribution functions . . . , respectively. Let Y, < . . . < Y,, be the corre- 
sponding order statistics with respective distribution functions G,, . . . , G,. 
Let y E( - co,co) be fixed. Then G,(y) ,..., G,(y) and 1 -G,(y) ,..., 
1 - G,(y) are log-concave. Furthermore if X,, . . . , X, are continuous with 
respective densities fi,. . . , f,, then gI( y),. . . , g,,(y) is log-concave, where 
g,, . . . , g, are the densities of Y,, . . . , Y,, respectively. 

Proof. Let 

F,(Y) .-. F,(Y) 

... F,(Y) 

i 

l-F,(y) ... 1 - F,(Y) 
. 1 
. -i 

, 

l-F,(y) ..f l-F,(Y) 

n-i 

i=O,l,..., n. 

By Alexandroff’s inequality aa, ai,. . . , an is log-concave. Since [ i!( n - i)!] _ ‘, 
i=O,l,..., n, is also log-concave, by Lemma 2.1(m) 

1 

il(n -i)l oi’ 
i=O,l ,...,n, 

is log-concave. It follows that G,(y),...,G,(y) and l-Gi(y),...,l-G,(y) 
are log-concave in view of (5.2) and Lemma 2.1(v). Similarly, (5.1) and 
Alexandroff’s inequality lead to the log-concavity of g i( y), . . . , g,( y ). n 

The log-concavity of G i( y ), . . . , G,( y ) has another interpretation. Suppose 
Gi(y) > 0, i = 1,2 ,..., n. Then 

Gi(Y) Pr( Yi < Y) 

Gi-i(Y) 
= Pr(Y,_,< y) =PlfYiGyjYi-,~Y)* 

t 1 

Thus by Lemma 2.1(i) we conclude that the sequence of conditional probabil- 
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ities Pr(Y,,<y]Y,_,<y), i=1,2 ,..., n, is nonincreasing. This observation 
may be of some interest in the context of reliability theory. 

6. SEQUENTIAL EXPERIMENTS WITH FEEDBACK 

Consider a deck of n cards containing ai identical cards of type i, 
i=1,2 ,...,r, where a,+ ... + a, = n. The deck is weII shuffled, and the 
cards are presented to a person, face down, in sequence. The person tries to 
guess the type of each card. The number of correct guesses can then be used 
to test whether the person has ESP (extrasensory perception). 

Various authors have tried to introduce some kind of feedback in the 
process. A kind of partial feedback, which we consider here, is to telI the 
person whether his guess was right or wrong immediately after each guess. 
Diaconis and Graham [9] and Chung, Diaconis, Graham, and Mallows [8] 
deal with this setup. One of the main results in [8] can be informally stated as 
follows. The probability that the next card is type i, at any stage of the 
experiment, does not decrease if it was guessed that the previous card is type 
i and the guess is incorrect. We wish to indicate that this result is an 
immediate consequence of Alexandroff’s inequality. 

We in fact consider a more general situation. Consider a deck of n cards 
marked with integers 1,2,. . . , n. The cards are presented to the subject, face 
down, in a random order. At each stage the subject is required to produce a 
subset of {1,2,..., n } and guess that the card is in that subset. In the next 
result we show the following. Let S c { 1,2,. . . , n }. Suppose at any given 
stage of the experiment the probability that the next card is in S, given the 
feedback, is (Y. Now if the subject guesses that the card is in S and is proved 
wrong, then the probability that the following card is in S cannot be less than 
(Y. The result of Chung et al. stated earlier is clearly a consequence of this 
result obtained by restricting S to the set of cards of type i. 

THEOREM 6.1. Let S,, S,, . . . be arbitrary nonempty subsets of 

{l,%..., n }, and let S/ be the event that the j th card is in Si. Then 

Pr(Sk)Si,..., SljI:) aPr(S:+‘/S:,...,S:). 

Proof. For any SC {1,2,..., n } let e(S) denote the O-l vector of length 
n such that its ith entry is 1 if and only if i E S, i = 1,2,. . . , n. Also let e 
denote the vector of ah 1’s. Then 

Pr(S:JS:,...,Si-‘) = 
Pr(S:,...,SL) 

Pr(S:,...,SiIi) 
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Pr(S:f’lS:,...,S$ = 
Pr(S:,...,S;,S;+‘) 

Pr(S:,...,S$) * 

Note that 

Pr($,..., $1:) = ~~er(e(S~),...,e(S,,),~), 

n-k+1 

Pr(S:,..., S:)=~per(e(S,),...,e(S,j,~_.,e~), 

n-k 

Pr(S:,...,Si,S :‘l)=Sper(e(S,),...,e(S,),e(Sk),p,...,ei 

n-k-l 

Hence the result follows by Alexandroff’s inequality. n 

In the inequality of Theorem 6.1, if we subtract both sides from 1, we get 

Pr(kthcardnotin S,(S:,...,S,k:t)<Pr((k+l)thcardnotinSk(S:,...,Si). 

Now setting S, equal to the complement of S in { 1,2,. . ., n}, we get the 
interpretation of the result given before Theorem 6.1. 

Consider two decks of n cards each: deck 1 containing a, cards of type i, 
deck 2 containing bi cards of type i, i = 1,2,. . . , r. Both decks are shuffled, 
and cards turned up in pairs simultaneously. Let X denote the resulting 
number of matches. Let A(r) denote the n X n matrix constructed as 
follows. There are r disjoint principal blocks in A(x) of size ai X bi, 
i = 1,2,..., r, consisting of all x ‘s; the remaining entries of A(x) are all 1’s. It 
has been observed by Olds [23] that the probability generating function of X 
is given by 

G(x) = $ per*(x). 

Olds [23] has used the permanent representation to find the first few 
moments of X. 

Some properties of per A(0) have been obtained by Chung et al. [8]. The 
results include exact expressions for perA( recurrence relations, and cer- 
tain inequalities. 
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7. SAMPLING 

Consider a population of N units denoted by 9 = { 1,2,. . . , N }. We 
consider a sample of size n < N drawn from the population and denote the 
observations X,, . . . , X,. We will denote by E, and E, expectations under 
sampling without replacement and under sampling with replacement respec- 
tively. 

For i = 1,2,..., n, let +i:9-+(-co,oo). Let A=(aij) be the NXN 
matrix defined as follows. 

(7.1) 

It can be easily verified that 

(7.2) 

We now prove a preliminary result. 

LEMMA 7.1. Let B = (b,, . . . , bN) be a nonnegative N X N matrix such 

that b, > b,. Let 0 G t < 1, and define C as 

C=(tb,+(l-t)b,,(l-t)b,+tb,,b,,...,b,). 

Then per B < per C. 

Proof. We have 

perC-perB=t(l-t){per(b,,b,,b,,...,b,)+per(b,,bz,b,,...,b,)} 

- 2t(l- t)perB 

= t(l - t)per(b, - b,, b, - b,, b, ,..., bN) 2 0, 

since b, > b,. n 
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The next result has been proved by Karlin and Rinott 
a proof using permanents. 

[17, p. 391. We give 

THEOREM 7.2. Let &: 9 + [0, 00) be nondecrem 

1,2,..., n. Then 
:ing functions, i = 

Proof. Define the N x N matrix A as in (7.1). In view of (7.2) we must 
show that 

perA< per(8,...,0) 

where 8 is a vector with ei = (l/N )X7= raij, i = 1,2,. . . , N. 
Let Pk denote the N X N permutation matrix corresponding to the 

transposition which interchanges coordinates k and k + 1, k = 1,2,. . . , N - 1. 
Then it can be verified that 

M= fi $(Z+P”) 

= 

k=l 

1 

2 
1 

2 

0 

1 

4 ... 
1 

4 ... 

1’ 

2 

1 1 1 
2N-2 2N- 1 2N- 1 

1 1 1 
2N-2 2Np1 2N-1 

Then M E gN and, as shown by Marcus and Newman [la, p. 671, 

lim MS = JN, 
s-rm 

where JN is the matrix with all entries l/N. 
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Since $+ are nondecreasing, A satisfies a, < . . . < a*, and the same 
holds for all AM”. Hence by Lemma 7.1 

perA < perAM”, s=1,2.... 

Letting s -+ co, the result is proved. n 

Karlin and Rinott [17] also discuss the following generalized birthday 
problem. Consider a group if n individuals. Let A = (aij) be the rz X 365 
matrix where a i j is the probability that the i th person’s birthday is on the 
j th day of the year. Let $(A) denote the probability that the n persons have 
n distinct birthdays. Suppose that, after renumbering the days if necessary, 
A=(a,,...,a36,5) satisfies 

Then +(A) is maximized if all days are equally likely birthdays for all 
individuals. This result may also be proved using permanents. Augment A to 
a 365 X 365 matrix by adding rows of all 1’s. Then 

1 
G(A) = (365 _ n)l perA. (7.3) 

Now the proof is similar to that of Theorem 7.2. 
We conclude by pointing out an error which occurs in Karlin and Rinott’s 

[17] paper. Let us say that the columns of an tr x n matrix A are similady 

ordered if, after a renumbering of the columns if necessary, they satisfy 
a,<a,< f.. <a,. It is clear from Lemma 7.1 that if the columns of a 
nonnegative matrix A are similarly ordered and if 

B= A[tZ+(l-t)T], (7.4) 

where 0 < t < 1 and T is a permutation matrix that interchanges only two 
coordinates, then 

perA < per B. (7.5) 

However, note that the columns of B may no longer be similarly ordered, 
and thus it cannot be concluded, as has been erroneously done in Theorem 3 
of [17], that A -c C =S perA < per C if A is a nonnegative matrix with 
similarly ordered columns. Of course, the proof of Theorem 3 given in [17] 
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can be used to conclude (7.5) provided B is as in (7.4). A similar remark 

applies to the discussion of the birthday problem. Thus the assertion [17, p. 

40, line lo] that #(A) of (7.3) is multivariate Schur concave is not valid. 
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