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Antimicrobial peptides continue to garner attention as potential alternatives to conventional antibiotics.
Hipposin is a histone-derived antimicrobial peptide (HDAP) previously isolated from Atlantic halibut. Though
potent against bacteria, its antibacterial mechanism had not been characterized. The mechanism of this peptide
is particularly interesting to consider since the full hipposin sequence contains the sequences of parasin and
buforin II (BF2), two other known antimicrobial peptides that act via different antibacterial mechanisms.
While parasin kills bacteria by inducing membrane permeabilization, buforin II enters cells without causing sig-
nificant membrane disruption, harming bacteria through interactions with intracellular nucleic acids. In this
study, we used a modular approach to characterize hipposin and determine the role of the parasin and buforin
II fragments in the overall hipposin mechanism. Our results show that hipposin kills bacteria by inducing mem-
brane permeabilization, and this membrane permeabilization is promoted by the presence of the N-terminal
domain. Portions of hipposin lacking the N-terminal sequence do not cause membrane permeabilization and
function more similarly to buforin II. We also determined that the C-terminal portion of hipposin, HipC, is a
cell-penetrating peptide that readily enters bacterial cells but has no measurable antimicrobial activity. HipC is
the first membrane active histone fragment identified that does not kill bacterial or eukaryotic cells. Together,
these results characterize hipposin and provide a useful starting point for considering the activity of chimeric
peptides made by combining peptides with different antimicrobial mechanisms. This article is part of a Special
Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Over the past decades, there has been increasing interest in the
promise of antimicrobial peptides as an alternative to conventional
therapeutic agents to treat bacterial infections [1,2] These peptides
have been isolated from many natural sources and are believed to play
a role in innate immunity for a diverse array of organisms ranging
from bacteria to plants to people. Successful development of these
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peptides as therapeutic agents will require researchers to have a solid
understanding of how these peptides kill bacteria and howmechanisms
are influenced by the primary structure of peptides.

Recently, there has been increasing interest in histone-derived anti-
microbial peptides (HDAPs) [3,4]. HDAPs have been isolated frommany
natural sources and represent fragments of the histone core subunits.
Other work has focused on the design of novel HDAPs [5]. Of the
HDAPs studied, some of the most active and best characterized HDAPs
are derived from the histone H2A subunit [5–9].

Hipposin is a histone H2A derived antimicrobial peptide isolated
from the Atlantic halibut, Hippoglossus hippoglossus L. [6,10]. Although
the precise role of hipposin in halibut innate immunity has not been
elucidated, its localization in the skin mucus is similar to the location
of other antimicrobial peptides isolated from fish [11]. Moreover, its
derivation from histone H2A is similar to that of other antimicrobial or
antifungal peptides that are produced from the cleavage of larger pro-
teins that serve other cellular roles, such as human thrombin [12] and
shrimp hemocyanin [13]. Hipposin is particularly notable as it is a rela-
tively large, 51 residue, antimicrobial peptide whose sequence contains
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regions essentially identical to two smaller HDAPs with different anti-
bacterial mechanisms of action (Fig. 1). The 19 N-terminal residues of
hipposin are highly homologous with parasin I, which is known to kill
bacteria by inducing membrane permeabilization [8,14]. A 21-amino
acid section located in the middle of the hipposin sequence is identical
to buforin II (BF2), a peptide that translocates into cells without causing
much membrane permeabilization and is believed to kill bacteria
through interactions with intracellular nucleic acids [7,15–19]. Another
naturally occurring peptide, buforin I (BF1), is essentially a fusion of the
parasin and BF2 peptides [9]. However, the C-terminal region of
hipposin, referred to here as HipC, has not been previously isolated or
characterized.

This study investigates the mechanism of hipposin and its related
peptides by using a modular approach, characterizing the activity and
mechanism of different hipposin fragments. Using this approach, we
determined that hipposin kills bacteria by inducing membrane perme-
abilization, and this membrane permeabilization is promoted by the
presence of the N-terminal parasin domain. We also determined that
the C-terminal HipC portion is a cell-penetrating peptide that readily
enters bacterial cells but has no antimicrobial activity. Thus, HipC is
the first membrane active histone fragment identified that does not
kill bacterial or eukaryotic cells.
2. Materials and methods

2.1. Peptide design and synthesis

The peptide sequences used in this study are shown in Table 1.
Although the sequence of hipposin is very similar to that of parasin,
BF1, and BF2, there are a few single-site differences between these
proteins. While most of these changes are rather conservative, the
initial N-terminal residue is a more substantial change from Ser 1
in hipposin to Lys 1 in parasin. Since mutations to the Lys 1 residue
of parasin alter its activity [8], for consistency in our comparisons we
decided to use an S1K mutation in all of our hipposin-derived peptides.
We also introduced tryptophan residues at positions 14, 25, and 50 in
hipposin and analogous sites in hipposin fragments in order to allow
for easier peptide quantification and the lipid vesicle translocation assays
of HipC. Initial measurements in our lab showed that the S1K/A14W/
F25W/Y50W changes to hipposin did not cause qualitative changes in
antimicrobial activity or membrane permeabilization behavior (data
not shown). Thus, all data for the full-length hipposin sequence in this
paper were collected for the S1K/A14W/F25W/Y50W peptide, which
we refer to as HipABC. These substitutions were made in the hipposin
fragments used in our modular analysis (Table 1). Table 1 notes how
these sequences compare to the physiological sequences of hipposin,
buforin I (BF1), buforin II (BF2) and parasin. Notably, the HipB region
that was analogous to buforin II (BF2) included the F10W mutation
that has been widely used in previous studies and shown to have analo-
gous properties to the wildtype peptide [15,16,18,20,21].

Peptides were synthesized both with and without an N-terminally
linked biotin at N95% purity by NeoBioSci (Cambridge, MA). All peptide
Fig. 1. Schematic showing the primary sequence relationship between hipposin and its
naturally occurring fragments, parasin, buforin II (BF2) and buforin I (BF1). Synthetic
portions of hipposin considered in this study, including the C-terminal HipC domain, are
also shown.
stocks were quantitated from tryptophan absorbance using the average
of at least three A280 nm measurements.

2.2. Radial diffusion assays

The radial diffusion assay was performed using Escherichia coli
(ATCC #25922) and B. subtilis (ATCC #6051) in a manner analogous to
previous studies [22]. Cells picked from frozen stocks were incubated
overnight at 37 °C in 30% w/v tryptic soy broth. The overnight culture
is then diluted 1:500 or 1:1000 in fresh tryptic-soy broth (TSB) and
grown for 2.5 h. Bacteria were pelleted via centrifugation at 880 ×g for
10 min at 4 °C, washed once with 10 mM phosphate buffer (pH 7.4),
then pelleted again and resuspended. 4 × 106 CFU of bacteria are
mixed with 10 mL of molten agarose gel (10 mM phosphate, 1% TSB
v/v, 1% agarose w/v, pH 7.4) and allowed to solidify on a petri dish.
Wells were formed in the solid media using a pipette attached to a
bleach trap, 2 μL of 1 × 10−4 M peptide solution was added to each
well, and plates were incubated at 37 °C for 3 h. 10 mL of overlay gel
(30% w/v TSB, 1% w/v agarose) was poured over the underlay gel and
incubated for 12–18 h at 37 °C. The diameter of bacterial clearing
around each well was measured at 7× magnification. The clearance
around a well containing only water was 1 mm. Data were collected
from at least three independent plates.

2.3. MTT assay

Eukaryotic cell cytotoxicity was determined by the MTT assay as
described by Wu et al. [23]. WI-38 human fibroblast cells were seeded
in 96-well plates at 3 × 103 cells/well and incubated overnight in
RPMImedia lacking phenol red at 37 °C and 5% CO2. Cells were then in-
cubatedwith 1 μMpeptide solutions for 48 h. Each peptide solutionwas
tested in quadruplicate. Cell viability was measured by introducing the
3-(4,5-dimethylthiazolyl-2)-2, 5-diphenyltetrazoliumbromide (MTT)
indicator (0.5 mg/mL) (Invitrogen, Carlsbad, CA) into treated cell solu-
tions for 4 h. MTT is reduced to a purple formazan salt by metabolically
active cells; formazan crystals were dissolved after 4 h by an addition of
5% sodium dodecyl sulfate (SDS) (Sigma Aldrich), and mixtures were
incubated overnight. Absorbance was read at 570 nm on a Molecular
Devices SpectraMax M3 microtiter plate reader (Sunnyvale, CA).
Percent cell viability was calculated as the ratio of the A570 nm of cells
treated with peptide solutions divided by the A570 nm of cells treated
withwater. Staurosporine, a known cytotoxic agent, was used as a com-
parison for negative growth. Viability measurements reported are aver-
aged over at least seven samples collected in at least two independent
experiments.

2.4. Propidium iodide uptake assay

E. coli (ATCC #25922) bacteria picked from frozen stockwere grown
overnight in TSB media (30% w/v TSB) at 37 °C. The overnight culture
was diluted 1:1000 in fresh TSB and allowed to grow 2.5 h to mid-log
phase. Bacteria were pelleted via centrifuge at 880 ×g for 10 min at
4 °C, washed once with 10 mM phosphate buffer (pH 7.4), pelleted
again, and resuspended to an optical density of 0.5. Propidium iodide
was added to a concentration of 20 μg/mL and the system was allowed
to equilibrate. PI/DNA complexation was measured at an excitation of
535 nm and emission of 617 nm on a Varian Cary Eclipse fluorescence
spectrophotometer (Agilent Technologies, Santa Clara, CA). Following
equilibration, peptide solution was added to a concentration of 2 μM
and fluorescence was monitored until new equilibrium was reached.
Addition of an equal volume of water without peptide was used as a
negative control. Increase in fluorescence due to the peptide's presence
wasmeasured by comparing the fluorescence 5 min after peptide addi-
tion to the averaged fluorescence during the oneminute before peptide
addition. Averages of at least three independent experiments are
reported.



Table 1
Amino acid sequences of peptides used in this study. The relationship to physiologically
observed peptides is given in parentheses where relevant.

Peptide Sequence

HipABC (Hipposin S1K/
A14W/F25W/Y50W)

KGRGKTGGKARAKWKTRSSRAGLQWPVGRVHRLLRKGNY
AHRVGAGAPVWL

HipBC TRSSRAGLQWPVGRVHRLLRKGNYAHRVGAGAPVWL
HipC GNYAHRVGAGAPVWL
HipB (BF2 F10W) TRSSRAGLQWPVGRVHRLLRK
HipAB (BF1 A1K/A14W/
F25W)

KGRGKQGGKVRAKWKTRSSRAGLQWPVGRVHRLLRKGNY
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2.5. Confocal microscopy imaging of bacteria

Peptide translocation into E. coli (Top10 containing a pET45b plas-
mid for ampicillin resistance) was visualized as described by Park
et al. [19]. Overnight cultures from frozen bacterial stocks were diluted
1:100 in TSB liquid media and allowed to grow to mid-logarithmic
phase. Bacteria were then pelleted by centrifugation at approximately
880 ×g and resuspended in sterile 10 mM sodium phosphate buffer
(pH 7.4). Bacterial cells at a concentration of 107 CFU/mLwere exposed
to 4 μg/mL biotinylated peptide solutions for 30 min at 37 °C. Cell/
peptide solutions were then placed on a poly-L-lysine coated glass
slide and treated with 0.066% Triton-X for 1–2 min. Biotinylated pep-
tides were rendered visible by the addition of streptavidin conjugated
with AlexaFluor 488 (Invitrogen) at a final concentration of 5 μg/mL.
Cells were visualized with a Leica TCS SP5 laser scanning confocal mi-
croscope with excitation at 488 nm by an argon laser at 20% output.
All 8-bit 512 × 512 images represent the average of six scans at 63×
magnification (Leica Plan-Apochromat objective; numerical aperture
1.40). Composite images were produced by Leica LAS AF software
(Buffalo Grove, IL). Z-stacks of 0.07–0.09 μm thickness were analyzed
using ImageJ image analysis software (NIH) in conjunction with the
LOCI BioFormats plug-in (LOCI, Madison, WI). Unlabeled images were
evaluated by outside individuals for the location of peptidefluorescence
within the cell to prevent bias in the reading of the data.
Table 2
Activity of peptides against bacterial and eukaryotic cells. Antibacterial activity is shownas
diameters of clearance (in mm) from radial diffusion assays. Cytotoxicity against
eukaryotic cells is shown as the percent viability of WI-38 fibroblasts cells exposed to
1 μM of peptide measured using an MTT assay. Error is expressed as standard deviation.

Peptide Radial diffusion assay data MTT % viability

E. coli B. subtilis WI-38

HipABC 7.5 ± 0.4 8.5 ± 1.2 94 ± 7
HipBC 7.3 ± 0.2 6.5 ± 0.3 91 ± 5
HipC 1.1 ± 0.1 1.3 ± 0.1 88 ± 7
HipB 9.1 ± 0.7 7.2 ± 0.6 91 ± 6
HipAB 8.7 ± 0.4 7.7 ± 1.2 94 ± 5
2.6. Lipid vesicle membrane translocation assay

Measurement of translocation of HipC into lipid vesicles was per-
formed using the technique proposed by Matsuzaki and co-workers
[16,18] as implemented in Spinella et al. [24]. Phospholipids dissolved
in chloroform were obtained from Avanti Polar Lipids (Alabaster, AL).
Mixtures of phosphtidylcholine (POPC), phosphatidylglycerol (POPG),
and 5-dimethylaminonapthlene-1-sulfonyl phosphatidylethanolamine
(DNS-POPE) were made in a 75:20:5 ratio. Chloroform was evaporated
using a nitrogen gas stream. Lipid cakes were desiccated overnight. The
vesicles were rehydrated either in HEPES buffer (10mMHEPES, 45mM
NaCl, 1 mM EDTA, pH 7.4) containing 0.2 mM porcine trypsin (Sigma
Aldrich, St. Louis,MO) for the experimental condition or in HEPES buffer
containing both 0.2 mM porcine trypsin as well as 2.0 mM Bowman–
Birk trypsin inhibitor (BBI) (Sigma Aldrich) for the control. Vesicles
were then subjected to 5 freeze-thaw cycles before extrusion through
a nucleopore track etch membrane with 0.1 μm pores (Whatman)
to generate uniform vesicle size. To remove phosphorus salts from
control vesicles, an estimated 0.3 μM of control vesicles were spun at
13,000 rpm for ten minutes three times in Pall Corporation Nanosep
10 K OmegaTM microcentrifuge tubes and rinsed with HEPES buffer
after each spin. Vesicle concentration was determined by measuring
phosphorus content in triplicate using a standard curve of phosphate
solutions following the previously described procedure (http://www.
avantilipids.com/index.php?%20option=com_content&view=article
&id=1686&Itemid=405).

Quantitated vesicleswere then diluted to 0.25mM in a solutionwith
trypsin inhibitor at ten times the trypsin concentration. 2 μL of peptides
prepared at 2.5 × 104 M was added to each well of an opaque 96-well
plates (VWR, Radnor, PA). 198 μL of vesicle solution was added to
each well, and fluorescence was monitored for 25 min with an excita-
tion wavelength of 280 nm and an emission wavelength of 525 nm,
using a SpectraMax M3 multi-mode microplate reader (Molecular
Devices, Sunnyvale, CA). The final average fluorescence value (Favg) for
both control and experimental conditions was calculated by dividing
the average fluorescence values during the last minute of the experi-
ment by the fluorescence 10 s after combining peptide and vesicle
samples (F0). The F0 was taken at 10 s to reduce artifacts in the fluores-
cence signal that can occur immediately after mixing in the sample. A
quantitative translocation ratio (TR) was calculated for the peptide by
dividing the Favg for the control vesicles by the Favg for the experimental
vesicles. Six replicates of this experiment were performed for HipC
using three independent preparations of experimental and control
vesicles.

3. Results and discussion

3.1. Hipposin appears to kill bacteria through membrane permeabilization

As observed for hipposin [10], HipABC is active against both Gram-
negative (E. coli) and Gram-positive (B. subtilis) bacteria (Table 2).
This activity appears selective for bacteria over eukaryotic cells, as fibro-
blast cells exposed to a comparatively high (1 μM) concentration of
HipABC remain viable (Table 2).

HipABC is observed to kill bacteria through membrane perme-
abilization. Bacterial cells exposed to HipABC in the presence of
propidium iodide (PI) show dramatically increased fluorescence due
to entry of PI into cells (Fig. 2). Notably, HipABC induced evenmore per-
meabilization thanmagainin under analogous conditions [25], a peptide
often considered a prototypical membrane permeabilizing peptide [26].
Localization of biotinylated HipABC using streptavidin-AlexaFluor
conjugates is observed around the cellular membrane with a relative
lack of fluorescence inside the cell (Fig. 3, Supplemental Fig. 1), echoing
patterns of fluorescence localization in other histone-derived peptides,
such as parasin, that are known to cause permeabilization [8]. We also
noted a significant amount of cellular debris present in cellular samples
treated with HipABC, which likely resulted from cells that had already
been fragmented by the peptide at the time of imaging.

3.2. The N-terminal portion of hipposin analogous to parasin causes
membrane permeabilization

The full hipposin peptide consists of three regions: the N-terminal
parasin domain, the middle buforin II (BF2) domain and the C-terminal
region of unknown function (Fig. 1). In our modular analysis, we have
termed these HipA (N-terminal), HipB (middle) and HipC (C-terminal),
respectively. Since parasin has previously been observed to induce
membrane permeabilization in bacteria [8], we hypothesized that the
HipA region might promote the membrane permeabilization activity of

http://www.avantilipids.com/index.php?%20option=com_content&amp;view=article&amp;id=1686&amp;Itemid=405
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Fig. 2.Membrane permeabilization in E. coli caused by the addition of peptides measured using a propidium iodide uptake assay. A) Representative data for peptides considered in this study.
Data is plotted asfluorescence at a given time after peptide addition relative to the averagefluorescence in theminute before peptidewas added (F/F0). B) Permeabilization results averagedover
multiple trials, reported as a ratio of thefluorescencefiveminutes after peptide addition divided by thefluorescence averaged for theminute before peptidewas added. Average of at least three
trials is shown with variation provided as standard error. Measurements that were significantly different from HipABC at the p b 0.10 (*) and p b 0.05 (**) level are denoted with asterisk.

2231M.E. Bustillo et al. / Biochimica et Biophysica Acta 1838 (2014) 2228–2233
hipposin. To test this hypothesis, we measured the membrane perme-
abilization of a hipposin fragment omitting the parasin region, which
we refer to as HipBC (Table 1).

As expected, HipBC induced very little membrane permeabilization
(Fig. 2). However, despite its inability to disrupt membranes, HipBC
did maintain similar antimicrobial activity to that observed for HipABC
(Table 2). We expect that this behavior resulted from the increased
membrane translocation of HipBC, which was observed to readily
enter cells visualized using confocal microscopy (Fig. 3). Notably,
HipBC was seen inside cells and not only localized at the membranes
as determined when considering z-stack images taken through the
z-plane of cells of interest (Supplemental Fig. 2). The tendency of
HipBC to enter cells is similar to that observed in BF2 (Fig. 3, Supple-
mental Fig. 3).

3.3. The hipposin C-terminal region, HipC, readily enters bacterial cells
without causing cell death

Although the HipA (parasin) and HipB (BF2) sections of hipposin
have been characterized, previous work had not attributed any function
Fig. 3. Composite confocal microscopy images of E. coli after exposure to HipABC, HipBC, HipC,
excited by an argon laser at 488 nm. Composite images created by overlaying individual z-stac
to the C-terminal region of hipposin, HipC. Thus, we were interested in
whether this fragment had any antimicrobial activity or membrane
interactive properties of its own. Radial diffusion assays indicate that
HipC had no activity greater thanwater against either E. coli or B. subtilis
(Table 2). HipC also showed no measurable cytotoxicity against mam-
malian cells (Table 2).

However, despite its lack of activity, confocal microscopy suggests
that HipC readily enters bacterial cells (Fig. 3). Analysis of the z-plane
in HipC-treated bacterial cells demonstrates localization throughout
the cell (Supplemental Fig. 4), indicating an ability to translocate into
cells without causing significant membrane permeabilization, as con-
firmed by propidium iodide uptake assays (Fig. 2). In fact, HipC caused
even less membrane permeabilization than HipB (BF2), and was essen-
tially indistinguishable from the water control in our PI assay.

In order to determine whether HipC requires any cellular receptors
for membrane translocationwe also considered its ability to translocate
into lipid vesicles. These experiments utilized a translocation assay used
previously for BF2 and other HDAPs [16,18,25]. Lipid vesicles containing
trypsin are producedwithmembranes dopedwith dansylated-PE lipids.
The dansylated-PE lipids decorating themembrane have a FRET response
HipB, and HipAB. Biotinylated peptides were visualized with streptavidin-AlexaFluor 488
k slices taken at 0.07–0.1 μm with a six frame-average. Scale bars indicate 2 μm.

image of Fig.�2
image of Fig.�3


Table 3
Translocation of HipC into lipid vesicles compared to histone-
derived antimicrobial peptides (BF2, DesHDAP1 and DesHDAP3)
characterized in previous work [25]. The average translocation
ratios over a minimum of three experiments are expressed as
[(F0/F)control/(F0/F)experimental], with errors expressed as standard
error. Ratios that were significantly different than HipC at
p b 0.10 (*) or p b 0.05 (**) are denoted with asterisk.

Peptide Translocation ratio

HipC 1.02 ± 0.01
BF2 1.07 ± 0.03 (*)
DesHDAP1 1.13 ± 0.03 (**)
DesHDAP3 0.97 ± 0.02 (*)
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when intact peptides associate to the membrane. However, as pep-
tides translocate into the vesicles they are proteolyzed by the encapsu-
lated trypsin, decreasing the FRET response. Degradation of peptides
interacting with vesicles containing inhibited trypsin was examined to
control for incomplete inhibition of trypsin outside experimental vesi-
cles. A decrease in FRET signal in experimental conditions relative to
this control indicates peptide translocation into the vesicle.

Our data are consistent with the entry of HipC into lipid vesicles, as
shown by the decreased FRET response in vesicles containing active
trypsin compared to vesicles with inhibited trypsin (Fig. 4, Table 3). In
particular, the average translocation ratio for HipC (1.02 ± 0.01) is
greater than unity and significantly greater than that of DesHDAP3, a
non-translocating peptide considered in previous studies [25] (Table 3).
However, the translocation ratio of HipC is rather low and significantly
less than that of the previously studied translocating peptides, buforin II
andDesHDAP1 (Table 3) [25]. Thus, the translocation ofHipC into vesicles
appears relativelymodest, particularly compared to its entry into bacteria
(Fig. 3). Nonetheless, the lack of antibacterial activity and low levels of
membrane permeabilization suggest that HipC may represent a promis-
ing peptide for cellular transfection applications.

To evaluate the role of the HipC region on the overall activity of
hipposin, we tested the activity and mechanism of HipAB, which lacks
the HipC region (Table 1). This HipAB peptide is homologous to the
buforin I peptide considered in previous work [9]. HipAB demonstrated
similar activity to HipABC in radial diffusion assays (Table 2), implying
that HipC has relatively little impact on the activity of the larger
hipposin peptide. Consistent with this observation, the presence of the
HipC region in HipABC compared to HipAB generally did not seem to
alter the mechanisms of peptide action. Both peptides caused relatively
large amounts of membrane permeabilization in PI assays, although the
presence of the HipC domain in HipABC appears to inhibit perme-
abilization (Fig. 2). Peptide localization studies suggest similar patterns
of localization to the bacterial membrane for both peptides (Fig. 3,
Supplemental Fig. 5), although the presence of HipC may somewhat
enhance the amount of cellular entry observed for HipABC compared
to HipAB.

4. Conclusions

Despite the initial identification of hipposin as a broadly effective
antimicrobial peptide almost a decade ago [6,10], its mechanism of
action had not been previously characterized. This study shows that
hipposin kills bacteria through a mechanism involving significant
Fig. 4. Representative measurement of HipC translocation into lipid vesicles using an
encapsulated trypsin assay. Peptide was exposed to lipid vesicles containing trypsin.
Data are shown as the FRET signal at 525 nm (black) relative to the initial fluorescent
signal (F/Fo). In the control trace (gray), peptides were exposed to vesicles containing
both trypsin and trypsin inhibitor to control for incomplete inhibition of trypsin outside
the vesicle under experimental conditions. The lower fluorescence for the experimental
condition denotes translocation.
membrane permeabilization. Interestingly, this overall mechanism
arises in a peptide that is made from the combination of two peptides,
parasin (HipA) and BF2 (HipB), that independently operate via different
mechanisms. In the context of hipposin, it appears that the presence of
the permeabilizing HipA domain effectively dictates the mechanism of
the larger peptide. The removal of this domain results in a peptide
(HipBC) that causes less membrane permeabilization and improved
translocation into cells. In fact, the presence of the N-terminal HipA
domain generally appears to increasemembranepermeabilization, as ob-
served for HipABC and HipAB versus the other peptides considered
(Fig. 2). HipABC andHipABalso showed increasedmembrane localization
and less translocation compared to the other peptides (Fig. 3). These
observations are consistent with the overall membrane permeabilizing
mechanism observed in the previous studies of parasin, which is analo-
gous to HipA [8].

This study also identified a novel peptide derived from the
C-terminal region of hipposin, HipC, that translocates across cell mem-
branes without causing significant membrane permeabilization. This
region is not required for translocation in hipposin fragments lacking
HipA, as the HipB fragment can translocate on its own. However, the
presence of HipC does seem to modulate the membrane perme-
abilization properties of the HipA fragment (Fig. 2) and may increase
translocation slightly in HipABC compared to HipAB (Fig. 3). Unlike
BF2, HipC shows no antibacterial activity, and thus bears similarity to
other cell-penetrating peptides, such as Tat or penetratin [27,28]. Future
work should further explore the translocation mechanism of HipC,
particularly in light of its potential applications in systems where anti-
microbial activity would be problematic, such as the introduction of ge-
netic material into bacterial cells.

More generally, this study of hipposin gives potential insight into the
possibility of designing custom antimicrobial peptides in a modular
fashion by combining peptides with known antimicrobial function.
The combination of different peptides is particularly attractive as the
number of characterized antimicrobial peptides has increased dramati-
cally over the past several years [29]. Previous work has suggested that
some antimicrobial peptides might act synergistically if used in combi-
nations against cells. Some examples of this have utilized “cocktails”
consisting of different peptides, such as tachyplesin and magainin [30].
Other studies have proposed using hybrid chimeric peptides as a way
of enhancing activity. For example, researchers recently found that chi-
meric peptides combining lactoferricin and lactoferrin [31] or the
human β-defensins 2 and 3 (HBD2 and HBD3) had increased activity
relative to an equimolar mixture of its two components [32]. These
previous studies have focused on combining peptides that operate via
a permeabilizingmechanism, although an increasing number of antimi-
crobial peptides have been identified that operate via mechanisms
other than membrane permeabilization. Other research has focused
on combining cell-penetrating peptides, such as TAT, with other bioac-
tive moieties that would promote release from endosomes upon cell
entry [33,34].

Our results provide a useful starting point for systematically consid-
ering the relationship betweenmodules in a larger peptide. A simplistic
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reading of the results in this study could lead to the inference that
combining a permeabilizing peptide “module” and translocating
peptide “module” will lead to a chimeric peptide that operates via a
permeabilizingmechanism. However, the relative ordering and spacing
of different modules in a chimeric protein may impact the mechanism
of designed peptides in more subtle ways. Thus, more systematic
considerations of different peptide combinations will be necessary to
determine how much this relationship can be generalized to other
peptides.
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