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We have constructed a large field N-flation model in the supergravity framework. In this simple set-up, 
N fields collectively drive inflation where each field traverses sub-Planckian field values. This has been 
realised with a generalisation of the single-field chaotic inflation in supergravity. Interestingly, despite 
the presence of the field interactions, the dynamics can be described in terms of an effective single field. 
The observable predictions of our model, i.e., tensor-to-scalar ratio r and scalar spectral index ns , are akin 
to the chaotic inflation.
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1. Introduction

Inflation is a paradigm in cosmology that has received much of 
its support from current observations [1]. It solves few problems 
of standard Big Bang cosmology, and is able to give an explanation 
of the structure formation in the Universe. The scalar perturbations 
responsible for the large scale structures of the Universe are gener-
ated due to the quantum fluctuations of the inflaton field, and the 
tensor perturbations originate from the fluctuations of the spin-2 
graviton field. The tensor amplitude induces B-mode polarisation 
in the CMB temperature anisotropy which is considered to be a 
unique signature of inflation. In this year, the BICEP II team has 
announced the first ‘tentative’ detection of primordial B-mode po-
larisation corresponding to a tensor-to-scalar ratio r ∼ 0.15 [2].

Assuming that the source of the B-mode polarisation is primor-
dial, the detected value of r points to a scale of inflation that is 
close to the GUT scale of around 1016 GeV. Following Lyth bound, 
it also indicates super-Planckian field excursion (�φ > MPl) during 
inflation [3]. First of all, having super-Planckian field range with 
a cut-off scale of Planck mass is difficult to accommodate in the 
usual notion of effective quantum field theory. Secondly, it is turn-
ing out very difficult, if not impossible, to arrange large field range 
in the ultraviolet complete theory like string theory. Many notable 
attempts have been made though [4–9].

Another complimentary approach is to find special direction in 
the multi-dimensional field space where a particular combination 
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of the field directions is flat enough to allow super-Planckian vev. 
In the case of two-field case, this has been realised in ‘aligned in-
flation’ where two axion fields have been used [10–15]. In the case 
of N-flation, many fields contribute to drive inflation where each 
field moves over sub-Planckian vev [16]. Recently, attempts have 
been made in incorporating N-flation in the string theory set-up 
[17–19].

In this work, we propose a model of N-flation in the super-
gravity (SUGRA) framework, where each field has a quadratic mass 
term potential of chaotic inflation. This is a simple generalisation 
of single-field chaotic inflation scenario in SUGRA [20]. Consider-
ing that the individual field range is sub-Planckian, the effective 
description in SUGRA is well under control as long as we demand 
that the imposed symmetry is not broken by the ultraviolet de-
grees of freedoms. One important aspect of our construction would 
be that even though the fields have interactions among them-
selves, in the cosmological background they collectively behave 
like single degree of freedom without any interactions. This is true 
only because of the particular nature of the interactions dictated 
by the proposed form the model.

After briefly discussing the basic points of inflation in SUGRA, 
and N-flation in the next two sections, we work out our proposal 
for two-field case in Section 4. N-field generalisation would be 
done in Section 4, followed by the conclusion and discussion at 
the end.

2. Chaotic inflation in SUGRA

In this section we will discuss inflationary scalar potential in 
the SUGRA framework, and as an example, we will outline how 
chaotic inflation can be realised in SUGRA [20]. Our N-flation
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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construction is crucially dependent on this elegant proposal, and 
in fact it is a simple generalisation to N fields.

Being very simplistic in the form of a potential with a mass 
term, chaotic inflation is an attractive model amongst the zoo of 
inflationary models. It has also gained some tentative observa-
tional support after the release of BICEP II data that hints towards 
a tensor-to-scalar ratio r ∼ 0.1 [2]. Using Lyth bound [3]

�φ = O(1) ×
(

r

0.01

)1/2

, (1)

the data immediately requires super-Planckian field excursion dur-
ing inflation. Now, the super-Planckian field excursion is a natural 
requirement for chaotic inflationary potential V (φ) = 1

2 m2φ2 for 
slow-roll parameters being small. Thus embedding chaotic inflation 
in any particle physics set-up is of paramount importance. Here we 
briefly review how chaotic inflation potential emerges naturally in 
SUGRA.

A model in N = 1 SUGRA is obtained by specifying two quan-
tities, Kähler potential K (Φ, Φ̄) and superpotential W (Φ), where 
W is a holomorphic function of fields Φ , and K is a real func-
tion [21]. Inflaton φ is a member of the complex chiral superfield 
Φ , and for simplicity we are assuming inflaton to be singlet under 
relevant gauge group. This allows us not to worry about D-term
contribution to the scalar potential. The F-term part of the scalar 
potential is

V = eK (
K i j̄ Di W D j̄ W̄ − 3|W |2), (2)

where K i j̄ is the inverse of the Kähler metric Ki j̄ = ∂2 K

∂Φi∂Φ̄ j̄
and 

Di W = ∂W
∂Φi

+ W ∂ K
∂Φi

. The kinetic term in the Lagrangian of the 
scalar field is

LK .E. = K i j̄(∂μΦi)
(
∂μΦ̄ j̄

)
. (3)

Here we worked in Planck units where the reduced Planck mass 
MPl � 2.4 × 1018 GeV is set to be unity. For the canonical choice 
of K = ΦΦ̄ , the F-term potential V ∝ e|Φ|2 , and its slope is too 
steep to sustain the flatness required for chaotic inflation. This is 
the so-called η-problem in F-term inflation [22–24]. The elegant 
solution was proposed in [20] where the authors introduced a shift 
symmetry to the Kähler potential of the complex chiral superfield 
Φ , under which Φ → Φ + iC , where C is some real constant. This 
restricts the form of K to be a function of Re(Φ) only. In this case, 
Im(Φ) does not appear in the exponential, and it can be identified 
as inflaton free of η-problem.1

In [20] the following superpotential and Kähler potential were
proposed

W = mXΦ, K = X X̄ − ζ(X X̄)2 − 1

2
(Φ ± Φ̄)2, (4)

where Φ contains the inflaton field and X is an auxiliary chiral 
superfield that remains at zero vev during inflation. The superpo-
tential breaks the shift symmetry imposed in the Kähler potential, 
and thus gives rise to the tree-level mass term via the F-term of 
the auxiliary field X . In other words, supersymmetry is broken 
along the X-direction (D X W �= 0) and it supplies the necessary 
potential energy to drive inflation. Here −ζ(X X̄)2 term is added 
to render the mass of the X field being greater than the Hubble 
scale. For ζ = 0, the mass of the X field is comparable to the mass 
of the inflaton. So there will be inflationary fluctuations of X dur-
ing inflation and hence the dynamics cannot be regulated with 

1 Heisenberg symmetry can also be imposed in solving η-problem [31,29,30].
one field. The above construction is characterised by Winf = 0, 
D X Winf �= 0, DΦ W = 0 during inflation, and it has been gener-
alised in the case of hybrid inflation scenario in the framework of 
tribrid inflation [32–34].

From the point of effective SUGRA theory, this set-up is com-
plete in a sense that with the assumption of shift symmetry break-
ing term in the superpotential is small, its corrections (potentially 
shift symmetry breaking) to the Kähler potential are going to be 
also parametrically small. Now the smallness of the symmetry 
breaking parameter m is ensured by the scalar amplitude of den-
sity fluctuations. This fixes the value of m ∼ 10−5 MPl . Whether the 
symmetry breaking is under control in any UV complete theory 
like string theory is an open issue, and it requires the understand-
ing of the dynamics of stringy degrees of freedom.

Even though the construction is elegant, the difficulties behind 
the description of large field inflation with one single field is prob-
lematic from the point of view of purely effective field theories. In 
the context of effective field theory, the inflation potential can be 
written in the following form

V eff = V (φ) +
∞∑

n=0

cn V (φ)
φn+1

Mn+1
Pl

, (5)

where cn ’s are dimensionless coefficients of order one. Since the 
inflaton has to traverse over a trans-Planckian distance in the field 
space during the time inflation takes place, i.e., �φ > MPl , each 
term in the summation contributes equally well to the potential 
unless its coefficients cn ’s are finely tuned. So large field inflation 
becomes sensitive to an infinite number of such terms. If we want 
to predict the dynamics, we necessarily need to know all these 
terms. Note that in the set-up of Eq. (4), these higher-dimensional
operators are under control due to the imposed symmetry and its 
soft breaking in the superpotential. In the next section, we will 
discuss how the problem of super-Planckian vev of a single field 
can be evaded in the set-up of N-flation by distributing the job of 
driving inflation in N fields [16].

3. N-flation

Even though the formulation of chaotic inflation in SUGRA is 
well understood, the tentative observations require the field asso-
ciated with the single inflaton to be super-Planckian. Thus con-
structing a model of inflation with more than one field is worth 
formulating where the job of driving inflation is distributed among 
many φi fields. Each φi satisfies �φi < MPl . Under this condition 
the potential for an individual field can be expanded in the ef-
fective field theory framework. As we will see, in the proposed 
N-flation scenario, the total field displacement is now

�φ2
total =

N∑
i=1

�φ2
i > MPl. (6)

The actual idea of N-flation was first proposed by Dimopou-
los et al. [16], and the basic point was inflaton is a collection of 
N number of fields that drives inflation through assisted inflation 
mechanism [25–27], rather than a single field. Here each field φ
has a field excursion smaller than Planck scale. Individual fields 
are not capable of producing the slow-roll for an appreciable num-
ber of e-folds, but a collection of such fields produces sufficient 
e-folds to solve the cosmological problem. So the dynamics is de-
termined collectively by N such fields. The motivation was from 
the standpoint of particle physics where the existence of scalar 
field is ubiquitous. In the original work of [16], the individual field 
was axion having periodic potential. Around the bottom of the po-
tential where inflation happens, the potential was written as the 
sum of potentials for each individual field, i.e.,
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V (φi) =
N∑

i=1

V i(φi) =
N∑

i=1

1

2
m2φ2

i . (7)

So here each field φi is moving under the potential m2φ2
i /2. It was 

assumed that the cross couplings between the fields are negligible. 
Considering an initial configuration where each field is displaced 
from the minimum of the potential by a sub-Planckian displace-
ment 〈φn0〉 = αn MPl , the total displacement in field space in polar 
coordinate is

ρ2 =
∑

i

φ2
i = √

NαMPl. (8)

In terms of the variable ρ , the effective Lagrangian density is

L � (∂ρ)2 + ρ2(∂Ω)2 − 1

2
m2ρ2. (9)

Now the angular degree of freedom Ω has no potential energy, and 
its equation of state parameter ωΩ = 1. Thus its energy density 
falls as a−6, and its contribution becomes negligible soon com-
pared to the radial field ρ . Effectively, the radial variable ρ will 
act as an inflaton with its single-field dynamics.

Our objective is to construct a model of N-flation in the frame-
work of SUGRA. In our simple framework, the fields are going to 
have cross couplings among themselves. But because of the partic-
ular nature of the coupling that automatically arises in the set-up, 
the effective field dynamics in the cosmological background is sim-
ilar to the single field. In our case, the potential will be like

V (φ1, . . . , φN) =
N∑

i=1

V i(φi) + interactions. (10)

We will first discuss a simple case where the inflaton is a collec-
tion of a pair of fields. In this case, we will solve the dynamics 
numerically to show that the field trajectory in the slow-roll at-
tractor is a straight line. Then we will go for the generalisation 
with N fields.

4. N-flation in SUGRA

We present our main result in this section. As a toy example we 
first analyse the two-field case, where trivial redefinition of fields 
can make the dynamics effectively single field. We also analyse 
the background dynamics numerically to show how the attractor 
solution emerges for the effective single-field case. This shows that 
the dynamics is governed by one degree of freedom. Subsequently, 
we do the generalisation for N fields, where we analytically prove 
how it can be reduced to the single field.

4.1. Two-field case

Let us begin with the following choice of the superpotential

W = mX(Φ1 + Φ2). (11)

Here each Φ is a chiral superfield which contains one singlet in-
flaton field. The masses of the fields are taken to be degenerate for 
simplicity. X is another chiral superfield that is needed to provide 
the vacuum energy via its non-zero F-term. The Kähler potential is 
taken to be

K = X X − ζ(X X)2 − 1

2
(Φ1 − Φ1)

2 − 1

2
(Φ2 − Φ2)

2. (12)

Here −ζ(X X)2 term is added for the stabilisation of X field as 
mentioned in detail in Section 2. This will ensure that the X field 
gains a mass larger than the inflaton mass during inflation and 
hence it will not disturb the inflationary dynamics. The Kähler po-
tential respects the shift symmetry for the inflaton fields: Φi →
Φi + iαi . The real components of those fields can be identified as 
inflaton fields. This is to avoid the usual η-problem.

Let us now decompose the complex superfields Φ1 and Φ2 into 
a pair of real scalar fields

Φ1 = 1√
2
(φ + iβ), Φ2 = 1√

2
(χ + iσ). (13)

The masses for these fields can be calculated using the F-term 
SUGRA expression given in Eq. (2). The masses-squared of the 
field X (both real and imaginary parts) is given by

m2
X = 12ζ H2 + 2m2. (14)

So for positive ζ �= 0, mX > O(H), and it decouples from the in-
flationary dynamics in settling to its minima at X = 0. Now in 
the trajectory of X = 0, the mass-squared of the fields Im Φ1 and 
ImΦ2 are

m2
β = m2(1 + 2σ 2) + 6H2, m2

σ = m2(1 + 2β2) + 6H2. (15)

Therefore, during inflation they are also stabilised at β = σ = 0. 
We have checked the stabilisation numerically by solving the dy-
namics.

There are two inflaton fields φ and χ whose potential do not 
contain the eK factor of Eq. (2) and thereby evade the η-problem. 
Along the inflationary trajectory X = β = σ = 0, the scalar poten-
tial as computed from Eq. (2) looks like

V (φ,χ) = 1

2
m2φ2 + 1

2
m2χ2 + m2φχ. (16)

Clearly, this potential is a sum of two chaotic inflation potentials
together with an interaction term as written earlier in Eq. (10). At 
this point, we draw particular attention to the nature of the cou-
pling which depends on each field linearly. Including the kinetic 
terms, the Lagrangian density for the inflaton fields is given by

L = (∂μφ)
(
∂μφ

) + (∂μχ)
(
∂μχ

) − V (φ,χ), (17)

where V (φ, χ) is given by Eq. (16).
The above Lagrangian can be easily casted in a more convenient 

form by defining two new fields

ϕ1 = 1√
2
(φ + χ), ϕ2 = 1√

2
(φ − χ), (18)

and in terms of these two fields, the Lagrangian density can be 
written as

L = (∂ϕ1)
2 + (∂ϕ2)

2 − 1

2
(
√

2m)2ϕ2
1 . (19)

Here one degree of freedom ϕ1 is massive while the other one 
ϕ2 is massless. In the two-dimensional field space, there is a flat 
direction ϕ2 along which the potential vanishes. So the equation 
of state parameter ω = 1 for ϕ2. Thus its associated energy density 
redshifts very quickly and becomes cosmologically irrelevant,

ρϕ2 ∝ a−3(1+ωϕ2 ) ∝ a−6. (20)

On the other hand, ϕ1 direction has a chaotic inflation potential 
that can drive inflation. The total field variation �ϕ1 ∼ �φ + �χ . 
It is important to note that this is crucially different from the 
original N-flation set-up, where for two-field case the effective dis-
placement of the radial field direction is always positive �ϕ2

1 ∼
�φ2 + �χ2 [16]. In our case, this is not necessarily true, and we 
consider this point as one drawback of our set-up. In our set-up,
the effective displacement of the field is dependent on the initial 
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Fig. 1. Field space plots for three different boundary conditions. In the inset, we 
show the evolution of the field for single trajectory near its minima. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.)

field configurations. At this point, we note that reduction of the 
potential with coupling term into an effective single-field case is 
possible only for the m2φχ coupling. This is no longer true for 
φ2χ2 coupling where it is evident that field trajectory is curved in 
general, and cannot be described by one degree of freedom [35].

In Fig. 1, we show the field space plot of this simple set-up. 
We have analysed three cases that correspond to three different 
initial boundary conditions to elucidate the nature of the attractor 
behaviour in this case. As we see the attractor solutions in the 
field space are straight lines. Here each field satisfies the same 
Friedmann equation. During slow-roll of φ and χ the field dis-
placements for φ will be proportional to the field displacement 
for χ in the phase space, i.e., �φ ∝ �χ in same time interval. So 
φ = χ + c will be the attractor solution, where c is a constant. 
In the field space this will be reflected in straight line behaviour 
which is what we obtained in Fig. 1.

Now the potential can be written as V (φ, χ) = 1
2 m2(φ + χ)2. 

The minimum of this potential is not a single point but a line 
whose equation is φ + χ = 0. This equation is satisfied by many 
field points (φ, χ). The central plot (red) in Fig. 1 corresponds to 
the initial conditions φ0 = χ0 = 4MPl and φ̇0 = φ̇SR and χ̇0 = χ̇SR . 
In this case, equation of minima is 2φ = 0 or 2χ = 0. So minimum
of V (φ, χ) is at the origin. That is why the central plot passes 
through the origin. Now we keep the former initial condition in-
tact and change the later to φ̇0 �= φ̇SR and χ̇0 �= χ̇SR . Then two cases 
may appear: one is φ̇0 < χ̇0 (purple) and the other is φ̇0 > χ̇0 (or-
ange). For the first case (shown in purple) the trajectory is initially 
curved and then parallel to the central straight line (red). The rea-
son for this is that as we have started with a different φ̇ so it will 
first meet the attractor when it slow rolls and then its subsequent 
evolution in the phase space is similar to the case of a single-field
chaotic inflation. So is the case with χ̇ . But as at t = 0 we have 
given different initial values to φ̇ and χ̇ , the manner in which both 
φ̇ and χ̇ converge to their respective attractor solution is not the 
same. This is manifested in the curvature of the purple coloured 
Fig. 2. Effective potential showing the joint evolution of fields φ and χ . (For inter-
pretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.)

plot. The explanation is same for the second case φ̇0 > χ̇0 (orange) 
too as the initial condition is just the opposite of the first. Near 
the lower left corner of Fig. 1 there is a little thick portion in each 
of these lines. This is where the fields oscillate around the minima 
of V . The minimum is different for three lines as explained ear-
lier. The behaviour of the fields near the minima of the potential 
is shown in the small box at the lower right corner in this figure. 
This represents the oscillatory part of the field evolution.

Fig. 2 is a 3D plot that shows the combined evolution of the 
fields φ and χ in the effective potential V (φ, χ). The field tra-
jectories of Fig. 1 is shown on the potential. Basically Fig. 1 is 
a two-dimensional projection of Fig. 2 in φ–χ plane. The dot-
ted black line represents the minima of the potential. Two addi-
tional field trajectories are shown in Fig. 2 for φ0 > χ0. Blue line 
corresponds to the initial condition φ̇0 = φ̇SR and χ̇0 = χ̇SR and 
green line corresponds to the condition φ̇0 > χ̇0. All this family of 
straight lines depicts the attractor behaviour. In summary, we note 
that φ = χ + constant are attractor solutions, and even if the field 
has non-slow-roll initial conditions, it reaches the attractor solu-
tion quickly and follows the straight line trajectory in showing its 
effective one degree of freedom.

4.2. N-field generalisation

Now we are going to extend our formalism for N-field config-
uration in N = 1 SUGRA. Here the involvement of N-fields share 
among themselves the complete task of producing super-Planckian
field excursion during inflation. We propose the following super-
potential

W = mX
N∑

i=1

Φi, (21)

where {Φi}’s are the set of complex chiral superfields and i ∈ I. 
Each Φi contributes one inflaton. The Kähler potential is

K = (X X̄) − ζ(X X̄)2 − 1

2

N∑
i=1

(Φi − Φ̄i)
2. (22)

Shift symmetry is satisfied by every chiral field, i.e., Φi → Φi + iC , 
∀i, C is real constant. Now each complex Φi can be decomposed 
into a real and imaginary parts like in two-field case. Then along 
the direction of inflation X = ImΦ1 = ImΦ2 = . . . = ImΦN = 0. 
The scalar potential in this case takes the form
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V = 1

2
m2

(
N∑

i=1

φi

)2

(23)

= 1

2
m2

N∑
i=1

φ2
i + two-field interaction, (24)

where φi = ReΦi , ∀i. Masses of the fields are degenerate. Now we 
will find an orthogonal combination of Φi ’s such that the potential 
becomes a single-field potential.

Let us define a vector,

� =

⎛
⎜⎜⎝

φ1
φ2
...

φN

⎞
⎟⎟⎠ . (25)

Here the set of basis vectors {ei} is

|e1〉 =

⎛
⎜⎜⎜⎜⎝

1
0
0
...

0

⎞
⎟⎟⎟⎟⎠ , |e2〉 =

⎛
⎜⎜⎜⎜⎝

0
1
0
...

0

⎞
⎟⎟⎟⎟⎠ ,

|e3〉 =

⎛
⎜⎜⎜⎜⎝

0
0
1
...

0

⎞
⎟⎟⎟⎟⎠ , . . . , |eN〉 =

⎛
⎜⎜⎜⎜⎝

0
0
0
...

1

⎞
⎟⎟⎟⎟⎠ .

Let us move to a different set of basis vectors {e′
i}. With respect 

to this new basis vector, the components of � will also change 
accordingly. Thus we can write

� = φi|ei〉 = ψ j
∣∣e′

j

〉
. (26)

The old basis is related to new basis by∣∣e′
i

〉 = Tij|e j〉, (27)

Tij = 〈
e j

∣∣e′
i

〉
so � = φi T

−1
i j︸ ︷︷ ︸

∣∣e′
j

〉
. (28)

Comparing Eqs. (26) and (28), we find

ψ j = φiT
−1
ij . (29)

As we aim at reducing the N-field Lagrangian density into a single-
field Lagrangian density, so we define

ψ1 = 1√
N

(φ1 + φ2 + . . . + φN). (30)

From Eq. (29)

ψ1 = T −1
11 φ1 + T −1

21 φ2 + . . . + T −1
N1 φN . (31)

So,

T −1
11 = T −1

21 = T −1
31 = . . . = T −1

N1 = 1√
N

. (32)

But as Tij is an orthogonal matrix, i.e., T −1
i j = T ji = T T

i j , so, T11 =
T12 = . . . = T1N = 1√

N
. Now we obtain from Eq. (27)

∣∣e′
1

〉 = 1√
N

(|e1〉 + |e2〉 + . . . + eN〉) = 1√
N

⎛
⎜⎜⎝

1
1
...

⎞
⎟⎟⎠ . (33)
1

Now by Gram–Schmidt process the other orthonormal basis vec-
tors can be found out and they are∣∣e′

2

〉 = 1√
〈e′

2|e′
2〉

(
|e2〉 − 〈e′

1|e2〉
〈e′

1|e′
1〉

∣∣e′
1

〉)
,

∣∣e′
3

〉 = 1√
〈e′

3|e′
3〉

(
|e3〉 − 〈e′

1|e3〉
〈e′

1|e′
1〉

∣∣e′
1

〉 − 〈e′
2|e3〉

〈e′
2|e′

2〉
∣∣e′

2

〉)
,

. . .

In general,

∣∣e′
N

〉 = 1√
〈e′

N |e′
N〉

(
|eN〉 −

N−1∑
i=1

〈e′
i |eN〉

〈e′
i |e′

i〉
∣∣e′

i

〉)
.

With respect to this new basis {e′
i}, the new components ψi ’s can 

be found out using Eqs. (29) and (27). The Lagrangian density is 
therefore

L =
N∑

i=1

(∂ψi)
2 − 1

2
(
√

Nm)2ψ2
1 . (34)

Thus our method also worked successfully for N-field configura-
tion. Here we see from Eq. (34) that all fields ψi , where i ∈ [2, N], 
other than ψ1, have no potential energy term. So, they will be eas-
ily overthrown from the dynamics since their energy density falls 
faster than that of ψ1. So, again

Leff = (∂ψ1)
2 − 1

2
(
√

Nm)2ψ2
1 . (35)

The interaction term, which initially appeared in the expression 
of the F-term scalar potential, does not affect the evolution of ψ1. 
Only the mass of ψ1 field is enhanced by a factor of 

√
N . Thus the 

effective dynamics in the attractor solution is governed by one de-
gree of freedom ψ1. Here the total field variation in the field space 
�ψ1 ∼ ∑N

i=1 �φi . It is indeed true that the total field variation is 
dependent on the initial field configuration, i.e. initial conditions 
for the individual field. But in the multi-dimensional field space, it 
is expected that the sum can be easily super-Planckian even with 
some cancellations with sub-Planckian field ranges for individual 
field.

5. Conclusion and discussions

With the announcement of tentative observations of large pri-
mordial tensor modes by the BICEP II experiments, there is a surge 
of interest in constructing models of inflation where field excursion 
is super-Planckian. In the single-field set-up, this is problematic 
from the point of view of effective field theory. Therefore, one op-
tion is to use the effects of multiple fields. With tuned parameters, 
two fields can achieve this large field excursion in the context of 
natural inflation [10–12]. Another possibility is the use of multiple 
fields having collective dynamics. In the context of many axions in 
string theory, N-flation was proposed [16]. Even though each axion 
has a periodic potential protected by a perturbative shift symme-
try, the inflation happens at the bottom of the potential where 
the potential can be safely approximated by the chaotic form of 
quadratic potential.

In this work, we propose a simple realisation of N-flation in 
SUGRA. This is based on the generalisation of the set-up of chaotic 
inflation is SUGRA where η-problem is solved by the shift symme-
tries of each individual field. Even though the effective potential 
has couplings between all fields, but the nature of the couplings 
allows us to reduce the potential in effective one degree of free-
dom in the cosmological background. The model has only one free 
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parameter m that controls the breaking of the shift symmetry. Its 
value is fixed by the normalisation of scalar density perturbations. 
For the case of two-field case, we have solved the background dy-
namics numerically to show that the attractor behaviour of the 
solutions, and we have found that the field trajectory is straight 
line on the attractor solution. For the case of N fields, reduction to 
single field has been done analytically. The model has similar pre-
dictions to the single-field chaotic inflation case: tensor-to-scalar
ratio r ∼ 0.1 and ns ∼ 0.96. Obviously, the produced density per-
turbations are of adiabatic type. As we have noted earlier, in our 
set-up �φeff = ∑N

i �φi , showing that the effective field range in 
the multi-dimensional field space is dependent on the initial field 
configurations. We would also like to note that the produced den-
sity perturbations would be adiabatic in nature. This is true be-
cause the effective dynamics can be well described by one degree 
of freedom in the attractor solution.

Our set-up involves N number of fields, and therefore it is 
natural to think that there would be isocurvature modes which 
are highly constrained by the Planck data. It is indeed true that 
the possibility of existence of isocurvature mode arises only when 
there are multiple degrees of freedom that carry energy density 
during inflation and are at the same time lighter than the Hubble 
constant during inflation. But isocurvature mode can be best un-
derstood by analysing the field dynamics in the multi-dimensional
field space [36]. In this case, the isocurvature mode can be as-
sociated with the curvature of the field trajectory. In other way, 
if the field trajectory is one parameter family of lines, the only 
relevant perturbations are adiabatic. This is clear for the simplest 
two-dimensional case. In our case, as we have shown, the effective 
field dynamics is one dimensional in the slow-roll trajectory. Other 
than the analytical proof, it has been shown with the numerical 
analysis for two fields. Therefore, the only source of isocurvature 
modes is when the field has not reached attractor solution. Assum-
ing long epoch of inflation, this initial phase can be neglected. This 
argument is similar to the original work on N-flation [16] where 
the perturbations are only of adiabatic type. In summary, we also 
conclude that in our set-up, only the adiabatic mode is relevant to
density perturbations, and for all practical purposes isocurvature 
perturbations can be neglected.

At the end of inflation, the potential is going to have many 
massless degrees of freedom along which the potential is flat. But 
it is expected that the flat directions are going to be lifted with the 
soft masses related to low energy SUSY breaking. Explicit nature of 
these masses can be understood only when N-flation is considered 
in conjunction with the SUSY breaking sector along the line of [28]. 
We note that the large number of light species in a given theory 
typically makes corrections to the Planck mass proportional to 

√
N , 

and this can potentially increase the effective slow-roll parameters 
spoiling N-flation [16]. To answer this question in a concrete man-
ner, we need a complete ultraviolet theory where these corrections 
can be reliably computed [19]. In the effective SUGRA set-up, this 
question cannot be addressed. Possible resolutions those that are
protected from UV physics have been discussed in [37,38].

In our set-up, we have considered the most simple generalisa-
tion of the single-field chaotic inflation set-up in SUGRA. Other 
generalisations of Eq. (21) are possible. For example, instead of 
having a common auxiliary field X , we may have Xi for each Φi , 
or the mass parameter m can be different. It would be interesting 
to explore the outcome of those constructions. But in this case, it 
is expected that that simple analytical understanding as we have 
done is not possible, and a statistical approach would be more 
suitable [39].

In summary, we have proposed a simple model of N-flation in 
SUGRA where chaotic inflation has been realised. In our set-up 
there are field interactions, but we have shown that the dynam-
ics can be described in terms of an effective single field.

Acknowledgements

K. Das is supported by the fellowship from the Saha Institute of 
Nuclear Physics. K. Dutta is partially supported by the Ramanujan 
Fellowship, and the Max Planck Society–India visiting fellowship. 
We thank Atanu Kumar, Akhilesh Nautiyal and David Nolde for 
useful discussions.

References

[1] V. Mukhanov, Physical Foundations of Cosmology, Cambridge Univ. Press, Cam-
bridge, UK, 2005, 421 pp.

[2] P.A.R. Ade, et al., BICEP2 Collaboration, Detection of B-mode polarization at de-
gree angular scales by BICEP2, Phys. Rev. Lett. 112 (2014) 241101, arXiv:1403.
3985 [astro-ph.CO].

[3] D.H. Lyth, What would we learn by detecting a gravitational wave signal in 
the cosmic microwave background anisotropy?, Phys. Rev. Lett. 78 (1997) 1861, 
arXiv:hep-ph/9606387.

[4] L. McAllister, E. Silverstein, A. Westphal, Gravity waves and linear inflation from 
axion monodromy, Phys. Rev. D 82 (2010) 046003, arXiv:0808.0706 [hep-th].

[5] E. Silverstein, A. Westphal, Monodromy in the CMB: gravity waves and string 
inflation, Phys. Rev. D 78 (2008) 106003, arXiv:0803.3085 [hep-th].

[6] N. Kaloper, L. Sorbo, A natural framework for chaotic inflation, Phys. Rev. Lett. 
102 (2009) 121301, arXiv:0811.1989 [hep-th].

[7] N. Kaloper, A. Lawrence, L. Sorbo, An ignoble approach to large field inflation, 
J. Cosmol. Astropart. Phys. 1103 (2011) 023, arXiv:1101.0026 [hep-th].

[8] L. McAllister, E. Silverstein, A. Westphal, T. Wrase, The powers of monodromy, 
arXiv:1405.3652 [hep-th].

[9] M. Arends, A. Hebecker, K. Heimpel, S.C. Kraus, D. Lust, C. Mayrhofer, C. Schick, 
T. Weigand, D7-brane moduli space in axion monodromy and fluxbrane infla-
tion, Fortschr. Phys. 62 (8) (2014), arXiv:1405.0283 [hep-th].

[10] J.E. Kim, H.P. Nilles, M. Peloso, Completing natural inflation, J. Cosmol. Astro-
part. Phys. 0501 (2005) 005, arXiv:hep-ph/0409138.

[11] R. Kappl, S. Krippendorf, H.P. Nilles, Aligned natural inflation: monodromies of 
two axions, arXiv:1404.7127 [hep-th].

[12] I. Ben-Dayan, F.G. Pedro, A. Westphal, Towards natural inflation in string theory, 
arXiv:1407.2562 [hep-th].

[13] M. Czerny, T. Higaki, F. Takahashi, Multi-natural inflation in supergravity and 
BICEP2, Phys. Lett. B 734 (2014) 167–172, arXiv:1403.5883 [hep-ph].

[14] T. Li, Z. Li, D.V. Nanopoulos, Natural inflation with natural trans-Planckian axion 
decay constant from anomalous U (1)X , J. High Energy Phys. 1407 (2014) 052, 
arXiv:1405.1804 [hep-th].

[15] X. Gao, T. Li, P. Shukla, Combining universal and odd RR axions for aligned 
natural inflation, arXiv:1406.0341 [hep-th].

[16] S. Dimopoulos, S. Kachru, J. McGreevy, J.G. Wacker, N-flation, J. Cosmol. Astro-
part. Phys. 0808 (2008) 003, arXiv:hep-th/0507205.

[17] R. Kallosh, N. Sivanandam, M. Soroush, Phys. Rev. D 77 (2008) 043501, arXiv:
0710.3429 [hep-th].

[18] T.W. Grimm, Axion inflation in type II string theory, Phys. Rev. D 77 (2008) 
126007, arXiv:0710.3883 [hep-th].

[19] M. Cicoli, K. Dutta, A. Maharana, N-flation with hierarchically light axions in 
string compactifications, arXiv:1401.2579 [hep-th].

[20] M. Kawasaki, M. Yamaguchi, T. Yanagida, Phys. Rev. Lett. 85 (2000) 3572, arXiv:
hep-ph/0004243.

[21] D. Baumann, L. McAllister, Inflation and string theory, arXiv:1404.2601 [hep-
th].

[22] E.J. Copeland, A.R. Liddle, D.H. Lyth, E.D. Stewart, D. Wands, False vacuum infla-
tion with Einstein gravity, Phys. Rev. D 49 (1994) 6410, arXiv:astro-ph/9401011.

[23] D.H. Lyth, A. Riotto, Particle physics models of inflation and the cosmological 
density perturbation, Phys. Rep. 314 (1999) 1, arXiv:hep-ph/9807278.

[24] R. Kallosh, A. Linde, New models of chaotic inflation in supergravity, J. Cosmol. 
Astropart. Phys. 1011 (2010) 011, arXiv:1008.3375 [hep-th].

[25] A.R. Liddle, A. Mazumdar, F.E. Schunck, Assisted inflation, Phys. Rev. D 58 
(1998) 061301, arXiv:astro-ph/9804177.

[26] A. Jokinen, A. Mazumdar, Inflation in large N limit of supersymmetric gauge 
theories, Phys. Lett. B 597 (2004) 222, arXiv:hep-th/0406074.

[27] E.J. Copeland, A. Mazumdar, N.J. Nunes, Generalized assisted inflation, Phys. 
Rev. D 60 (1999) 083506, arXiv:astro-ph/9904309.

[28] R. Kallosh, A. Linde, K.A. Olive, T. Rube, Chaotic inflation and supersymmetry 
breaking, Phys. Rev. D 84 (2011) 083519, arXiv:1106.6025 [hep-th].

[29] S. Antusch, M. Bastero-Gil, K. Dutta, S.F. King, P.M. Kostka, Solving the eta-
problem in hybrid inflation with Heisenberg symmetry and stabilized modulus, 
J. Cosmol. Astropart. Phys. 0901 (2009) 040, arXiv:0808.2425 [hep-ph].

http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4D756B68616E6F763A323030357363s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4D756B68616E6F763A323030357363s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4164653A32303134786E61s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4164653A32303134786E61s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4164653A32303134786E61s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4C7974683A31393936696Ds1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4C7974683A31393936696Ds1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4C7974683A31393936696Ds1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4D63416C6C69737465723A323030386862s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4D63416C6C69737465723A323030386862s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib53696C766572737465696E3A323030387367s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib53696C766572737465696E3A323030387367s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4B616C6F7065723A323030386662s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4B616C6F7065723A323030386662s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4B616C6F7065723A323031316A7As1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4B616C6F7065723A323031316A7As1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4D63416C6C69737465723A323031346D7061s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4D63416C6C69737465723A323031346D7061s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4172656E64733A32303134716361s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4172656E64733A32303134716361s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4172656E64733A32303134716361s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4B696D3A323030347270s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4B696D3A323030347270s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4B6170706C3A323031346C7261s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4B6170706C3A323031346C7261s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib42656E2D446179616E3A323031346C6361s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib42656E2D446179616E3A323031346C6361s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib437A65726E793A32303134717161s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib437A65726E793A32303134717161s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4C693A32303134786E61s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4C693A32303134786E61s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4C693A32303134786E61s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib47616F3A32303134756861s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib47616F3A32303134756861s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib44696D6F706F756C6F733A323030356163s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib44696D6F706F756C6F733A323030356163s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4B616C6C6F73683A323030376363s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4B616C6C6F73683A323030376363s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4772696D6D3A323030376873s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4772696D6D3A323030376873s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4369636F6C693A32303134737661s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4369636F6C693A32303134737661s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4B61776173616B693A32303030796Es1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4B61776173616B693A32303030796Es1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4261756D616E6E3A323031346E6461s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4261756D616E6E3A323031346E6461s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib436F70656C616E643A313939347667s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib436F70656C616E643A313939347667s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4C7974683A31393938786Es1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4C7974683A31393938786Es1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4B616C6C6F73683A323031307567s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4B616C6C6F73683A323031307567s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4C6964646C653A313939386A63s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4C6964646C653A313939386A63s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4A6F6B696E656E3A323030346270s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4A6F6B696E656E3A323030346270s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib436F70656C616E643A313939396373s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib436F70656C616E643A313939396373s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4B616C6C6F73683A32303131716Bs1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4B616C6C6F73683A32303131716Bs1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib416E74757363683A32303038706Es1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib416E74757363683A32303038706Es1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib416E74757363683A32303038706Es1


K. Das, K. Dutta / Physics Letters B 738 (2014) 457–463 463
[30] S. Antusch, M. Bastero-Gil, K. Dutta, S.F. King, P.M. Kostka, Chaotic inflation in 
supergravity with Heisenberg symmetry, Phys. Lett. B 679 (2009) 428, arXiv:
0905.0905 [hep-th].

[31] M.K. Gaillard, H. Murayama, K.A. Olive, Preserving flat directions during infla-
tion, Phys. Lett. B 355 (1995) 71, arXiv:hep-ph/9504307.

[32] S. Antusch, K. Dutta, P.M. Kostka, Tribrid inflation in supergravity, AIP Conf. 
Proc. 1200 (2010) 1007, arXiv:0908.1694 [hep-ph].

[33] S. Antusch, K. Dutta, P.M. Kostka, SUGRA hybrid inflation with shift symmetry, 
Phys. Lett. B 677 (2009) 221, arXiv:0902.2934 [hep-ph].

[34] R. Kallosh, A. Linde, T. Rube, General inflaton potentials in supergravity, Phys. 
Rev. D 83 (2011) 043507, arXiv:1011.5945 [hep-th].
[35] C.M. Peterson, M. Tegmark, Testing two-field inflation, Phys. Rev. D 83 (2011) 
023522, arXiv:1005.4056 [astro-ph.CO].

[36] C. Gordon, D. Wands, B.A. Bassett, R. Maartens, Adiabatic and entropy pertur-
bations from inflation, Phys. Rev. D 63 (2001) 023506, arXiv:astro-ph/0009131.

[37] A. Ashoorioon, H. Firouzjahi, M.M. Sheikh-Jabbari, M-flation: inflation from ma-
trix valued scalar fields, J. Cosmol. Astropart. Phys. 0906 (2009) 018, arXiv:
0903.1481 [hep-th].

[38] C. Germani, A. Kehagias, UV-protected inflation, Phys. Rev. Lett. 106 (2011) 
161302, arXiv:1012.0853 [hep-ph].

[39] R. Easther, L. McAllister, Random matrices and the spectrum of N-flation, J. Cos-
mol. Astropart. Phys. 0605 (2006) 018, arXiv:hep-th/0512102.

http://refhub.elsevier.com/S0370-2693(14)00737-0/bib416E74757363683A323030397479s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib416E74757363683A323030397479s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib416E74757363683A323030397479s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4761696C6C6172643A31393935617As1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4761696C6C6172643A31393935617As1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib416E74757363683A323030397667s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib416E74757363683A323030397667s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib416E74757363683A323030396566s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib416E74757363683A323030396566s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4B616C6C6F73683A32303130787As1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4B616C6C6F73683A32303130787As1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib5065746572736F6E3A323031306E70s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib5065746572736F6E3A323031306E70s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib476F72646F6E3A323030306876s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib476F72646F6E3A323030306876s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4173686F6F72696F6F6E3A323030397761s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4173686F6F72696F6F6E3A323030397761s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4173686F6F72696F6F6E3A323030397761s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4765726D616E693A323031306864s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib4765726D616E693A323031306864s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib456173746865723A323030357A72s1
http://refhub.elsevier.com/S0370-2693(14)00737-0/bib456173746865723A323030357A72s1

	N-ﬂation in supergravity
	1 Introduction
	2 Chaotic inﬂation in SUGRA
	3 N-ﬂation
	4 N-ﬂation in SUGRA
	4.1 Two-ﬁeld case
	4.2 N-ﬁeld generalisation

	5 Conclusion and discussions
	Acknowledgements
	References


