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Abstract Background and aims: A high circulating fibroblast growth factor 23 (FGF23) level is an
independent risk factor for cardiovascular mortality in renal transplant recipients and the gen-
eral population. N-3 fatty acids eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) may
contribute to cardiovascular risk reduction. We investigated whether fish and EPA-DHA intake
are related to FGF23 levels in renal transplant recipients.
Methods and results: We performed a cross-sectional analysis in 619 stable renal transplant recip-
ients (mean age 53 years, 57% male, estimated glomerular filtration rate [eGFR] 53 � 20 mL/min/
1.73 m2). Dietary intake was assessed by a 177-item food frequency questionnaire. Serum intact
FGF23 was measured by ELISA. We examined differences in FGF23 levels across categories of fish
and EPA-DHA intake using analysis of variance models adjusted for age, sex, dietary and lifestyle
factors and key determinants of FGF23. Patients consumed on average 15 g of fish and 139 mg
EPA-DHA/day. Median FGF23 was 62 pg/mL (IQR 43e98 pg/mL). Higher dietary EPA-DHA and
fish intake were associated with lower serum FGF23 levels. Subgroup analyses revealed that
particularly in patients with reduced renal function (eGFR <60 mL/min/1.73 m2), adjusted
FGF23 levels (114, 79, 75 pg/mL, P Z 0.0001) were inversely associated with tertiles of EPA-
DHA intake. Similarly, we observed an inverse association between fish consumption and serum
FGF23 levels in adjusted analyses.
Conclusion: A higher intake of fish and dietary n-3 fatty acids (EPA-DHA) is related to lower circu-
lating FGF23 levels in renal transplant recipients. Further research is needed to assess the cau-
sality of this association and the clinical implications.
ª 2014 Elsevier B.V. All rights reserved.
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Introduction

Chronic kidney disease (CKD) is a worldwide health
burden, affecting about 15% of the Western adult popula-
tion. For most patients with end-stage renal disease, kid-
ney transplantation is the preferred treatment. Although
short-term graft and patient survival have improved
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impressively over the past decades, cardiovascular disease
limits long-term patient survival [1]. Both the incidence
and prevalence of cardiovascular disease are several times
higher in renal transplant recipients than in the general
population [2].

In patients with impaired renal function, deregulated
phosphorus metabolism characterized by elevated circu-
lating levels of the phosphaturic hormone fibroblast
growth factor 23 (FGF23) plays a specific role in the
pathophysiology of cardiovascular disease. In response to
e particularly inflammatory e renal injury, the renal
expression of Klotho, a mandatory cofactor for the specific
FGF23 receptor, is lost [3] which may contribute to
increased circulating FGF23 levels [4]. Besides being an
indicator of impaired renal function and disturbed phos-
phorus metabolism, high circulating FGF23 levels may also
directly contribute to the development of left ventricular
hypertrophy [5]. Many epidemiologic studies have identi-
fied a high FGF23 level as an independent risk factor of
cardiovascular disease and all-cause mortality in the gen-
eral population [6], across stages of CKD[7], and in renal
transplant recipients [8,9]. Consequently, strategies to
reduce FGF23 levels may have clinical impact.

Patients with impaired renal function have lower serum
levels of the n-3 fatty acids eicosapentaenoic (EPA) and
docosahexaenoic acid (DHA), mainly consumed through
fish, which may be linked to a higher cardiovascular dis-
ease risk in these patients [10]. Randomized controlled
trials in patients with chronic kidney disease (CKD)
showed a decrease in serum inflammatory markers after
EPA-DHA supplementation [11]. Given the role of FGF23 as
a cardiovascular risk factor in renal patients and the po-
tential cardioprotective and anti-inflammatory effects of n-
3 fatty acids, we investigated whether intake of fish and
EPA-DHA are related to serum FGF23 levels in a well-
defined cohort of 619 renal transplant recipients.

Methods

Study population

We conducted a cross-sectional analysis in a large, single
center renal transplant recipient cohort. We invited all
renal transplant recipients (�18 years) with a functioning
graft for at least one year, who visited our outpatient clinic
between November 2008 and March 2011. Renal patients
had all been transplanted in the University Medical Center
Groningen. They had sufficient knowledge of the Dutch
language and no history of drug or alcohol addiction. Of
817 initially invited patients, 707 (87%) signed written
informed consent to participate in this study. After exclu-
sion of patients with missing data on dietary n-3 fatty
acids (n Z 82), missing data on eGFR (n Z 2) and FGF23
concentrations (n Z 4), data from 619 patients were
available for analyses. The Institutional Review Board on
human experimentation approved the study protocol
(METc 2008/186), which was in adherence to the Decla-
ration of Helsinki. The routine regimen included no spe-
cific dietary counseling, except for discouraging excess
sodium intake and encouraging losing weight in over-
weight individuals. Renal transplant recipients were on
standard antihypertensive and immunosuppressive ther-
apy, which was as previously described [12]. Data on cur-
rent medication including vitamin D treatment
(cholecalciferol, alfacalcidol or paricalcitol) was extracted
from the medical records.

Dietary assessment

All patients adhered to their regular dietary habits during
examination. Dietary intake was assessed using a semi
quantitative food frequency questionnaire (FFQ) which
has been validated as described previously [13]. The FFQ
inquired about intake of 177 food items during the last
month. For each item, the frequency was recorded in
times per day, week, or month, and seasonal variations
were taken into account. The number of servings was
expressed in natural units (for example, slice of bread or
apple) or household measures (for example, cup or
spoon). The questionnaire was self-administered and
filled out at home. At the day of the visit to the outpatient
clinic, all FFQs were checked for completeness by a
trained researcher and inconsistent answers were veri-
fied with the patients. Total energy and nutrient intake
per day was calculated using Dutch Food Composition
Tables [14]. Additionally, all participants were instructed
to collect a 24-h urine sample according to a strict pro-
tocol. Sodium intake was estimated from 24-h urine so-
dium excretion and the accuracy of FFQ for protein intake
estimation was inferred by correlating protein intake
with the protein equivalent of nitrogen appearance (PNA)
[15].

Clinical and biochemical parameters

Information on patient’s health status and medical history
was obtained from patient records. Patients received state-
of-the art treatment (Table 1), and data on current medi-
cation was extracted from the medical records. Body
weight and height were measured while participants wore
indoor clothing without shoes. Body Mass Index (BMI) was
calculated as weight divided by height squared (kg/m2).
Blood pressure (BP) was measured as described previously
[16]. Hypertension was defined as BP �140/90 mmHg or
use of antihypertensive medication. Diabetes mellitus was
considered present when serum glucose was above
7 mmol/l (126 mg/dl) or when the patient used antidia-
betic medication.

Blood was drawn after an 8e12 h overnight fasting
period in the morning after completion of the 24 h urine
collection. Urinary and plasma concentrations of sodium,
chloride, potassium, calcium, phosphate and urea were
measured using routine clinical laboratory methods as
were plasma hsCRP, total cholesterol, HDL cholesterol, LDL
cholesterol, triglycerides and albumin. Intact parathyroid
hormone (PTH) was measured in EDTA plasma using
radioimmunoassay. Serum creatinine level was deter-
mined using a modified version of the Jaffé method (MEGA



Table 1 Characteristics of 619 renal transplant recipients across tertiles of EPA-DHA.

Tertiles of EPA-DHA intake (mg/d)

<39 (n Z 206) 40e158 (n Z 207) �159 (n Z 206) P value

Age (years) 51 � 13 53 � 12 54 � 12 0.03
Sex, n (% males) 114 (55) 117 (56) 122 (59) 0.72
BMI (kg/m2) 26 � 5 26 � 5 27 � 4 0.31
Waist circumference (cm) 98 � 15 98 � 15 100 � 14 0.19
Systolic BP (mmHg) 135 � 16 138 � 17 135 � 18 0.27
Diastolic BP (mmHg) 82 � 10 84 � 11 83 � 11 0.18
Time since transplantation (y) 6 [2e13] 6 [2e12] 6 [2e12] 0.80
Current smoker n (%) 27 [14] 21 [11] 28 [14] 0.49
Diabetes mellitus n (%) 40 [19] 31 [15] 42 [20] 0.21
Alcohol use (g/d)
No 15 [8] 22 [12] 19 [11] 0.59
1-20 g/d 145 (78) 148 (78) 139 (77)
>20 g/d 27 [14] 19 [10] 23 [13]
Energy (kcal) 2156 � 672 2196 � 601 2197 � 641 0.42
Medication use
Antihypertensives n (%) 183 (89) 181 (87) 180 (88) 0.90
Proliferation inhibitor n (%) 166 (81) 169 (82) 183 (89) 0.06
Mycophenolate n (%) 135 (66) 137 (66) 138 (67)
Azathioprine n (%) 31 [15] 32 [16] 45 [22]
Calcineurin inhibitor n (%) 120 (58) 127 (61) 104 (51) 0.08
Cyclosporine n (%) 80 (39) 81 (39) 89 (43)
Tacrolimus n (%) 40 [19] 41 [20] 32 [16]
Diuretics n (%) 86 (42) 82 (40) 84 (41) 0.91
Vitamin D analogues n (%) 45 [22] 52 [25] 45 [22] 0.68
Serum parameters
Creatinine (mmol/L) 121 [95e159] 130 [102e164] 124 [103e153] 0.29
eGFR(ml/min/1.73 m2)* 55 � 22 51 � 20 52 � 19 0.09
Urea (mmol/l) 9.3 [7.1e12.9] 9.5 [7.3e14.2] 9.8 [7.2e13.2] 0.42
PTH (pmol/l) 9.4 [5.6e14.7] 9.4 [6.3e14.5] 8.3 [5.5e13.4] 0.29
Albumin (g/l) 43 � 3 43 � 3 43 � 3 0.98
hsCRP (mg/l) 1.4 [0.6e3.8] 1.6 [0.6e4.2] 1.7 [0.8e5.0] 0.61
Sodium (mmol/l) 141 � 3 141 � 3 141 � 3 0.46
Potassium (mmol/l) 4.0 � 0.4 4.0 � 0.5 4.0 � 0.5 0.92
Calcium (mmol/l) 2.4 � 0.16 2.4 � 0.15 2.4 � 0.15 0.75
Phosphate (mmol/l) 1.0 � 0.2 1.0 � 0.2 1.0 � 0.7 0.52
Total cholesterol (mmol/L) 5.1 � 1.2 5.1 � 1.0 5.2 � 1.1 0.84
HDL cholesterol (mmol/L) 1.4 � 0.4 1.4 � 0.5 1.4 � 0.5 0.30
LDL cholesterol (mmol/L) 3.0 � 0.9 2.9 � 0.9 3.0 � 1.0 0.71
Triglycerides (mmol/L) 1.9 � 1.0 1.9 � 1.0 1.8 � 1.0 0.63
Urinary parameters
Creatinine (mmol/24 h) 114 � 36 115 � 33 119 � 31 0.32
Albumin (mg/24 h) 42 [9e184] 34 [9e172] 43 [11e152] 0.93
Sodium (mmol/24 h) 150 � 58 157 � 61 162 � 63 0.11
Calcium (mmol/24 h) 2.4 [1.1e3.7] 2.3 [1.0e3.9] 2.3 [1.2e3.9] 0.88
Phosphate (mmol/24 h) 24.1 � 9.1 24.4 � 8.5 25.8 � 8.3 0.11

Values in Table 1 are mean � SD, n(%) or median (p25ep75). P values were obtained from ANOVA for normally distributed continuous variables,
from KruskalleWallis test for skewed continuous variables and from Chi-squared test for categorical variables.
EPA: eicosapentaenoic acid; DHA: docosahexaenoic acid; BP: blood pressure; *eGFR: estimated glomerular filtration rate, based on Chronic
Kidney Disease-Epidemiology (CKD-EPI) Collaboration formula [17]; PTH: parathyroid hormone; hsCRP: high sensitivity C-reactive protein.
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AU 510, Merck Diagnostica, Darmstadt, Germany). Renal
function was assessed by calculating the estimated
glomerular filtration rate (eGFR) applying the Chronic
Kidney Disease Epidemiology Collaboration (CKD-EPI)
equation [17]. Urinary albumin concentration was deter-
mined by nephelometry (Dade Behring Diagnostic, Mar-
burg, Germany). Total urinary protein concentration was
analyzed using the Biuret reaction (MEGA AU 510, Merck
Diagnostica, Darmstadt, Germany). Serum intact FGF23
levels were determined using a commercially available
ELISA kit (Kainos Laboratories, Inc., Tokyo, Japan). Intra-
and inter-assay CVs are <10% and <14%, respectively [18],
reference range in healthy subjects is 10e40 pg/mL.
Statistical analysis

Statistical analyses were performed using Stata (version
11.0, StataCorp, College Station, Texas, USA) and SAS sta-
tistical packages (version 9.3, SAS Institute, Cary, North
Carolina, USA). A two sided P-value <0.05 was considered
statistically significant. Because the intakes of EPA and
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DHA were highly correlated (Spearman correlation coeffi-
cient: 0.99) the sum of EPA and DHA was used in the
analyses.

Descriptive analyses were performed to calculate mean
and standard deviations (SD) or medians and interquartile
range (IQR: p25, p75). Differences in baseline variables
among different categories of n-3 fatty acid consumers
were evaluated by using the KruskaleWallis test for
skewed variables, the analysis of variance (ANOVA) for
normally distributed continuous variables and Chi-squared
test for categorical data. The association between EPA-DHA
intake and lipid profile (i.e. total, HDL, or LDL cholesterol or
triglyceride levels) was studies using Spearman correlation
analysis.

Backward linear regression was used to identify corre-
lates of plasma FGF23 levels. The following covariates were
tested: age, sex, donor type (deceased or living), warm and
cold ischemia times, BMI, cardiovascular history, Fra-
mingham risk score factors, eGFR, albuminuria, serum
phosphate, 24-h urinary phosphate excretion (represent-
ing phosphate intake), 24-h urinary urea excretion (rep-
resenting protein intake), high-sensitivity C-reactive
protein (hsCRP), serum albumin, hemoglobin, or NT-
proBNP levels, use of angiotensin-converting enzyme in-
hibitor or angiotensin receptor blocker, and treatment
with vitamin D analogues. Variables significantly associ-
ated with FGF23 levels using backward linear regression
analysis were subsequently tested in a forward linear
regression model. Variables that were significant in this
model were considered independent correlates of FGF23
levels.

To assess whether mean FGF23 levels differed accord-
ing to categories of EPA-DHA intake or fish intake ANOVA
models were used. EPA-DHA intake was divided into ter-
tiles and fish intake was categorized as 0, >0e14, and
�15 g/d (because of 18% no fish eaters). Back trans-
formation was performed to obtain geometric mean FGF23
levels and 95% confidence intervals in categories of fish
intake (or EPA-DHA intake). Several multivariable models
were applied, adjusting for age and sex (model 1), and for
lifestyle factors, i.e. total energy intake, alcohol use (0,
Table 2 Multivariate analysis of FGF23 correlates.

Variable Standardized beta P value

eGFR (CKD-EPI) �0.27 <0.001
Serum phosphate 0.24 <0.001
NTproBNP 0.24 <0.001
Urinary phosphate excretion 0.17 <0.001
Triglycerides 0.12 <0.001
Age 0.10 0.01
Gender (0 Z male; 1 Z female) �0.10 0.01
Smoking (0 Z never; 1 Z ever) 0.08 0.01
Parathyroid hormone 0.07 0.045
Albuminuria 0.07 0.049

Excluded from the model: use of RAAS blockers or vitamin D ana-
logues, cold and warm ischemia times, time since transplantation,
hemoglobin, donor status (living or deceased), presence of diabetes
mellitus, BMI, urinary urea excretion, serum cholesterol, hsCRP.
Model fit: R2 0.40.
>0e20, >20 g/d), smoking status and BMI (model 2). P-
values for the differences in dietary intake were obtained
from the KruskaleWallis test for skewed variables. Based
on the outcomes of this analysis, we additionally adjusted
our data for fruit and vegetables intake (model 3) on the
assumption that fish consumers are more likely than are
fish non-consumers to follow a healthy diet rich in fruits
and vegetables [19]. Finally, known determinants of FGF23,
i.e. serum calcium, phosphate and PTH were added to the
full model (model 4).

The association between fish or EPA-DHA intake and
serum FGF23 was analyzed for an interaction by eGFR,
either as a dichotomous or continuous variable, by adding
an interaction term (eGFRxFGF23) to all ANOVA models.
Because a significant interaction term was found
(P < 0.0001), we repeated the analyses in strata of renal
graft function (eGFR <60 vs. �60 mL/min/1.73 m2).

Results

Patient characteristics

Patients were on average 53 � 13 years old and 57% was
male. The mean BMI was 26.7 � 4.8 kg/m2, with 59% of the
patients being overweight. The median time since trans-
plantation was 5.4 [1.9e12.2] years. Mean systolic blood
pressure was 136/83 mmHg and 91% of the cohort had
hypertension. The mean fish intake was 15 g/d, which
corresponds to approximately one serving per week, and
EPA-DHA intake was 139 mg/d. The median serum intact
FGF23 level was 62 [IQR: 43e98] pg/mL. Patients with a
reduced graft function (eGFR<60 mL/min/1.73 m2,
n Z 403, 65%) had a serum FGF23 concentration of 78
[IQR: 54e121] pg/mL, which was higher than in those with
a normal graft function (n Z 216, 47 pg/mL [IQR: 35e61];
P < 0.001). Patient characteristics in tertiles of EPA-DHA
intake are shown in Table 1. Those who had a higher
EPA-DHA intake were slightly older (P Z 0.03). No sig-
nificant differences were observed in cardiovascular risk
factors, medication use, or other clinical parameters. EPA-
DHA intake was not associated with lipid profile (HDL, LDL,
total cholesterol or triglycerides) or hsCRP. Multivariate
regression analysis revealed independent determinants of
FGF23 levels in our cohort (Table 2).

Fish consumption and circulating FGF23

Circulating FGF23 levels were inversely related to fish
intake (Table 3), with geometric mean levels of 78.0 pg/mL
for 0 g/d, 73.3 pg/mL for 1e14 g/d and 64.4 pg/mL for
�15 g/d (P-trend Z 0.06) after adjustment for age, sex,
BMI and dietary and lifestyle factors (model 3). After
adjustment for key determinants of FGF23 (serum calcium,
phosphate and PTH), the association became statistically
significant (P Z 0.03, Table 3, model 4). The association
between fish intake and FGF23 levels was influenced by
eGFR (P-interaction <0.0001 in all models). In patients
with a reduced graft function (eGFR <60 mL/min/1.73 m2),
FGF23 levels were 108.9 pg/mL, 89.5 pg/mL and 77.0 pg/



Table 3 Fish intake and serum FGF23 levels (pg/mL)a in 619 renal transplant patients, in the total cohort and stratified by renal graft function.

Fish intake (g/d)

0 1e14 �15 P-value

Total cohort
N 108 234 277
Model 1 72.3 (63.0e82.9) 72.0 (65.6e79.0) 64.5 (59.2e70.2) 0.167
Model 2 76.7 (66.3e88.8) 73.5 (66.4e81.4) 64.2 (58.5e70.5) 0.063
Model 3 76.9 (66.4e89.0) 73.4 (66.2e81.4) 64.3 (58.4e70.6) 0.067
Model 4* 76.7 (68.1e86.4) 75.5 (69.4e82.1) 62.8 (58.1e67.8) 0.002
Patients with eGFR <60 mL/min/1.73 m2.

N 62 149 192

Model 1 99.5 (82.5e120.0) 91.4 (81.0e103.1) 75.8 (68.1e84.3) 0.015
Model 2 106.7 (87.3e130.4) 93.1 (81.4e106.4) 75.2 (67.1e84.4) 0.005
Model 3 107.6 (88.0e131.6) 92.2 (80.5e105.6) 75.3 (67.1e84.6) 0.005
Model 4 107.3 (89.7e128.3) 89.6 (79.4e101.2) 77.0 (69.5e85.3) 0.005
Patients with eGFR �60 mL/min/1.73 m2.

N 46 85 85

Model 1 46.1 (40.4e52.5) 47.4 (43.1e52.1) 45.2 (41.1e49.7) 0.784
Model 2 49.1 (42.9e56.2) 48.8 (44.1e53.9) 42.2 (37.9e47.0) 0.104
Model 3 48.7 (42.5e55.7) 49.3 (44.6e54.5) 42.2 (37.9e47.0) 0.091
Model 4 48.1 (42.4e54.5) 49.5 (45.1e54.4) 42.3 (38.3e46.8) 0.071
a FGF23 levels are geometric means (95% confidence interval).

Model 1 Z age and gender adjusted Model 2 Z model 1 þ energy intake, alcohol consumption, smoking status, BMI and use of vitamin D
analogues Model 3 Z model 2 þ vegetables and fruit Model 4 Z model 3 þ serum calcium, phosphate and PTH Model 4* Z model 3 þ eGFR,
serum calcium, phosphate and PTH.
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mL (P Z 0.003) in consecutive categories of fish intake,
using the fully adjusted model. The association was not
significant in those with normal graft function (P > 0.2,
Table 3).
EPA-DHA intake and circulation FGF23

Circulating FGF23 levels decreased with increasing EPA-
DHA intake (Table 4), with geometric mean levels of
81.9 pg/mL for <39 mg/d, 63.9 pg/mL for 40e158 mg/d and
65.6 pg/mL for �159 mg/d (P Z 0.003) after adjustment
for age, sex, BMI and dietary and lifestyle factors (model 3).
After further adjustment for key determinants of FGF23,
this inverse association remained (P Z 0.001, Table 4). As
for fish intake, the association between EPA-DHA intake
and FGF23 was influenced by eGFR (P-interaction <0.0001
in all models). In patients with a reduced graft function
(eGFR <60 mL/min/1.73 m2), FGF23 levels were 109.6 pg/
mL, 77.9 pg/mL and 78.2 pg/mL (P-trend Z 0.0002) in
consecutive tertiles of EPA-DHA, using the fully adjusted
model 4 (Fig. 1). In those with an eGFR >60 mL/min/
1.73 m2, the association with EPA-DHA intake was also
significant (P Z 0.004), but FGF23 levels were 50% lower
than in those with reduced graft function (Table 4). Further
adjustments for urinary sodium and phosphate excretion
did not alter the results.

Discussion

The main finding of the current study is the inverse as-
sociation of fish and dietary intake of n-3 long-chain
polyunsaturated fatty acids (EPA-DHA) with serum FGF23
levels in a large cohort of renal transplant recipients.
Particularly in patients with reduced graft function (eGFR
<60 mL/min/1.73 m2) circulating FGF23 levels were
reduced with increasing tertiles of EPA-DHA or categories
of fish intake.

Daily intake of fish (w15 g/d) and EPA-DHA (w139 mg/
d) in our cohort of renal transplant recipients was well
below the recommended intake levels of two servings of
fish per week, equaling 450 mg/d EPA-DHA [20]. Similar
low levels of intake (15 g/d fish) were also observed in a
recent clinical trial in post-myocardial infarction patients
in The Netherlands [21]. A strong point of the present
study is the large, well-characterized cohort of renal
transplant recipients, with extensive dietary data collec-
tion, serum samples and 24-h urinary samples. This
enabled us to adjust for many potential dietary con-
founders, including 24-h sodium and phosphate excretion.
Nevertheless, since this is an observational study, we
cannot exclude the possibility of residual confounding by
(unmeasured) dietary or lifestyle factors, such as physical
activity, that could potentially have influenced serum
FGF23 in our patients. Furthermore, we did not measure a
circulating biomarker of n-3 fatty acid content to confirm
the association between n-3 fatty acid intake and FGF23
levels. Another limitation is the cross-sectional nature of
our study, and patients may have intentionally changed
their diets for health-related reasons. On the other hand,
since fish is not a major contributor to total daily protein
and mineral intakes, we consider it unlikely that patients
have been advised to change their intake of fish. Finally,
we did not adjust for serum vitamin D levels or dietary



Table 4 EPA-DHA intake and serum FGF23 levels (pg/mL)# in 619 renal transplant patients, in the total cohort and stratified by renal graft
function.

EPA-DHA intake (mg/d)

<39 40e158 �159 P-value

Total cohort
N 206 207 206
Model 1 76.9 (69.6e84.9) 64.9 (58.8e71.6) 64.7 (58.6e71.4) 0.022
Model 2 81.2 (72.9e90.4) 64.1 (57.6e71.2) 63.3 (58.6e72.9) 0.004
Model 3 81.3 (72.9e90.5) 64.1 (57.6e71.4) 65.3 (58.4e72.9) 0.004
Model 4* 86.5 (79.3e94.3) 62.1 (57.0e67.6) 63.4 (58.0e69.3) <0.0001
Patients with eGFR <60 mL/min/1.73 m2.

N 116 141 146

Model 1 106.4 (92.9e121.9) 80.0 (70.8e90.4) 74.6 (66.2e84.2) 0.0004
Model 2 113.1 (97.4e131.2) 78.6 (68.9e89.7) 75.4 (66.1e86.1) 0.0001
Model 3 112.7 (97.0e131.0) 78.7 (69.0e89.8) 75.3 (65.9e86.0) 0.0002
Model 4 108.3 (94.7e123.8) 78.0 (69.3e87.8) 78.4 (69.6e88.0) 0.0003
Patients with eGFR �60 mL/min/1.73 m2.

N 90 66 60

Model 1 50.3 (45.9e55.2) 41.6 (37.4e46.3) 45.7 (40.9e51.1) 0.030
Model 2 53.0 (48.3e58.2) 40.2 (36.0e44.8) 44.0 (38.9e49.7) 0.001
Model 3 52.7 (48.0e58.0) 40.0 (35.8e44.8) 44.9 (39.6e50.9) 0.001
Model 4 52.7 (48.2e57.5) 41.3 (37.2e45.9) 43.3 (38.5e48.7) 0.001
aFGF23 levels are geometric means (95% confidence interval).
Model 1 Z age and gender adjusted Model 2 Z model 1 þ energy intake, alcohol consumption, smoking status, BMI and use of vitamin D
analogues Model 3 Z model 2 þ vegetables and fruit Model 4 Z model 3 þ serum calcium, phosphate and PTH Model 4* Z model 3 þ eGFR,
serum calcium, phosphate and PTH.
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vitamin D intake as such parameters were lacking in the
present cohort. Treatment with vitamin D analogues did
however not contribute to FGF23 levels, nor did it influ-
ence the association between EPA-DHA intake and FGF23
levels.

Although our data do not allow us to draw conclusions
on how fish or EPA-DHA could regulate FGF23 levels, we
can speculate on a potential mechanism through anti-
inflammatory effects increasing renal klotho expression.
Pro-inflammatory cytokines have been linked to a revers-
ible klotho down-regulation in the kidney [23]. In line,
FGF23 levels have recently been linked with systemic
Figure 1 Serum FGF23 levels (pg/mL) according to tertiles of dietary
EPA-DHA intake stratified by renal graft function (eGFR above or below
60 mL/min/1.73 m2).
inflammation in CKD [24]. The inverse association be-
tween EPA-DHA intake and FGF23 could therefore be
explained by a partial restoration of renal klotho expres-
sion due to its anti-inflammatory effects on tubular
epithelial cells [25]. Also, n-3 fatty acids may increase the
expression of antioxidant genes [26], and oxidative stress
has been associated with lower klotho expression [27]. Of
interest, interventions that reduced oxidative stress
partially restored renal klotho expression in animal
models [28]. As an alternative explanation, n-3 fatty acids
could act directly on the PTH receptor, a potent inducer of
FGF23 [29]; yet adjustment for phosphate, calcium and
PTH did not change the observed association between n-3
fatty acid or fish intake and FGF23.

Serum FGF23 levels have been shown to be influenced
by phosphate-rich foods, particularly by protein from an-
imal sources. Yet the most important factor contributing to
FGF23 levels is suggested to be inorganic phosphate [30].

In summary, the present study showed for the first time
that fish and EPA-DHA intake are associated with serum
FGF23 levels in a large cohort of renal transplant re-
cipients. Future prospective studies should address
whether increased fish or EPA-DHA intake could be new
strategies to reduce cardiovascular morbidity and mortal-
ity after kidney transplantation through reduction of
FGF23.
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