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Abstract--The Green's tensor for an infinite medium with interacting magnetic and viscoelastic 
fields has been studied in terms of Fourier integrals. The exact evaluation of the integrals has been 
carried out in the case of an electrically nonconducting medium as a particular case for verification 
with the existing result. 
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1. INTRODUCTION 

The Green's tensor has direct applications to the solutions of boundary value problems and to the 
study of wave propagation in interacting magnetic and elastic (or viscoelastic) fields in random 
media, as can be found in the discussions of many authors like Karal and Keller [1], Chow [2] 
and Bhattacharyya [3]. Among many other applications, it is seen that a knowledge of Green's 
function is also essential for the one body scattering problem, and for the problem of multiple 
scattering by randomly distributed scatterers [4], and for exact solution of wave propagation in 
a medium with random refractive index [5]. 

In the present analysis, the components of the Green's tensor for interacting magnetic and 
viscoelastic fields in an infinite homogeneous medium is expressed in the form of Fourier integrals 
by the use of Fourier Transforms. In general, the integrands are found to be extremely complicated 
and to evaluate the integrals exactly, a particular case of a nonconducting medium has been 
considered. The results obtained here could also be used in the study of magnetoelastic wave 

propagation in an infinite random medium. 

2. FORMULATION OF THE PROBLEM 

In the study of the effect of magnetic fields on wave propagation in random viscoelastic media, 
we have obtained the following (linearised) unperturbed equations: 

where u is the displacement vector, h is the perturbation in the magnetic field and 

M = (A + ~)(V.) + ~V 2 + (VA)(V.) + (V~) x (Vx) + 2(V~.V) + p~2, 

P = -vHo x (Vx), 

N = -~v[{(H0.V) - H0(V.)} - H0(V-.)I, (2.2) 

O = + [v {~(w'.)} + v2 + ~ G ]  • 
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Here, A, # are the viscoelastic constants involving w, u the magnetic permeability, a the conduc- 
tivity and Ho(Hol ,Ho2 ,Ho3)  is the constant unperturbed magnetic field. In the case of elastic 
medium, A, # reduce to Lamb constants and (2.2) reduces to 

M0 = (A + #)V(V.) + #V 2 + p w  2, 

PO = - u U o  x (Vx), 

No = - i w a u [ ( H o . V )  - H0(V.)], (2.3) 

Qo = + [ v  2 + 

The time dependence of both u and h is given by a factor e - ~ t .  Our main object is to calculate 
an appropriate Green's tensor G(x, x ~) such that  

LoG(x, x') = - I / f (x  - x'),  (2.4) 

where I is the identity matrix and ~f(x - x')  is the Dirac delta function, x, x ~ being the field and 
source points, respectively, and L0 corresponds to the set (2.3). We shall first solve (2.4) for the 
elastic medium and for the viscoelastic medium the results will automatically follow. 

3. S O L U T I O N  OF T H E  P R O B L E M  

We write the equation (2.1) for the elastic medium with a delta function singularity in the 
form 

Mou + Poh = -C/f (x  - x'),  

Nou + Qoh = -D~i(x - x'), (3.1) 

where C and D are constant vectors to be chosen suitably. Setting 

[uj, hj] = f [Aj (k), i B j  (k)] e ik'x dk, (3.2) J 
and using 1/ 

(~(X -- X') ---- (211.)3 e ik'(x-x') dk, (3.3) 

we obtain the following equations: 

- (A + #) [kjkpAp + pw 2 - t~k~kp] A j  + u [kjHpBp - BjHpkp] = - Cj  e_ik.x, ' (3.4) 
(2~)~ 

and 
Dj  _-ik.x' 

w u a  [ApkpHj - HpkpAj] + [ikpkp -t- wua] B j  = - (2~r)3 c . 

The set of equations (3.4) and (3.5) may be written as 

__ [A I 

where 

(3.5) 

1 [C] e_ik.x, ' (3.6) 

(A l l ) l j  : -[Ao/ftj + Boklkj], 

(A12)/j = - u [ k l H j  - (k.H)Slj],  

(A21)~j : -wua[(k .H)~f l j  - Hlkj], 

(A22)lj = - (  ik 2 -b wua  )~lj, 

with k 2 = kpkp, Ao = p k  2 - p w  2 and Bo = A + #. From equation (3.6), we obtain 

R _ l  [A~ -{- (AlllA12) E-1 (A21A11) - (A11A12) E -1] 
- E - l ( A 2 1 A 1 ) )  E - '  ' 

(3.7) 

(3.8) 
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assuming that  E -1, Ai- ~ exist and 

E = A22 - A21 (AI'~A12) . (3.9) 

It is to be noted that  E,  E -1, A n ,  A~-) and A22 are all symmetric matrices. 
Then  the solution of the set of equations can be obtained as 

c + ( -~; :~ ,~)  ~ - ' D  ~ ' 

B = [ ( - E  -1) (A21A-~))C-E-1D] 1.--~e -'k.x' 
(2~)3 

(3.1o) 

where 

A_ 1 ~ 1 
( n )  0 Ao(Ao+Bok  2) [(A°+B°k2) 50 -B°k l k j ]  ' 

(E - ' ) , j  ~- [E~50 + Eoa{ (g~50 - Hol) Aok 2 + Ao (klHoj + kjHo,) (k.Ho) + Bo(k251j 

÷ , o  o / 

where 

and 

WV2ff 
Eo = ik 2 + wva, Fo = - - ,  

Ao 
(3.11) 

AE = E o [ ~  + ~o" {Ao'o ~ + ,ok" (k.,o) * + (~.,o)" (~o + ,ok2) } 

-~ k2" 2 (k.Uo) 2 {Ao (AoH021 -~- Bok2H 2) + Bo (k.Ho) 2 (Ao + Bo~ 2) } ], 

with 
Fo 

a = (A0 + B0k2) ' H~ = HopHop. 

If a = 0, then A E  = E 3, F0 = 0 and 

(3.12) 

Eo = ik 2. (3.13) 

4 .  C O M P U T A T I O N  O F  G R E E N ' S  F U N C T I O N  

It is clear that  the expressions obtained in (3.11) and (3.12) are extremely cumbrous. For 
this reason we confine ourselves to the evaluation of Green's function of Green's tensor (which 
has 36 components) for the particular case of nonconducting medium (a = 0). In this case, the 
expression becomes remarkably simple since F0 vanishes. 

The Green's function corresponding to R -1 for the assumption of a = 0, is given by 

G~, =/(R-1)~se -~k(x-x') dk, (4.1) 

where the integration variables (kl, k2, k3), the components of k, are to be transformed by kl = 
k sin 9 cos ¢, k~ = k sin 0 sin ¢, k3 = k cos 8, where k -- Ikl. 

Let us choose C and D suitably as unit vectors. Then the denominator of (R-1)~s has zeroes 
at 

i 
on the  real axis.  
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In evaluating the integrals, we choose k3-axis along r so that 

k.r  = kr cos 0. (4.2) 

The integration is now carried out by the method of contour integration [6]. Let us now set 

G / -1 -ik(x-x') [Go G1] (4.3) 
= ( R  )e • d k =  0 G2 " 

We obtain 

where 

e l l  - -  

G33 - 

[G l l  0 0 ] 
G 0 = /  0 G22 0 J , 

iL 0 0 G33 

[ 27r2 -ira i .  . ,  21r2e ira 
1 ] - - # r  c - - ( ~ r a - - l ) ~  

(27r) 3 l . 27r2e irb ' 
[ +(zrb -  1 ) ~ ~  

27r2 e ira 
27r2eira ÷ (a2r 2 ÷ 2 i r a  -- 1)--p--~r3 

1 /zr 
27¢2e irb 

-(b2r 2 + 2irb - 2) 
(A + 2#)b2r 3 

(2~)3 

(4.4) 

C22 : Cl l  , 

, with 
(4.5) 

031 :- - -  

vHo3 

ira e ira Jar 
# (ar)2 { ( a r ) 2 + 3 i a r - 3 } 2 : T - ~ ) 4  ] 

• eirb I ' 
+{(br)2 + 3 z b r - 3 } - ~ ( A 7  ~ J 

eira 
VHol - {(ar)2 + 3iar - 3} 2#-~)  4 

eibr 
8~r2 ÷ {(br) 2 ÷ 3ibr - 3} 2(A + 2#)(br) 4 

ff eira 
| - ( i b r  - 1)(A + 2 , ) ( ~ ) 2  - { ( a t )  2 + 3ib~ - 3}  VUol 
l 8W 2 e jar ibr 

x 4 + {(br) 2 + 3 ibr -  3 - - - -e '~"  - - - -  
[ 2#(ar) } 2(A + 2#)(br) a 
" eira eira 

(ira - 1) #-(-a-~r)2 (ibr - 1) (~ 2#)(br) 2 
eira 

- { i (ar )  3 - 3(a~)~ - 6 i . ~  + 6} 2~Z~7)4 

eibr 
+ (i(br) 3 - 3(br) 2 - 6ibr + 6} 2(A + 2#)(br) 4 

022 ---- 011 , 

(4.7) 

where 

013 -- 

v 

(~11 :- ~ 2  

This Green's tensor Go coincides, as it is expected with the result derived by Karal and Keller 
[1, equation (37)], in the absence of the magnetic field when transformed to dyadic form. Also, 

r:i 0  oiil o 
G1 = 022 ~ G12 , (4.6) 

L~31 ~' H02 '~ 031 033 j 
\ g o l  ] 
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F u r t h e r m o r e ,  
27r2i 

c2  = I, (4.s) 
r 

where  I is t he  uni t  m a t r i x  of  o rder  3. 

P roceed ing  in a s imi lar  way, we can easi ly  solve the  equa t ion  (2.1) for the  v iscoelas t ic  m e d i u m  

rep lac ing  M0, P0, No, Q0 by  the i r  co r respond ing  values M ,  P ,  N ,  Q given by  (2.2). 
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