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Homeostatic synaptic plasticity remains an enigmatic form of

synaptic plasticity. Increasing interest on the topic has fuelled a

surge of recent studies that have identified key molecular

players and the signaling pathways involved. However, the new

findings also highlight our lack of knowledge concerning some

of the basic properties of homeostatic synaptic plasticity. In this

review we address how homeostatic mechanisms balance

synaptic strengths between the presynaptic and the

postsynaptic terminals and across synapses that share the

same postsynaptic neuron.
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Introduction
The nervous system constantly undergoes structural and

functional changes to acquire and store information while

adapting to changes in the environment. The human

brain contains an estimated 100 billion neurons making

together roughly 100 trillion synapses. Understanding

how single synapses at specific locations develop and

work in concert with other synapses to fine-tune neural

circuitry across the brain is an enduring challenge for

modern biology. The behavior and the organization of

neural circuits can be modified by adjusting the number

and/or the strength of synapses in a process collectively

referred to as synaptic plasticity. Although synaptic

plasticity alters neural activity on relatively short time

scales, the mean neuronal firing rates remain highly stable

over long time periods. How do neurons and circuits

maintain stability? This might be a confounding task

given that most aspects of neuronal physiology are subject

to activity-dependent modifications. In a growing idea,

expression of two opposing forms of synaptic plasticity is
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thought to allow dynamic changes in neural networks

while maintaining their stability [1]. On the one hand,

Hebbian plasticity, such as long-term potentiation (LTP)

that is generated rapidly, is durable and is strengthened

with repetition, can be seen as a source of instability. On

the other hand, homeostatic synaptic plasticity that oper-

ates over hours to days, is suggested to promote network

stability by adjusting global synaptic strength when

neural activity deviates from permissive levels of activity

[1]. In other words, homeostatic plasticity might restrict

the neural network from reaching excessive excitation

due to ongoing LTP.

In this review, we address the question of cross-talk

between neurons for ensuring both adaptability and

integrity of the synaptic networks they form. In light of

recent studies on the topic of homeostatic synaptic

plasticity, we will focus on the role for homeostatic

mechanisms in modulating synaptic strengths across a

synaptic network, including the co-ordination between

the presynaptic and the postsynaptic neurons at single

synapses as well as among distant synapses in a same

network.

Matching of the presynaptic and the
postsynaptic strengths
Both presynaptic and postsynaptic changes are involved

in homeostatic compensation [2–5]. Almost all studies in

which network activity is altered for a few hours or days

have detected compensatory changes in excitatory quan-

tal amplitude in vitro [6–9] and in vivo [10–12]. The

occurrence of compensatory changes in presynaptic func-

tion is more controversial, although, in general, manip-

ulations that block synaptic activity induce an increase in

release probability ( pr) at central synapses and at the

Drosophila neuromuscular junction (NMJ) [6,8,13,14].

This change in presynaptic strength often accompanies

an increase in postsynaptic receptor accumulation [6,8],

suggesting a functional co-ordination between the pre-

synaptic and the postsynaptic compartments in homeo-

static adaptation of synaptic strength.

The relationship between the presynaptic and the post-

synaptic strengths was directly addressed in hippocampal

cultures using FM1-43 and surface GluA2 labeling to

optically estimate pr and the postsynaptic receptor abun-

dance, respectively [15�]. No correlation was detected

under basal conditions, and only manipulations that

enhanced synaptic activity but not the ones that blocked

activity, revealed a positive correlation between pr and
www.sciencedirect.com
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surface GluA2 abundance. This led to the idea that

synaptic activity drove a functional correlation across

the two sides of the synapse. Interestingly, the correlation

likely resulted from adjusting (reducing) GluA2 levels to

match pr rather than the opposite as only the levels of

GluA2 showed a significant change. Therefore, the post-

synaptic strength may be more responsive in such

activity-dependent co-ordination, and in turn, this raises

questions of how the postsynaptic cell adjusts its synaptic

receptor abundance to match presynaptic function.

Another recent study in hippocampal cultures reported

of a correlation between recycling vesicle pool size

labeled by FM dye and postsynaptic responses elicited

by local glutamate uncaging under basal conditions in

mature but not in young cultures, suggesting that co-

ordinated synaptic strengths emerge in an activity-de-

pendent manner during synapse maturation [16]. Again,

no functional correlation was detected after activity

blockade [15�,16]. Collectively, these studies highlight

the importance of synaptic activity in shaping and driving

a co-ordination between presynaptic and postsynaptic

strengths. Notably, in acute rat neocortical slices a strong

correlation between pr and quantal amplitude at excit-

atory synapses has also been observed, but whether this

correlation is intrinsically fixed or driven by synaptic

activity has not been addressed [17].

How do the presynaptic and the postsynaptic compart-

ments co-ordinate their changes in strengths to activity

alterations? The sufficiency of chronic postsynaptic

activity blockade in triggering presynaptic changes

suggests that a trans-synaptic signaling is important

for presynaptic homeostasis [6,18]. But is the presyn-

aptic terminal limited to playing a passive role, waiting

for instructions from its postsynaptic partner? Or, does it

play a more active role in this process by directing its

postsynaptic partner to allow the correlation? We now

turn to a discussion on the mechanisms of presynaptic

adaptation.

Presynaptic adaptation
Chronic activity blockade induces an enhancement of

presynaptic function as suggested by the enlargement

of presynaptic terminals, an increase in the frequency of

excitatory quantal responses, an enhancement of synaptic

vesicle turnover, and an increase in pr, which are paral-

leled by an increase in quantal size [8,13,19,20]. Although

homeostatic changes in quantal size are generally

ascribed to the postsynaptic component, an additional

presynaptic component attributed to activity-dependent

modulation of vesicular glutamate transporter expression

has been described [20]. In particular, presynaptic mech-

anisms that underlie homeostatic changes in pr are poorly

understood. Given the strong dependence of neurotrans-

mitter release on Ca2+, Ca2+-dependent signaling path-

ways are likely to be involved. This is indeed supported

by studies at the Drosophila NMJ showing that changes in
www.sciencedirect.com 
Ca2+ entry through P/Q type Ca2+ channels account at

least partially for activity-dependent compensatory

changes of the presynaptic strength [21–23]. Similarly,

at vertebrate central synapses, presynaptic homeostasis

has been suggested to occur by changing the amount of

Ca2+ entry into the terminal in response to a spike [24].

How is the Ca2+ influx modified by synaptic activity?

Recent studies show that the Ca2+ sensor synaptotagmin,

the synaptic vesicle protein SV2B implicated in facilitat-

ing pr [25], and the pore forming subunit Cav2.1 of P/Q

type Ca2+ channels become enriched at presynaptic term-

inals upon activity blockade [26]. Taken together, these

findings raise the possibility that pr is homeostatically

regulated by controlling the number of voltage sensitive

Ca2+ channels mediating the Ca2+ influx into the presyn-

aptic terminal and by tuning the Ca2+ responsiveness of

the neurotransmitter release machinery.

A second crucial issue is how the synaptic vesicle cycle is

homeostatically regulated to support the adjustment of

release. RIM and its interacting proteins Rab are possible

molecular candidates involved in the process. They are

essential for basal and activity-dependent neurotransmit-

ter release, and their levels show a steep correlation with

synaptic activity [25,27]. Furthermore, a study suggests

that Rab3-GAP, by binding to a yet unidentified homeo-

static repressor, regulates the progression of the synaptic

vesicle cycle to provide additional control on the activity-

dependent regulation of release [28�].

Postsynaptic scaling and trans-synaptic co-
ordination
The first and the most commonly studied form of homeo-

static plasticity is the global synaptic scaling that involves a

cell-wide increase or decrease of postsynaptic AMPARs

[2,4]. There are many well-documented reviews on

different aspects of this phenomenon [2–5]. Here we

discuss the retrograde signaling initiated during postsyn-

aptic scaling and its importance in modifying presynaptic

function. That adaptation to inactivity involves a presyn-

aptic increase in vesicle turnover in a manner dependent

on postsynaptic changes, has been convincingly demon-

strated recently [29,30�,31]. How might postsynaptic

activity blockade produce changes in presynaptic func-

tion? This presynaptic enhancement seems to be

mediated by a bCAMKII-dependent-upregulation of

surface GluA1 in postsynaptic neurons and by at least

two retrograde messengers that work in series along the

same signaling pathway: BDNF and NO [29,30�,31]

(Figure 1c). Interestingly, BDNF application by itself

has no effect on surface GluA1 levels, indicating that

BDNF acts downstream of GluA1. Furthermore, BDNF

has been previously suggested to regulate both the organ-

ization of N type and P/Q type calcium channels and

neurotransmitter release under basal conditions [32].

Taken together, BDNF could be a key player in initiating

the presynaptic changes in concert with changes at the
Current Opinion in Neurobiology 2012, 22:516–521
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Figure 1
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Co-ordination of synaptic strengths across a network. (a) Representative scheme of three connected neurons. A postsynaptic neuron (yellow) receives

inputs from two presynaptic neurons (red and blue) across its dendritic arbor. How heterosynaptic interactions between the red and the blue inputs

occur at the level of individual synapses is not known. The scheme in (b) illustrates, at the synapse resolution, a possible interaction between a

synapse belonging to the red input undergoing LTP and another (near or distant) synapse from the blue input showing compensatory depression. One

possible mechanism involved in the heterosynaptic interaction is the spreading of Ca2+-dependent signaling molecules. (c) Retrograde signaling

involved in matching of the presynaptic and the postsynaptic strengths under chronic synaptic activity blockade. This mechanism involves the

postsynaptic accumulation of b-CaMKII and surface GluA1-containing AMPARs, followed by the postsynaptic release of BDNF and NO, and the

subsequent increase in synaptic vesicle recycling.
postsynaptic side, and it would be of interest to study

whether BDNF and NO could modify Ca2+ influx to

mediate the enhancement of presynaptic function during

homeostatic synaptic adaptation.

Global versus local: how specific is
homeostatic plasticity to individual synapses?
The spatial extent over which neurons perceive activity

changes and implement the homeostatic response remains

unclear. Are the activity changes sensed at each individual

synapse, the single neuron or the entire network? How do

synapses co-ordinate their response to normalize global

network activity? These questions are difficult to address

as the degree of compartmentation of homeostatic

plasticity is likely to depend on a variety of parameters
Current Opinion in Neurobiology 2012, 22:516–521 
including the connectivity, the state of synaptic maturation

and, perhaps most importantly, the induction stimulus.

A popular paradigm used to elicit homeostatic plasticity is

the global and chronic pharmacological treatment of

cultured neurons to either enhance or block neuronal

activity [4]. Do all synapses respond uniformly to such

global activity manipulations? TTX and bicuculline treat-

ments, for instance, have been shown to induce multi-

plicative postsynaptic scaling up or down that is

suggestive of a uniform effect on all synapses [4]. This

in turn implicates the operation of a cell-wide mechanism

to scale all postsynaptic sites in response to a global

activity challenge. Recent studies support the existence

of such presumed cell-wide mechanisms involving sig-

naling cascades triggered by Ca2+ influx, and requiring
www.sciencedirect.com
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molecules such as Arc, Homer1a, retinoic acid, and Polo-

like kinase2, to produce the uniform scaling of synapses

on a same neuron [33–38]. Furthermore, a growing idea

stipulates that a single neuron can ‘sense’ activity changes

and engage a cell-autonomous homeostatic response

[6,36,39�]. Nevertheless, should activity changes be het-

erogenous across different subcellular regions, it is not

clear how a single neuron would integrate local differ-

ences to elicit a global response. Notably, astrocytes also

appear to be important players in this global homeostatic

response and might control the spatial extent of the

scaling by releasing TNFa in the extracellular space

[7]. A better understanding of the three dimensional

spatial configuration of astrocyte–neuron interaction

and the mode of release of TNFa should help to clarify

how TNFa signaling is embedded in the mechanism of

global scaling. The uniform adjustment of synaptic

strengths is potentially important as it allows to conserve

the relative differences between synaptic weights, which

are likely to be crucial for the storage and processing of

specific information. How this global multiplicative scal-

ing is translated at single synapses with differing initial

strengths and the mechanism by which each synapses

insert the proportionate number of postsynaptic receptors

to scale their strengths by some uniform factor remain

unknown.

This prevailing view of global multiplicative scaling may

be challenged by the observed scaling of presynaptic

strengths in some experimental conditions, where it

remains unclear whether this presynaptic adaptation is

achieved uniformly in co-ordination with postsynaptic

scaling. For instance, a non-uniform scaling of both pre-

synaptic and postsynaptic functions in response to pro-

longed AMPARs blockade or chronic TTX treatment has

been shown in hippocampal neurons in dissociated and

organotypic cultures and also in vivo [8,11,40]. These

studies suggest that the pattern of synaptic connectivity

and activation may be a divisive factor in enabling distant

synapses on a same postsynaptic neuron to undergo co-

ordinated changes. The importance of synaptic organiz-

ation is further highlighted by work in organotypic hippo-

campal and cortical cultures showing that different types

of synaptic inputs within a same circuit adapt differently

to global activity deprivation [41,42].

Studies in which activity is locally manipulated have

provided compelling support to the spatial compartmen-

tation of homeostatic plasticity [43,44]. These studies

show that dendrites, independently from the cell body,

can homeostatically respond to prolonged activity block-

ade through the local synaptic incorporation of newly

synthesized GluA1-containing AMPARs. Such a confined

homeostatic response may have a presynaptic component

as presynaptic boutons also adapt by adjusting their pr to a

local and prolonged dendritic stimulations [18]. Recent

work using single synapse manipulation has provided a
www.sciencedirect.com 
direct evidence of a synapse-autonomous homeostatic

response. Silencing single inputs by overexpressing the

inwardly rectifying potassium channel Kir2.1 in cultured

hippocampal neurons induces an accumulation of GluA2-

lacking AMPARs at corresponding postsynaptic sites

but not at neighboring synapses [45,46�]. Intriguingly,

this scaling relies on Arc-dependent signaling [46�],
suggesting that global and local homeostatic regulations

share similar mechanisms. Collectively, these studies

highlight the ability of single synapses/inputs to sense

and integrate local activity in an autonomous manner. As a

consequence, these findings raise the question of the

balance between autonomy and co-operation amongst

synapses: how do autonomous synapses co-ordinate their

synaptic strength changes with each other to maintain

the stability of global network activity? We consider this

issue below.

Interplay between homeostatic and Hebbian
plasticity: role of heterosynaptic interactions
Computational modeling has shown that long-term

changes in synaptic weights are difficult to achieve without

a ‘normalizing’ mechanism to regulate total synaptic

strength or excitability [47–49]. In this regard, compensa-

tory heterosynaptic changes might provide a useful mech-

anism for synaptic homeostasis and for optimizing the

lifetime of memory traces during ongoing learning.

Electrophysiological studies in well-characterized systems,

including the amygdala and the hippocampus, have pro-

vided direct evidence for such heterosynaptic interactions

between identified inputs: long-term plasticity elicited at

one set of inputs (homosynapses) can be balanced by

opposite, presumably homeostatic, changes at other synap-

tic inputs (heterosynapses) on the same postsynaptic

neuron [50,51] (Figure 1a and b). Although electrophysi-

ology allows manipulating and monitoring specific func-

tional connections, postsynaptic response of each

connection represents the behavior of a synapse population

and it gives no information about the spatial distribution of

individual synaptic weights contributing to the connection.

The inability to observe the behavior of individual

synapses is however overcome by recent advances in

imaging techniques with high spatial resolution, which

has provided important clues concerning the extent of

spatial confinement of plasticity elicited at single synapses.

For instance, a recent report using two photon imaging and

glutamate uncaging to trigger LTP at single spines high-

lights the importance of Ca2+-dependent local interactions

involving Ras signaling in promoting the spread of

plasticity over very short distances along a dendrite [52].

Despite an incomplete spatial description of changes

affecting the global distribution of synaptic weights, this

study suggests that fine-tuned interactions can occur post-

synaptically at least between nearby synapses.

Finally, activity-dependent heterosynaptic interactions

are believed to be particularly important during critical
Current Opinion in Neurobiology 2012, 22:516–521
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periods in the developing nervous system, when synaptic

afferents undergo experience-dependent competition to

refine circuits. This competition serves to stabilize some

connections and eliminate others, and in several central

and peripheral systems the underlying mechanism has

been shown to rely on Hebbian forms of synaptic

plasticity [53]. Recent work suggests that synaptic

competition also involves homeostatic plasticity. Manip-

ulating visual experience during developmental critical

periods by dark rearing or monocular deprivation (MD)

induces a compensatory scaling of synaptic responses in

the visual cortex and thalamus deprived of input activity

[12,54–56]. Interestingly, two recent studies indicate that

occular dominance plasticity in the visual cortex where

the competition between synaptic inputs from the two

eyes drives the refinement, may result from the interplay

between Hebbian and homeostatic forms of plasticity

[56,57]. In particular, the occular dominance shift follow-

ing MD is likely to emerge from first, the fast and lasting

depression of deprived-eye responses and second, the

delayed TNFa-dependent, and presumably homeo-

static, potentiation of open-eye responses [57]. Collec-

tively these studies establish the in vivo functional

relevance of homeostatic plasticity in the developing

visual system.

Concluding remarks
The last several years have seen a surge of interest in

homeostatic forms of synaptic plasticity. Nevertheless,

our understanding not only of the underlying molecular

mechanisms but also of the basic properties of homeo-

static synaptic plasticity remains rudimentary. For

instance, we do not know how many different forms of

homeostatic adaptive mechanisms operate in parallel at

individual synapses. Here we have attempted to highlight

the co-ordination of adaptation of synaptic strengths

across the two sides of a synapse and amongst synapses

shared by a neuron. Given that the original appeal of

homeostatic synaptic plasticity has been its counter

relationship to Hebbian processes, further characteriz-

ation of homeostatic alterations in association with Heb-

bian plasticity will be important.
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