On cardinal sequences of scattered spaces

Juan Carlos Martínez

Facultat de Matemàtiques, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain

Received 18 March 1997

Abstract

It was proved by Dow and Simon that there are 2^{ω_1} (as many as possible) pairwise nonhomeomorphic compact, T_2, scattered spaces of height ω_1 and width ω. In this paper, we prove that if α is an ordinal with $\omega_1 \leq \alpha < \omega_2$ and $\theta = (\kappa_\xi; \xi < \alpha)$ is a sequence of cardinals such that either $\kappa_\xi = \omega$ or $\kappa_\xi = \omega_1$ for every $\xi < \alpha$, then there are 2^{ω_1} pairwise nonhomeomorphic compact, T_2, scattered spaces whose cardinal sequence is θ. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: Cantor–Bendixson derivatives; Scattered spaces; Cardinal sequences

AMS classification: 54G12; 06E99

A topological space X is called scattered, if every closed subspace of X has an isolated point. A useful tool in the study of scattered spaces is the Cantor–Bendixson process for topological spaces. If X is a topological space and α is an ordinal, we define the α-derivative of X by induction on α as follows: $X^0 = X$; if $\alpha = \beta + 1$, $X^\alpha = \{x \in X: x$ is an accumulation point of $X^\beta\}$; and if α is limit, $X^\alpha = \bigcap\{X^\beta: \beta < \alpha\}$. For every ordinal β, we define the β-level of X by $I_\beta(X) = X^\beta \setminus X^{\beta+1}$. It is well known that a space X is scattered if and only if there is an ordinal α such that $X^\alpha = \emptyset$.

Suppose that X is a scattered space. Then we define the height of X by $ht(X) = \beta$ the least ordinal β such that X^β is finite, and we define the cardinal sequence of X by $CS(X) = (|I_\beta(X)|: \beta < ht(X))$. All the spaces we consider are Hausdorff. By an LCS-space we mean a locally compact, Hausdorff, scattered space. Note that if X is an LCS-space with cardinal sequence θ and X is not compact, then the one-point compactification of X has also cardinal sequence θ. If $\alpha > 0$ is an ordinal and X is an LCS-space, we say that X is an (ω, α)-space if $CS(X) = \theta$ where θ is the sequence

1 The preparation of this paper was supported by DGICYT Grant PB94-0854.
2 E-mail: martinez@cerber.mat.ub.es.
An LCS-space X is called thin-tall, if X is an (ω, ω_1)-space. It was proved by Rajagopalan and, independently, by Juhász and Weiss that there exists a thin-tall space. In [3], it was even proved by Juhász and Weiss that for every ordinal α such that $0 < \alpha < \omega_2$, there exists an (ω, α)-space. However, it is known that the existence of an (ω, ω_2)-space is independent of the axioms of Set Theory (see [1]). On the other hand, it was proved by Dow and Simon in [2] that there are 2^{ω_1} (as many as possible) pairwise nonhomeomorphic thin-tall spaces. From the proof of this result we can infer by using a standard argument that for every ordinal α such that $\omega_1 \leq \alpha < \omega_2$, there are also 2^ω pairwise nonhomeomorphic (ω, α)-spaces. The aim of this paper is then to prove that if α is an ordinal with $\omega_1 \leq \alpha < \omega_2$ and $\theta = \langle \kappa_\xi : \xi < \alpha \rangle$ is a sequence of cardinals such that either $\kappa_\xi = \omega$ or $\kappa_\xi = \omega_1$ for every $\xi < \alpha$, then there are 2^ω pairwise nonhomeomorphic LCS-spaces whose cardinal sequence is θ.

This paper is divided in two sections. In the first one, we consider the case of cardinal sequences of length ω_1. In the second section, we first prove that for every ordinal $\alpha < \omega_2$ and every cardinal sequence $\theta = \langle \kappa_\xi : \xi < \alpha \rangle$ where $\kappa_\xi \in \{\omega, \omega_1\}$ for each $\xi < \alpha$, there is an LCS-space with cardinal sequence θ, and then we prove that the construction given in Section 1 can be generalized to any uncountable ordinal $< \omega_2$.

We want to remark that results on cardinal sequences for LCS-spaces have a direct translation to the context of superatomic Boolean algebras (i.e., Boolean algebras in which every subalgebra is atomic), since it is known that the notion of a compact, Hausdorff, scattered space is the dual notion of a superatomic Boolean algebra.

1. Cardinal sequences of length ω_1

We fix a cardinal sequence $\theta = \langle \kappa_\xi : \xi < \omega_1 \rangle$ where $\kappa_\xi \in \{\omega, \omega_1\}$ for every $\xi < \omega_1$. Then, by using a refinement of the argument carried out in [2, Section 2], we shall construct 2^{ω_1} pairwise nonhomeomorphic LCS-spaces with cardinal sequence θ. The underlying set of the 2^{ω_1} spaces we want to construct will be the set

$$D = \bigcup \{\{\xi\} \times \kappa_\xi : \xi < \omega_1\}.$$

For every $n < \omega$, we define the column C_n by $\omega_1 \times \{n\}$. Now suppose that X is an LCS-space of underlying set D such that $I_\xi(X) = \{\xi\} \times \kappa_\xi$ for any $\xi < \omega_1$. Let S be a stationary subset of ω_1. Then, for $n < \omega$, we say that S is associated to C_n in X, if for every $x = (\xi, n) \in C_n$ where ξ is a limit ordinal, the following holds:

1. If $\xi \in S$, then for every neighbourhood U of x there is a $\zeta < \xi$ such that $\{(\mu, n) : \zeta < \mu \leq \xi\} \subseteq U$.
2. If $\xi \notin S$, there is a neighbourhood U of x such that $U \cap C_n = \{x\}$.

Then we say that X is an admissible θ-space, if the following conditions hold:

(*) (1) For each $n < \omega$, C_n is a closed subset of X.
(2) For each $n < \omega$, there is a stationary subset of ω_1 associated to C_n in X.
(3) For every $x \in X$ there is a neighbourhood U of x such that $U \setminus \{x\} \subseteq \bigcup\{C_n : n < \omega\}$.
Lemma 1. If X and Y are admissible θ-spaces and $f : X \to Y$ is a homeomorphism, then for every $k < \omega$ there are an $n < \omega$ and a $\xi < \omega_1$ such that $f''(C_k \cap X^\xi) = C_n \cap Y^\xi$.

Proof. It is clear that for every $x \in X$, if $x \in I_\beta(X)$ then $f(x) \in I_\beta(Y)$. We consider ω_1 with the order topology. Then, if $N \subseteq \omega_1$ we write $N' = \{\xi < \omega_1 : \xi$ is an accumulation point of $N\}$. Let S be the stationary subset associated to C_k in X. We have that $f''(C_k) \cup \{C_n : n < \omega\}$ is countable. To check this point, note that otherwise if we put $N = \{\zeta < \omega_1 : (\zeta, \mu) \in f''(C_k) \setminus \{C_n : n < \omega\} \text{ for some } \mu < \omega_1\}$, then there is a $\rho \in S \cap N'$. Now, by using $(*)$(3), we infer that no point of Y can be the image under f of the point (ρ, k). On the other hand, if for $k < \omega$ there are $m, n < \omega$ with $m \neq n$ such that $C_n \cap C_m$ are uncountable, then if we put $M = \{\zeta < \omega_1 : (\zeta, m) \in f''(C_k)\}$ and $N = \{\zeta < \omega_1 : (\zeta, n) \in f''(C_k)\}$, we have that there is a $\rho \in S \cap N' \cap N'$. Now, we would infer from $(*)$(1) that no point of Y can be the image under f of (ρ, k). □

In what follows, if x is a point of an LCS-space X, when we consider a neighbourhood U of x, we shall tacitly assume that if β is the ordinal such that $x \in I_\beta(X)$, then $U \cap X^\beta = \{x\}$.

By a decomposition of an infinite set a, we mean a partition of a in infinite subsets.

Theorem 1. Let S be a stationary subset of ω_1. Then, there is an admissible θ-space X such that for each $n < \omega$, S is the stationary subset associated to C_n in X.

Proof. We construct by transfinite induction on $\xi < \omega_1$ a space X_ξ satisfying the following conditions:

1. The underlying set of X_ξ is $\bigcup\{X_\xi^{(\mu)} : \mu \leq \xi\}$ where $X_\xi^{(\mu)} = \{\mu\} \times \omega$ if $\kappa_\mu = \omega$ or $\xi \leq \omega$, $X_\xi^{(\mu)} = \{\mu\} \times \xi$ if $\kappa_\mu = \omega_1$ and $\xi > \omega$.
2. X_ξ is an LCS-space such that $I_\mu(X_\xi) = X_\xi^{(\mu)}$ for every $\mu \leq \xi$.
3. For every $n < \omega$, $C_n \cap X_\xi$ is a closed subset of X_ξ.
4. If ξ is limit and $\xi \in S$, then for every $n < \omega$ and every neighbourhood U of (ξ, n) there is a $\zeta < \xi$ such that $\{(\mu, n) : \zeta < \mu \leq \xi\} \subseteq U$.
5. If ξ is limit and $\xi \notin S$, then for each $n < \omega$ there is a neighbourhood U of (ξ, n) such that $U \cap C_n = \{(\xi, n)\}$.
6. For every $x \in X_\xi$ there is a neighbourhood U of x such that $U \setminus \{x\} \subseteq \bigcup\{C_n : n < \omega\}$.
7. If $\xi < \eta$ and $x \in X_\xi$, then a neighbourhood basis of x in X_ξ is also a neighbourhood basis of x in X_η.
8. If $\xi < \eta$, then every compact subset of X_ξ is a compact subset of X_η.

We define X_0 as the ordinal ω with the order topology. Then, assume $\xi > 0$. Without loss of generality, we may assume that $\xi \geq \omega$ and $\kappa_\xi = \omega_1$. First, we suppose $\xi = \mu + 1$. To construct X_ξ we previously define for each $\alpha \leq \mu$ an LCS-space Y_α such that $ht(Y_\alpha) = \xi, I_\beta(Y_\alpha) = \{\beta\} \times \xi$ if $\beta \leq \alpha$ and $\kappa_\beta = \omega_1$, and $I_\beta(Y_\alpha) = I_\beta(X_\mu)$ otherwise.
In addition, we shall have that if $\beta < \alpha \leq \mu$ and $x \in Y_\beta$, then a neighbourhood basis of x in Y_β is also a neighbourhood basis of x in Y_α. The construction of Y_0 is immediate. Then, assume that α is limit. Let Y be the direct union of $\{Y_\beta: \beta < \alpha\}$. If $\kappa_\alpha = \omega$, we put $Y_\alpha = Y$. Then, suppose $\kappa_\alpha = \omega_1$. We have to define a neighbourhood basis of the point (α, μ). Let $\{x_n: n < \omega\}$ be an enumeration of Y. For each $n < \omega$, we construct an open compact neighbourhood U_n of some y_n in Y as follows. We take U_0 as an open compact neighbourhood of x_0 such that $U_0 \setminus \{x_0\} \subseteq \bigcup\{C_n: n < \omega\}$. If $n > 0$, let y_n be the first element in the enumeration $\{x_n: n < \omega\}$ such that $y_n \not\in U_0 \cup \cdots \cup U_{n-1}$.

Then we choose U_n as an open compact neighbourhood of y_n such that:

1. $U_n \setminus \{y_n\} \subseteq \bigcup\{C_k: k < \omega\}$.
2. For all $m < n$, if $y_n \not\in C_m$ then $U_n \cap C_m = \emptyset$.
3. $U_n \cap (U_0 \cup \cdots \cup U_{n-1}) = \emptyset$.

Let $\{z_n: n < \omega\}$ be an enumeration of $X_\mu(\mu)$. Note that for every $n < \omega$ there is a $k_n < \omega$ such that $z_n = y_{k_n}$. Then, we define $W_n = U_{k_n}$. Let $\{\beta_n: n < \omega\}$ be a sequence of ordinals converging to α in a strictly increasing way. Now, for each $n < \omega$ we choose an element $v_n \in I_{\beta_n}(X_\mu) \cap W_n$ and an open compact neighbourhood V_n of v_n with $V_n \subseteq W_n$. Put $v = (\alpha, \mu)$. Then we define a basic neighbourhood of v as a set of the form $\{v\} \cup \bigcup\{V_n: n > k\}$ where $k < \omega$. If α is a successor ordinal, we would proceed in a similar way. Now, put $Z = Y_\mu$. The underlying set of X_ξ is $Z \cup \{\xi\} \times \xi$. If $x \in Z$, a basic neighbourhood of x in X_ξ is a basic neighbourhood of x in Z. Proceeding as above, we construct for each $n < \omega$ an open compact neighbourhood U_n of some y_n in Z satisfying $(+)$(1)–(3) in such a way that $\{U_n: n < \omega\}$ is a partition of Z. For each $n < \omega$, put $v_n = (\mu, n)$ and then consider the neighbourhood V_n chosen for v_n.

Let $\{t_n: n < \omega\}$ be an enumeration of $\{\xi\} \times \xi$. Let $\{a_n: n < \omega\}$ be a decomposition of ω. For $n < \omega$, we define a basic neighbourhood of t_n in X_ξ as a set of the form $\{t_n\} \cup \bigcup\{V_k: k \in a_n \setminus m\}$ where $m < \omega$.

Now suppose that ξ is a limit ordinal. If $\xi \not\in S$, we can construct X_ξ by means of an argument similar to the one given in the successor case. So, we assume that $\xi \in S$. Let Z be the direct union of $\{X_\mu: \mu < \xi\}$. The underlying set of X_ξ is $Z \cup (\{\xi\} \times \xi)$. If $x \in Z$, a basic neighbourhood of x in X_ξ is a basic neighbourhood of x in Z. As above, for every $n < \omega$ we choose a neighbourhood U_n of some y_n in Z verifying $(+)$(1)–(3) in such a way that $\{U_n: n < \omega\}$ is a partition of Z. Put $Y = \{y_n: n < \omega\}$. For every $n < \omega$, put $t_n = (\xi, n)$. Let $\{U'_n: n < \omega\}$ be an enumeration of the set $\{(\xi, \zeta): \omega < \zeta < \xi\}$. Fix $n < \omega$. Our purpose is to define a neighbourhood basis of t_n.

By using $(+)$(2), it is easy to check that for every $\zeta < \xi$, $Y \cap \{(\mu, n): \zeta < \mu < \xi\}$ is infinite. Set $Y \cap C_n = \{v_m: m < \omega\}$. For each $m < \omega$, put $V_m = \bigcup\{V_m': m < \omega\}$. Note that there is a $\zeta < \xi$ such that $\{(\mu, n): \zeta < \mu < \xi\} \subseteq W_n$. Then, we define a basic neighbourhood of t_n as a set of the form $\{t_n\} \cup \{V_m': m > k\}$ where $k < \omega$. Note that $\{W_n: n < \omega\}$ is pairwise disjoint. To define a neighbourhood basis of a point t'_n, we consider a sequence of ordinals $\langle \xi_n: n < \omega\rangle$ converging to ξ in a strictly increasing way and then, for each $k < \omega$, we choose $u_k \in Y \cap C_k \cap Z_\xi$. Now, for $k < \omega$, consider the neighbourhood V'_k chosen for u_k (as an element of Y). Note that $V'_k \subseteq W_k$ for each $k < \omega$. Let $\{a_n: n < \omega\}$ be a
decomposition of \(\omega \). Fix \(n < \omega \). Then, we define a basic neighbourhood of \(t'_n \) as a set of the form \(\{ t'_n \} \cup \{ V'_m : n \in \alpha_n \setminus k \} \) where \(k < \omega \).

Now we define the desired space \(X \) as the direct union of the spaces \(X_\xi \) for \(\xi < \omega_1 \).

Theorem 2. Let \(\theta = \langle \kappa_\alpha : \alpha < \omega_1 \rangle \) where \(\kappa_\alpha \in \{ \omega, \omega_1 \} \) for each \(\alpha < \omega_1 \). Then, there are \(2^{\omega_1} \) pairwise nonhomeomorphic LCS-spaces with cardinal sequence \(\theta \).

Proof. Let \(\langle S_\xi : \xi < 2^{\omega_1} \rangle \) be a sequence of stationary subsets of \(\omega_1 \) such that if \(\mu < \xi < 2^{\omega_1} \), \(S_\xi \setminus S_\mu \) is stationary. By using Theorem 1, for every \(\xi < 2^{\omega_1} \) there is an admissible \(\theta \)-space \(X_\xi \) such that \(S_\xi \) is associated to each column in \(X_\xi \). Now, we infer from Lemma 1 that if \(\mu < \xi < 2^{\omega_1} \), then \(X_\mu \) and \(X_\xi \) are not homeomorphic.

2. Cardinal sequences of length greater than \(\omega_1 \)

Our aim here is to extend the construction given in Section 1 to any uncountable ordinal \(\eta < \omega_2 \). First, we need to prove the following result:

Theorem 3. Let \(\alpha \) be an ordinal such that \(0 < \alpha < \omega_2 \). Let \(\theta = \langle \kappa_\xi : \xi < \alpha \rangle \) be a sequence of cardinals such that either \(\kappa_\xi = \omega \) or \(\kappa_\xi = \omega_1 \) for every \(\xi < \alpha \). Then, there is an LCS-space \(X \) such that \(CS(X) = \theta \).

In the proof of Theorem 3 we will extend the argument given by Juhász and Weiss in [3]. If \(\beta \) is an ordinal and \(\tau = \langle \lambda_\xi : \xi < \beta \rangle \) is a sequence of cardinals with \(\lambda_\xi \in \{ \omega, \omega_1 \} \) for every \(\xi < \beta \), we denote by \(K_\tau \) the class of all the LCS spaces \(X \) such that \(CS(X) = \tau \).

Suppose that \(\tau_1 = \langle \lambda_\xi : \xi \leq \alpha_1 \rangle \), \(\tau_2 = \langle \lambda_\xi : \xi \leq \alpha_2 \rangle \) are sequences of cardinals such that \(\lambda_\xi \in \{ \omega, \omega_1 \} \) for every \(\xi < \alpha_1 \), \(\lambda_\alpha_1 = \omega \), \(\lambda'_\omega = \omega \) and \(\lambda'_\xi \in \{ \omega, \omega_1 \} \) for every \(\xi \) such that \(0 < \xi < \alpha_2 \). Assume that \(X \in K_{\tau_1} \) is a \(\sigma \)-compact space such that \(I_{\alpha_1 + 1}(X) = \emptyset \) and \(Y \in K_{\tau_2} \) is a space such that \(X \cap Y = \emptyset \). Then we define the LCS-space \(X \otimes Y \) as follows. The underlying set of \(X \otimes Y \) is \(X \cup (Y \setminus I_0(Y)) \). Let us consider an enumeration \(\{ u_n : n < \omega \} \) of \(I_{\alpha_1}(X) \) and an enumeration \(\{ v_n : n < \omega \} \) of \(I_0(Y) \). Since \(X \) is a paracompact space, for every \(n < \omega \) we can choose a compact open neighbourhood \(U_n \) of \(u_n \) in such a way that \(\{ U_n : n < \omega \} \) is a discrete family. Then, if \(x \in X \) we define a basic neighbourhood of \(x \) as a neighbourhood of \(x \) in \(X \), and if \(x \in Y \setminus I_0(Y) \) we define a basic neighbourhood of \(x \) as a set of the form \(\{ V \setminus I_0(Y) \} \cup \{ U_n : v_n \in V \} \), where \(V \) is a basic neighbourhood of \(x \) in \(Y \). Consider \(\tau = \langle \kappa_\xi : \xi \leq \alpha_1 + \alpha_2 \rangle \) where \(\kappa_\xi = \lambda_\xi \) for \(\xi < \alpha_1 \) and \(\kappa_\xi = \lambda'_\mu \) if \(\xi = \alpha_1 + \mu \) where \(0 < \mu \leq \alpha_2 \). Then, it can be proved that \(X \otimes Y \in K_\tau \). Note that if in addition \(Y \) is \(\sigma \)-compact, then \(X \otimes Y \) is also \(\sigma \)-compact.

Let \(\beta \) be an ordinal such that \(\text{cf}(\beta) \leq \omega \). Let \(\tau = \langle \lambda_\xi : \xi < \beta \rangle \) be a sequence of cardinals such that \(\lambda_\xi \in \{ \omega, \omega_1 \} \) for every \(\xi < \beta \). Suppose that \(X \in K_\tau \) is a \(\sigma \)-compact space with \(I_\beta(X) = \emptyset \) and \(T = \{ t_\xi : \xi < \omega_1 \} \) is a set of different elements which do not occur in \(X \). Then we define a space \(H(X, T) \) of underlying set \(X \cup T \) such that
$H(X,T)$ is an LCS-space with $ht(H(X,T)) = \beta + 1$, $I_\xi(H(X,T)) = I_\xi(X)$ for $\xi < \beta$, $I_\beta(H(X,T)) = T$ and $I_{\beta+1}(H(X,T)) = \emptyset$. First we assume that $\beta = \gamma + 1$ is a successor ordinal. Then, if $x \in X$ we define a basic neighbourhood of x as a neighbourhood of x in X. Since X is σ-compact, we infer that $I_\gamma(X)$ is a countable set. Let $\{y_n: n < \omega\}$ be an enumeration of $I_\gamma(X)$. For every $n < \omega$ we consider a compact open neighbourhood U_n of y_n in such a way that $\{U_n: n < \omega\}$ is a discrete family. Let $\{a_\xi: \xi < \omega_1\}$ be an almost disjoint family of ω. Then, for every $\xi < \omega_1$, a basic neighbourhood of t_ξ is a set of the form $\{t_\xi\} \cup \bigcup\{U_m: m \in a_\xi, m > k\}$ where $k < \omega$. Analogously, if $\text{cf}(\beta) = \omega$ we consider a sequence of ordinals $\langle \beta_n: n < \omega \rangle$ converging to β in a strictly increasing way, and then for each $n < \omega$ we choose a point $z_n \in I_{\beta_n}(X)$ and a compact open neighbourhood U_n of z_n in such a way that $\{U_n: n < \omega\}$ is a discrete family. As above we consider an almost disjoint family $\{a_\xi: \xi < \omega_1\}$ of ω, and then we define as a basic neighbourhood of t_ξ a set of the form $\{t_\xi\} \cup \bigcup\{U_m: m \in a_\xi, m > k\}$ where $k < \omega$. Proceeding in a similar way, we can define a space $H(X,T)$ if T is an infinite countable set of elements not occurring in X. Note that in this case $H(X,T)$ is σ-compact.

Proof of Theorem 3. We show that for every ordinal $\alpha < \omega_2$ and every sequence of cardinals $\theta = \langle \kappa_\xi: \xi \leq \alpha \rangle$ where $\kappa_\xi \in \{\omega, \omega_1\}$ for each $\xi \leq \alpha$, we can construct a space $X \in K_\theta$ with $I_\xi(X) = \{\xi\} \times \kappa_\xi$ for every $\xi \leq \alpha$ and $I_{\alpha+1}(X) = \emptyset$. We construct the space X by transfinite induction on α. Without loss of generality we may assume that $\kappa_\alpha = \omega_1$. The case $\alpha = 0$ is immediate. Then suppose $\alpha = \beta + 1$. Let $\theta_\beta = \langle \kappa_\xi: \xi \leq \beta \rangle$. By the induction hypothesis, $K_{\theta_\beta} \neq \emptyset$. Let $\theta'_\beta = \langle \kappa_\xi: \xi < \beta \rangle$. Since $K_{\theta_\beta} \neq \emptyset$, it follows that there is a compact space $Z_0 \in K_{\theta'_\beta}$. Let Z_1 be the topological sum of a family of ω disjoint copies of Z_0. Then we define $Z = H(Z_1, \{\alpha\} \times \omega_1)$. Now let us consider a $Y \in K_{\theta_\beta}$ such that $Y \cap Z = \emptyset$. Let X be the topological sum of Y and Z. Then, it follows that $X \in K_\theta$.

Next assume that α is a limit ordinal such that $\text{cf}(\alpha) = \omega$. Let $\langle \alpha_n: n < \omega \rangle$ be a sequence of ordinals converging to α in a strictly increasing way. For each $n < \omega$, we put $\theta_n = \langle \kappa_\xi: \xi \leq \alpha_n \rangle$. By the induction hypothesis, for each $n < \omega$ there is a compact space $Y_n \in K_{\theta_n}$. We may assume that the Y_n are pairwise disjoint. Let Y be the topological sum of the Y_n for $n < \omega$. Then we define $X = H(Y, \{\alpha\} \times \omega_1)$. We have $X \in K_\theta$.

Now assume that α is a limit ordinal such that $\text{cf}(\alpha) = \omega_1$. Let $\langle \gamma_\mu: \mu < \omega_1 \rangle$ be a closed sequence of ordinals converging to α in a strictly increasing way such that $\text{cf}(\gamma_\mu) \leq \omega$ for each $\mu < \omega_1$. Let $\langle \alpha_\xi: \xi < \nu \rangle$ be the order-preserving enumeration of the γ_μ such that $\kappa_{\gamma_\mu} = \omega_1$. Without loss of generality we may suppose that $\nu = \omega_1$. In order to find a space $X \in K_\theta$, we construct by transfinite induction on $\xi \in [\omega, \omega_1]$ an “approximation” X_ξ such that the following conditions hold:

1. The underlying set of X_ξ is $\bigcup\{X_\xi^\beta: \beta \leq \alpha_\xi\} \cup X_\xi^{(\alpha)}$ where $X_\xi^\beta = \{\beta\} \times \kappa_\beta$ if $\beta \notin \{\alpha_\mu: \mu \leq \xi\} \cup \{\alpha\}$ and $X_\xi^{(\beta)} = \{\beta\} \times \xi$ if $\beta \in \{\alpha_\mu: \mu \leq \xi\} \cup \{\alpha\}$.
2. X_ξ is a σ-compact LCS-space such that $X_\xi^{(\beta)} = I_\beta(X_\xi)$ for each $\beta \leq \alpha_\xi$ and $X_\xi^{(\alpha)} = I_{\alpha_\xi+1}(X_\xi)$.

(3) $X_{\xi} \setminus X_{\xi}^{(\alpha)}$ with the relative topology of X_{ξ} is a σ-compact LCS-space.

(4) If $\omega \leq \mu < \xi$ and $x \in X_{\mu}^{(\beta)}$ for some $\beta \leq \alpha_{\mu}$, then a neighbourhood basis of x in X_{μ} is also a neighbourhood basis of x in X_{ξ}.

(5) If $\omega \leq \mu < \xi$ and $C \subseteq X_{\mu} \setminus X_{\xi}^{(\alpha)}$ is a compact subset of X_{μ}, then C is a compact subset of X_{ξ}.

Moreover if $\omega \leq \xi < \omega_1$, we will define for each $x \in X_{\xi}^{(\alpha)}$ a canonical neighbourhood $W_{x}^{(\xi)}$ of x in X_{ξ} in such a way that the following two conditions hold:

(1) If $\omega \leq \mu < \xi < \omega_1$ and $x \in X_{\mu}^{(\alpha)}$, then $W_{x}^{(\mu)} \subseteq W_{x}^{(\xi)}$.

(2) If $\omega \leq \mu < \xi < \omega_1$ and $x, y \in X_{\mu}^{(\alpha)}$ with $x \neq y$, then $W_{x}^{(\mu)} \cap W_{y}^{(\mu)} = W_{x}^{(\xi)} \cap W_{y}^{(\xi)}$.

For each $x \in X_{\xi}^{(\alpha)}$, we will define a clopen neighbourhood basis of x in X_{ξ} from the canonical neighbourhood $W_{x}^{(\xi)}$. Furthermore, we shall have that $W_{x}^{(\xi)}$ is a compact neighbourhood of x.

In order to construct X_{ω}, we define by induction on $n < \omega$ a σ-compact LCS-space Y_{n} with $ht(Y_{n}) = \alpha_{n} + 1$, $I_{\alpha_{n}+1}(Y_{n}) = \emptyset$ and such that if $m < n < \omega$, Y_{m} is an open subspace of Y_{n} and for any $\zeta \leq \alpha_{n}$, $I_{\zeta}(Y_{n}) = I_{\zeta}(Y_{m})$. We assume $\alpha_{0} > 0$. Let $\tau_{0} = \langle \kappa_{\beta} : \beta < \alpha_{0} \rangle$. By the induction hypothesis, there is a compact space $Z_{0} \in K_{\tau_{0}}$. Then we define Y_{0} as the topological sum of ω disjoint copies of Z_{0}. Next assume $n = m + 1$. Let $\delta = o.t.(\alpha_{m} \setminus \alpha_{n})$. Let $\tau = \langle \lambda_{\zeta} : \zeta < \delta \rangle$ where $\lambda_{0} = \omega$ and $\lambda_{\zeta} = \kappa_{\alpha_{n}+\zeta}$ if $0 < \zeta < \delta$. Again by the induction hypothesis, there is a compact space $Z_{0} \in K_{\tau}$. Let Z_{1} be the topological sum of ω disjoint copies of Z_{0}. Then we define $Y_{n} = Y_{m} \otimes Z_{1}$. Let Y' be the direct union of the spaces Y_{n} for $n < \omega$. Without loss of generality we may suppose that α_{ω} is the limit of $\{\alpha_{n} : n < \omega\}$. Then we put $Y = H(Y', \{\alpha_{\omega} \times \omega\})$. We define the underlying set of X_{ω} as $Y \cup \{\omega\} \times \omega)$. If $x \in X_{\omega}$, a basic neighbourhood of x in X_{ω} is a neighbourhood of x in Y. For each $n < \omega$, we put $y_{n} = (\omega, n)$ and $y_{n}^{*} = (\omega, n)$. For each $n < \omega$ we can choose a compact open neighbourhood U_{n} of y_{n} in Y in such a way that $\{U_{n} : n < \omega\}$ is a discrete family. Let $\{a_{n} : n < \omega\}$ be a decomposition of ω. Then we define for each $n < \omega$, the canonical neighbourhood of x_{n} in X_{ω} by $W_{x_{n}}^{(n)} = \{x_{n}\} \cup \bigcup_{k \in a_{n}} \{U_{k} : k \in a_{n}\}$. Now, for every $n < \omega$, we define a basic neighbourhood of x_{n} in X_{ω} as a set of the form $W_{x_{n}}^{(n)} \setminus C$ where $C \subseteq W_{x_{n}}^{(n)} \setminus \{x_{n}\}$ is a compact open subset of Y.

Now we assume $\xi = \mu + 1$ with $\omega \leq \mu < \omega_{1}$. In order to construct X_{ξ} we define for each $\zeta \leq \mu$ a σ-compact LCS-space Y_{ζ} such that $ht(Y_{\zeta}) = \alpha_{\mu} + 2$, $I_{\beta}(Y_{\zeta}) = \{\beta\} \times \xi$ if $\beta \in \{\alpha_{\rho} : \rho \leq \zeta\}$, $I_{\beta}(Y_{\zeta}) = I_{\beta}(X_{\mu})$ otherwise. First we fix an enumeration $\{x_{n} : n < \omega\}$ of $\{a\} \times \mu$. In order to define Y_{0}, we assume that α_{0} is a successor ordinal, say $\alpha_{0} = \beta_{\delta} + 1$. If α_{0} is a limit ordinal, we would use a similar argument by using the fact that $cf(\alpha_{0}) = \omega$. For every $x \in X_{\mu}$, we define a basic neighbourhood of x in Y_{0} as a neighbourhood of x in X_{μ}. Now we consider a discrete family $\{V_{n} : n < \omega\}$ of compact open neighbourhoods of the points x_{n} in X_{μ}. For each $n < \omega$ we consider a $z_{n} \in V_{n} \cap I_{\beta_{n}}(X_{\mu})$ and a compact open neighbourhood U_{n} of z_{n} with $U_{n} \subseteq V_{n}$. We put $y = (\alpha_{0}, \mu)$. Then we define a basic neighbourhood of y as a set of the form $\{y\} \cup \bigcup_{k \in \omega} \{U_{k} : k > m\}$ where $m < \omega$. Proceeding in a similar way, we can construct $Y_{\xi+1}$ from Y_{ξ}, and Y_{ξ} from the union of the Y_{η} for $\eta < \zeta$ if ζ is limit. Now we put
$Y = Y_\mu$. Again since Y is a paracompact space, we can choose a discrete collection \(\{V_n : n < \omega\} \) of compact open neighbourhoods of the points x_n in Y. For each $n < \omega$, we consider V_n with the relative topology of Y. Then, for every $n < \omega$ we define a σ-compact LCS-space Z_n such that $ht(Z_n) = \alpha_\xi + 1$, $I_\beta(Z_n) = I_\beta(V_n)$ for each $\beta \leq \alpha_\mu$, and in such a way that the Z_n are pairwise disjoint. Let $\delta = o.t. (\alpha_\xi \setminus \alpha_\mu)$. Let $\tau = (\lambda_\rho : \rho < \delta)$ where $\lambda_0 = \omega$ and $\lambda_\rho = \kappa_{\alpha_\mu + \rho}$ if $0 < \rho < \delta$. Let $\{a_n : n < \omega\}$ be a decomposition of $\{\alpha_\xi\} \times \xi$.

Let us fix a natural number n. We put $a_n = \{y_m : m < \omega\}$. For each $m < \omega$, we consider a compact space $Z_{ym} \in K_\tau$ such that $I_\delta(Z_{ym}) = \{ym\}$. We suppose that the Z_{ym} are pairwise disjoint. Then we define Z' as the topological sum of the family $\{Z_{ym} : m < \omega\}$, and we put $Z_n = (V_n \setminus \{x_n\}) \otimes Z'$. Now we define Z as the topological sum of the family $\{Z_n : n < \omega\}$. We then define X_ξ as follows. The underlying set of X_ξ is $Y \cup Z \cup \{(a, \mu)\}$. If $x \in Y \setminus \{(a) \times \xi\}$, a basic neighbourhood of x is the set $V_\mu \setminus \{x\}$. If $x \in \{a\} \times \xi$, a basic neighbourhood of x in X_ξ is the set $U_\mu \setminus \{x\}$. Let $\{\alpha_n : n < \omega\}$ be an enumeration of $\{a\} \times \xi$. We choose a discrete collection $\{V_n : n < \omega\}$ of compact open neighbourhoods of the points x_n in Y. Let us consider a decomposition $\{a_n : n < \omega\}$ of $\{\alpha_n\} \times \xi$. Let $\{\beta_m : m < \omega\}$ be a sequence of ordinals converging to α_ξ in a strictly increasing way. We fix a natural number n. We consider V_n with the relative topology of Y. For each $m < \omega$, we consider a $z_m \in I_{\beta_m}(V_n)$ and a compact open neighbourhood U_m of z_m in V_n such that $\{U_m : m < \omega\}$ is a discrete family in $V_n \setminus \{x_n\}$. We set $a_n = \{y_k : k < \omega\}$. We fix a decomposition $\{b_k : k < \omega\}$ of ω. Then we define a basic neighbourhood of a point y_k in X_ξ as the set $\{y_k\} \cup \{U_m : m \in b_k, m > l\}$ where $l < \omega$. Now we define the canonical neighbourhood of a point x_n in X_ξ by $W_{\xi_n}^{(x)} = W_{x_n} \cup a_n$. Then, a basic
neighbourhood of x_n in X_ξ is a set of the form $W_{x_n}^{(\xi)} \setminus C$ where C is a compact open subset of $W_{x_n}^{\xi} \setminus \{x_n\}$.

Finally we define the space X as follows. The underlying set of X is $\bigcup\{X_\xi: \omega \leq \xi < \omega_1\}$. If $x \in X_\xi \setminus \{\alpha\} \times \omega_1$ for some $\xi < \omega_1$, a basic neighbourhood of x in X is a basic neighbourhood of x in X_ξ. If $x \in \{\alpha\} \times \omega_1$, we put $W_x = \bigcup\{W_x^{(\xi)}: \omega \leq \xi < \omega_1\}$. Then we define a basic neighbourhood of x in X as a set of the form $W_x \setminus C$ where $C \subseteq W_x \setminus \{x\}$ is a compact open subset of X_ξ for some $\xi < \omega_1$. It can be verified that $X \in K_\theta$. □

Theorem 3 is in a sense best possible, since under CH we have that if $\theta = (\kappa_\xi: \xi < \eta)$ is such that $\kappa_\alpha = \omega$ and $\kappa_\beta = \omega_2$ for some $\alpha < \beta < \eta$, then there is no LCS-space X such that $\text{CS}(X) = \theta$. To check this point, assume on the contrary that there is an LCS-space X with $\text{CS}(X) = \emptyset$. For every $x \in X^\alpha$ consider a clopen neighbourhood U_x of x. Now, we put $a_x = U_x \cap I_\alpha(X)$. Since we are assuming that if γ is the ordinal such that $x \in I_\gamma(X)$ then $U_x \cap X^\gamma = \{x\}$, we have that $x \neq y$ implies $a_x \neq a_y$. Hence, we can identify every point of X^α with a subset of $I_\alpha(X)$. Also, it was proved by Baumgartner in [1] that if it is consistent that there exists an inaccessible cardinal, then it is consistent with $2^\omega = \omega_2$ that there is no LCS-space with cardinal sequence $\theta = (\kappa_\xi: \xi \leq \omega_1)$ where $\kappa_\xi = \omega_1$ for each $\xi < \omega_1$ and $\kappa_{\omega_1} = \omega_2$. On the other hand, Juhász has pointed out that in a collaboration with Weiss, they have proved that if $\theta = (\kappa_\xi: \xi < \omega_1)$ is a sequence of cardinals such that $\kappa_\xi < 2^\omega$ for each $\xi < \omega_1$, then there is an LCS-space X such that $\text{CS}(X) = \emptyset$.

Next, combining the arguments given in the proofs of Theorems 1 and 3 we can show the following result, whose proof is left to the reader. As above, we write $C_n = \omega_1 \times \{n\}$ for $n < \omega.$

Lemma 2. Suppose that $\theta = (\kappa_\xi: \xi < \omega_1)$ is a sequence of cardinals such that $\kappa_\xi \in \{\omega, \omega_1\}$ for every $\xi < \omega_1$ and $\kappa_{\omega_1} = \omega_1$. Then, there is an LCS-space X with $I_\xi(X) = \{\xi\} \times \kappa_\xi$ for $\xi < \omega_1$ and $I_{\omega_1+1}(X) = \emptyset$ such that the following two conditions are satisfied:

1. For every $x \in X \setminus I_{\omega_1}(X)$ and every $n < \omega$ there is a neighbourhood U of x such that $(U \setminus \{x\}) \cap C_n = \emptyset$.
2. For every $x \in X$ there is a neighbourhood U of x such that $U \setminus \{x\} \subseteq \bigcup\{C_n: n < \omega\}$.

Now, we can prove the main result.

Theorem 4. Let α be an ordinal such that $\omega_1 < \alpha < \omega_2$. Let $\theta = (\kappa_\xi: \xi < \alpha)$ be a sequence of cardinals such that either $\kappa_\xi = \omega$ or $\kappa_\xi = \omega_1$ for every $\xi < \alpha$. Then, there are 2^{ω_1} pairwise nonhomeomorphic LCS-spaces with cardinal sequence θ.

Proof. Let $\tau = (\kappa_\xi: \xi < \omega_1)$. Consider $\langle X_\xi: \xi < 2^{\omega_1} \rangle$ a sequence of pairwise nonhomeomorphic admissible τ-spaces constructed as in Theorem 2. Let X_ξ' be the one-point
compactification of X_ξ. Then, let Y_ξ be the topological sum of ω disjoint copies of X'_ξ. Let $\beta = o.t.(\alpha \setminus \omega_1)$. Now let $\tau' = (\kappa'_\xi: \xi < \beta)$ where $\kappa'_0 = \omega$, $\kappa'_\xi = \kappa_{\omega_1+\xi}$ if $0 < \xi < \beta$. By Theorem 3, there is an LCS-space Y such that $CS(Y') = \tau'$. For $\xi < 2^{\omega_1}$, we may assume that the underlying sets of Y and Y_ξ are disjoint. Then, we define $Z_\xi = Y_\xi \otimes Y$ for every $\xi < 2^{\omega_1}$. Note that if $\kappa_{\omega_1} = \omega$, we infer from the proof of Lemma 1 that the spaces Z_ξ are pairwise nonhomeomorphic LCS-spaces with cardinal sequence θ. So, assume that $\kappa_{\omega_1} = \omega_1$. Let $\tau^* = (\kappa_\xi: \xi \leq \omega_1)$. Let Z be an LCS-space of cardinal sequence τ^* which verifies the conditions of Lemma 2. We may assume that for every $\xi < 2^{\omega_1}$, the underlying sets of Z and Z_ξ are disjoint. Then, we define Z'_ξ as the topological sum of Z and Z_ξ. By using the argument given in Lemma 1, it is now easy to check that the spaces Z'_ξ are pairwise nonhomeomorphic LCS-spaces with cardinal sequence θ.

References