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Survival motor neuron protein fa
cilitates assembly of stress granules
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Abstract The survival motor neuron (SMN) protein forms
cytoplasmic granules when overexpressed. We report here that
SMN co-localizes with TIA-1/R and G3BP, protein assemblers
of stress granules (SGs), and that SMN is co-immunoprecipi-
tated with TIA-1/R, suggesting that SMN granules are SGs.
Formation of SMN granules precedes accumulation of TIA-1/R,
indicating that SMN serves as a facilitator of SG formation.
However, the exon 7 skipping product, SMND7, is largely
retained in the nucleus and forms nuclear granules, indicating
that exon 7 is critical for SG formation. Our findings reveal a
novel SMN function and possible SG involvement in the
pathogenesis of spinal muscular atrophy.
� 2004 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

Stress response is a protective cellular process induced by a

variety of environmental stresses including chemical exposure,

heat shock and UV irradiation. Transcription and translation

of specific stress-induced genes are prioritized in response to

stress, while many other genes are silenced. About 50% of total

poly(A)þ mRNA is actively recruited and dynamically sorted

into stress granules (SGs) [1] in response to stress-induced

phosphorylation of eukaryotic initiation factor (eIF) 2a [2].

Phosphorylation of eIF2a inhibits protein synthesis by pre-

venting formation of eIF2-GTP-Met-tRNAi complex. SGs are

not translationally competent, but rather serve as local storage

and protection compartments for mRNAs under translational

arrest. Once the stress is released, the SGs are disassembled,

and mRNAs are repacked into translationally competent

mRNPs and proteins are synthesized [3].

Efforts have been taken to identify SG components, how-

ever, the list is far from complete. The proteins found to ac-

cumulate in SGs include the RNA-binding proteins TIA-1

(T-cell internal antigen-1), TIAR (TIA-1-related protein) and

PABP (poly[A]þ mRNA binding protein) as well as a subset of

eIFs, including elF2, elF2B, elF3, elF4E and elF4G [4,5].

Under stressed conditions, TIA-1/R (TIA-1 and TIAR) shuttle
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from the nucleus into the cytoplasm and form large particles

by self-aggregation of prion-like domains at the C-termini of

TIA proteins, then modulating the formation of SGs [6]. This

process is facilitated by G3BP, a rasGAP-associated endori-

bonuclease [7]. Other proteins identified in SGs include 40S

ribosomal subunits S3 and S19, and two ARE-binding pro-

teins, the RNA-stabilizing protein HuR and the mRNA-de-

stabilizing protein TTP (tristetraprolin). Alternately, 60S

ribosomal subunits L5 and L37 and other ARE-binding pro-

teins, such as hnRNPA1 (heteronuclear RNP-A1) and

hnRNPD (heteronuclear RNP-D)/AUF-1 (AU-rich RNA

binding factor) are excluded, suggesting that components in

SGs are selective [5,6,8].

The survival motor neuron (SMN) protein is ubiquitously

expressed and distributed both in the cytoplasm and in the

nucleus where it concentrates in gems (gemini of coiled bodies)

[9]. There are two SMN genes, SMN1 and SMN2, which en-

code identical proteins. Loss-of-function of SMN1 is respon-

sible for the development of the autosomal recessive spinal

muscular atrophy (SMA) [10–12]. The SMN2 copy, which is

present in most of SMA patients, produces preferentially exon

7-skipping isoform, SMND7, and inadequate full-length pro-

tein that fail to protect motor neurons from the loss of the

SMN1 gene. We have recently observed the localization of

SMN protein in granule-like structures in the cytoplasm under

stressed conditions [13], consistent with previous reports that

SMN protein can form granule-like aggregates in the cyto-

plasm of human fetal muscle cells and rat motor neurons

[14,15], and in other cell types when overexpressed, or under

conditions of cellular starvation [16–19]. In this report, we

further demonstrate that the SMN granules are stress granules.
2. Materials and methods

2.1. Antibodies
Antibodies were from Santa Cruz Biotech (Santa Cruz, California)

(SMN polyclonal antibody H195), BD Transduction Laboratories
(Franklin Lakes, New Jersey) (monoclonal antibodies, anti-SMN and
anti-G3BP), EMD biosciences, Inc. (San Diego, California) (mono-
clonal antibody, anti-a-tubulin), Jackson ImmunoResearch Labora-
tories (West Grove, Pennsylvania) (FITC conjugated goat anti-rabbit
secondary antibody) or Molecular Probes (Eugene, Oregon) (Second-
ary antibodies: highly cross-adsorbed Alexa Fluor 488 goat anti-rabbit
and highly cross-adsorbed Alexa Fluor 633 goat anti-mouse). Mono-
clonal mouse anti-TIA-1/R antibody 3E6 was a generous gift from Dr.
Nancy L. Kedersha (Brigham and Woman’s Hospital, Boston).

2.2. Cell culture, stress treatment and immunofluorescence
HeLa cells, human neuroblastoma SKN-MC cells, human SMA

type I fibroblasts (3813 and 9677) and normal fetal fibroblasts
ation of European Biochemical Societies.
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Fig. 1. The endogenous SMN protein forms cytoplasmic granules
under stressed conditions. HeLa and SKN-MC cells were insulated by
incubation at 44 �C for 30 min or UV irradiation for 20 min. Immu-
nofluorescence analysis was then carried out by using anti-SMN an-
tibody (H195) and a FITC conjugated anti-rabbit secondary antibody
(green). Nuclei were counterstained using Hoechest dye (blue). (A)
HeLa cells. (B) SKN-MC cells heat shocked for 30 min. (C) Western
blot experiments by using a mouse anti-SMN antibody were per-
formed in the cytoplasmic and the nuclear extracts of cells incubated at
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(IMR-91) were cultured in DMEM supplemented with 10% fetal calf
serum, 2 mM glutamine and antibiotics (50 U/ml penicillin and 50 lg/
ml streptomycin) at 37 �C in 5% CO2. Cells growing on glass cover-
slips were insulted by UV irradiation or exposure to 0.5 or 1.0 mM
sodium arsenite, or by floating the plate in a 44 �C pan of water in a
CO2 incubator (heat shock) as described previously [1]. For heat shock
experiments, the temperature was gradually increased to 44 �C over a
period of 10 min. Immunofluorescence staining was then performed as
described [20]. The localization of proteins was visualized with a
confocal laser scanning microscope (Leica Microsystems, Inc., Ban-
nockburn, IL).

2.3. Plasmid constructions and transfection
Constructs, that express GFP-SMN and GFP-SMN deletion mu-

tants, were generated by inserting wild-type SMN and truncated
SMNs, amplified by PCR, into the polylinker region at BglII and SalI
sites following GFP in the pEGFP-C1 vector (Clontech). Hemagglu-
tinin-survival motor neuron (HA-SMN) cDNA or wild-type SMN
cDNA was cloned at BamHI and EcoRI sites in pcDNA3 vector (In-
vitrogen). Plasmids were transiently transfected into cells using the
calcium phosphate method. Cells with or without stress treatment were
analyzed by immunofluorescence or immunoprecipitation.

2.4. Immunoprecipitation and Western blot analysis
HeLa cells with or without exposure to heat shock at 44 �C for 30

min were mechanically detached from dishes and collected by centri-
fugation (1500 rpm at 4 �C for 5 min). Cells were then lysed in Buffer A
(10 mM HEPES, pH 7.8, 10 mM KCl, 0.1 mM EDTA, 0.1 mM
EGTA, 1 mM DTT, 1 mM PMSF and protease inhibitor cocktail
[Roche Applied Science]) supplemented with 0.6% NP-40 on ice for 15
min. Cytoplasmic fractions (supernatant) were collected by centrifu-
gation (14 000 rpm at 4 �C for 10 min). The pellets were then resus-
pended in Buffer B (20 mM HEPES, pH 7.9, 0.4 M NaCl, 1 mM
EDTA, 1 mM EGTA and protease inhibitor cocktail) and incubated
on ice for 1 h. Nuclear extracts were cleared by centrifugation at 14 000
rpm at 4 �C for 15 min. Presence of SMN and a-tubulin proteins in
cytoplasmic and nuclear extracts was detected by Western blot anal-
ysis. For co-immunoprecipitation, TIA-1/R were pulled down using
3E6 and protein G beads from HeLa lysates (50 mM Tris, pH 7.6, 150
mMNaCl, 2 mM EDTA, 2 mg/ml bovine serum albumin, 1% NP-40, 1
mM PMSF and protease inhibitor cocktail). Western blot analysis was
carried out for the presence of SMN.
44 �C for 30 min.
3. Results

3.1. SMN co-localizes with TIA-1/R in SGs and interacts with

TIA-1/R

We have previously shown that SMN forms granules in

HeLa cells in response to stress [13]. To investigate the sig-

nificance of this event, HeLa cells and neuronal SKN-MC cells

were insulted with heat shock or UV irradiation. Immunoflu-

orescence experiments were then conducted by using anti-

SMN antibody (H195). Our data shows that under harmful

conditions, SMN was redistributed and formed cytoplasmic

punctuated bodies in both cell types (Fig. 1A and B). We

designate the structures as cytoplasmic SMN granules. With

H195 antibody, we also detected gems in both normally cul-

tured and stressed cells (Fig. 1). Staining using a mouse

monoclonal anti-SMN antibody displayed similar patterns

(data not shown), eliminating the possibility of antibody arti-

facts. Western blot analysis demonstrated that no significant

change of relative SMN levels in the cytoplasm and the nucleus

(Fig. 1C) was observed, suggesting that the cytoplasmic SMN

aggregation is not caused by redistribution of SMN protein

from the nucleus into the cytoplasm. To further characterize

SMN granules, double immunofluorescence experiments were

performed for the endogenous SMN and TIA-1/R proteins,

two SG markers that promote the recruitment of untranslated
mRNAs to SGs [21]. Confocal microscopy analysis revealed

that SMN was mostly co-localized with TIA-1/R when HeLa

cells were exposed to either heat shock (Fig. 2A) or UV irra-

diation (data not shown). The SG distribution of the SMN

protein was further confirmed by its co-localization with G3BP

(Fig. 2B), a RasGAP interacting protein that was recently

described as an assembler for the formation of SGs in cells

insulted by heat shock [7]. Furthermore, co-immunoprecipi-

tation experiments from HeLa cells that were transfected with

SMN constructs demonstrated that SMN was strongly asso-

ciated with TIA-1/R (Fig. 2D and E). Arsenite, a widely used

stimulant promoting the formation of SGs, also induced co-

localization of SMN with TIA-1/R into SGs in both HeLa

(Fig. 2C) and SKN-MC cells (data not shown). Moreover,

emetine, a protein synthesis inhibitor that has been shown to

suppress SG formation [21], dispersed SMN granules

(Fig. 2C). Our results indicate that SMN granules are SGs.

3.2. SMN facilitates SG formation

To elucidate the relevance of SMN in formation of SGs, we

conducted a time-course experiment. When HeLa cells were

incubated at 44 �C for 20 min, a few loose SMN granules

began to emerge while the localization of TIA-1/R in the

granules was not observed. After incubation at 44 �C for 30

min, almost all of the cells formed SMN granules while TIA-1/



Fig. 2. SMN co-localizes with TIA-1/R and G3BP in SGs and is as-
sociated with TIA-1/R. HeLa cells were incubated at 44 �C for 30 min.
Double immunofluorescence experiments were performed using anti-
SMN antibody H195 and anti-TIA-1/R (3E6) or anti-G3BP, and
secondary antibodies against rabbit (Alexa Fluor 488, green) and
mouse (Alexa Fluor 633, red). Localization of proteins was monitored
by a confocal microscopy. Yellow represents co-localization. (A)
Double-staining for SMN and TIA-1/R. (B) Double staining for SMN
and G3BP. (C) Cellular distribution of SMN and TIA-1/R in HeLa
cells treated with 1 mM of arsenite for 30 min, or with 1 mM of ar-
senite for 30 min and then addition of 10 lg/ml of emetine for 60 min.
Cellular extracts from HeLa cells transfected with SMN (D) or HA-
SMN (E) were immunoprecipitated with anti TIA-1/A antibody 3E6 or
mouse IgG and then analyzed by western blotting with a monoclonal
anti-SMN antibody.

Fig. 3. SMN facilitates the formation of SGs. (A) Formation of SMN
granules preceded recruitment of TIA-1/R into SGs. HeLa cells were
cultured and incubated at 44 �C heat shock for 20, 30 and 40 min, or
re-incubated at 37 �C for 2 h after 30 min heat shock. Immunofluo-
rescence analysis of SMN and TIA-1/R proteins was performed. (B)
Overexpression of GFP-SMN fusion protein formed cytoplasmic
SMN granules in HeLa cells. TIA-1/R were detected in the granules.
GFP protein alone was used as a negative control. Treatment of cells
with 10 lg/ml of emetine for 1 h dispersed GFP-SMN granules in
HeLa cells.
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R were recruited into granules in only about 50% of cells.

However, after being exposed to 44 �C for 40 min, all HeLa

cells formed cytoplasmic granules with double positive staining

of SMN and TIA-1/R (Fig. 3A). These results suggest that the

formation of SMN granules precedes recruitment of TIA-1/R

with a time-dependent manner, indicating a possible role for

SMN as a facilitator for the formation of SGs. This notion is

further supported by the observation that punctuated SMN

aggregates in the cytoplasm, that were induced by overex-

pression of SMN contained TIA-I/R in 30–40% of transfected

cells (Fig. 3B). We again used emetine and proved that it

dispersed SMN granules triggered by overexpression of SMN

(Fig. 3B). Our results suggest that the formation of SGs may

be initiated and facilitated by SMN aggregated granules.

3.3. Exons 2a–2b are associated with stress induced formation

of granules

To determine which motifs affect the localization of SMN to

SGs, we generated multiple GFP fusion constructs with the

following regions of SMN: exons 1–2a, 1–2b, 2a–2b, 2b, 3–4, 3,

4, 2a–7, 2b–7, 3–7, 4–7, 5–7 or 6–7 (Fig. 4A). The fusion

proteins were expressed in HeLa cells and the assembly of

cytoplasmic SMN granules was monitored by immunofluo-

rescence. Considering that SGs are structures that accommo-

date many RNA species and RNA binding proteins, one

would expect that exons 2a–2b, an RNA binding domain [22],

would play a role in the localization of SMN into SGs. This

assumption was supported by the observation that small

granules were formed by overexpression of GFP-SMN exons
1–2b, 2a–2b, but not by overexpression of GFP-SMN exons 1–

2a or 2b alone (Fig. 4B). However, all fusion proteins that

contain either exons 3–4 or exons 4–7 in the absence of exons

2a–2b also automatically triggered the formation of small

SMN granules (Fig. 4C and D). Next, we tested whether stress

could influence the function of exons 2a–2b, 3–4 or 4–7 in

SMN granule assembly by exposing HeLa cells at 44 �C for 30

min. We observed a dramatic increase in the number of cells

(from 40% to 90% of transfected cells) to form cytoplasmic

granules, when the fusion proteins contained exons 2a–2b, but

no increase in the number of cells with granules (30%) when

transfected with constructs without exons 2a–2b. These data

indicate that while multiple regions of SMN may initiate as-

sembly of small SMN granules, exons 2a–2b operate in re-

sponse to stress.

3.4. C terminus of SMN modulates the formation of SMN

granules

To investigate the roles of SMN C-terminus in SG for-

mation, GFP fusion constructs containing SMN exons 1–5,



Fig. 4. Multiple regions of SMN are involved in the formation of SMN granules. The GFP fusion constructs with deletion mutant SMNs were
generated and transiently transfected into HeLa cells. Distribution of the fusion proteins and the TIA-1/R protein was examined by confocal im-
munofluorescence, 24 h after transfection under normal growth conditions. (A) Structures of GFP-SMN constructs. In this and the following figures,
‘‘Exon(s)’’ is abbreviated as ‘‘E’’. ): no granules; +: small granules; +++: large granules. (B) GFP fusion proteins with exons 2a–2b but not with exon
2a or 2b alone promoted the formation of granules. (C) GFP fusion proteins with exons 3–4 sufficiently promoted the formation of granules. (D)
Exons 4–7 facilitated granule formation.
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exons 1–6, or exons 1–6 with Y–G motif deletion (exons 1–6

m) were generated and transfected into HeLa cells (Fig. 5A).

To our surprise, GFP-SMN exons 1–6 were primarily local-

ized into highly concentrated nuclear granules while GFP-

SMN exons 1–6m, which lack the Y–G domain, exhibited

similar distribution patterns as GFP-SMN exons 1–5

(Fig. 5B). These observations suggest that the Y–G motif

might promote SMN protein distribution into nuclear gran-

ules in the absence of exon 7. In the presence of exon 7,

however, the effects of Y–G domain were reversed and the

protein of exons 1–7 was redistributed into cytoplasmic

granules. Interestingly, when exon 7 was replaced by a pep-

tide of 22 amino acids, which was derived from the multiple

cloning site of the vector as GFP-SMN exons 1–6+, distri-

bution of the fusion protein was primarily observed as

granules in the cytoplasm (Fig. 5B). We hypothesize that the

specific exon 7 sequence is not critical on SMN localization.

These results are consistent with the observations that

C-termini (exon 7) of human SMN and Drosophila SMN are

diversified, while Y–G domains within exon 6 are conserved

(Fig. 5A). Furthermore, to test the possible relevance of SGs

to the pathogenesis of SMA disease, SMA type I fibroblast
cells (cell lines 3813 and 9677) and normal control fetal fi-

broblast cells (IMR-91) were treated with heat shock. For-

mation of SGs in control cells with both SMN and TIA-1/R

staining was evident after prolonged exposure of 44 �C for 1

h, while only drastically smaller and much fainter granules

detected by TIA-1/R staining were observed in SMA type I

fibroblasts (Fig. 6).
4. Discussion

In mammalian cells, the characteristic feature of SMN

protein is the formation of gems in the nucleus. Using immu-

nofluorescence and confocal microscopy, we showed in this

report that SMN co-localized with TIA-1/R and G3BP in SGs.

This is the first description of endogenous cytoplasmic SMN

aggregates related to a known cellular structure, implicating

novel functions for SMN. Several lines of evidence indicate

that SMN is important for SG assembly. Detailed analysis

suggests that multiple regions can initiate SMN self-aggrega-

tion. However, to form large and smooth granules, the tudor

domain as well as exon 6 and exon 7, are indispensable. These



Fig. 6. SMA type I fibroblasts are defective in forming clear SGs. Distribution of endogenous SMN and TIA-1/R proteins was examined by immuno-
staining using antibodies H195 and 3E6 in SMA type I fibroblasts (cell lines 3813) and normal fetal fibroblasts (cell line IMR-91) after 60-min
exposure to heat shock.

Fig. 5. Formation of SMN granules and distribution of SMN proteins are regulated by the Y–G motif and exon 7. (A) Sequence alignments of C-
termini of GFP-SMN constructs, including GFP-SMN exons 1–6m (exons 1–6 with deleted Y–G motif), exons 1–6, and exons 1–6+ (exons 1–6 plus a
peptide of 22 amino acids derived from the poly-linker site of the vector). The C-terminus of dSMN was also aligned to show conservation of Y–G
motif and diversification of the sequence corresponding human SMN exon 7. (B) Distribution of GFP-SMN exons 1–5, exons 1–6, and exons 1–6+
together with the TIA-1/R proteins was examined in HeLa cells 24 h after transfection under a confocal immunofluorescence microscopy.
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observations together with the fact that exons 2a–2b alone are

responsible for the initiation of SMN granules under stress

suggest synergistic effects among these domains, particularly

when cells are under severe environmental stresses. However,

since some results are obtained in cell cultures and by using

tagged SMN constructs, spontaneous aggregation induced by

overexpression of these proteins may not be totally stress re-
lated. The tags may induce misfolding that nucleates aggre-

gation of SMN. On the other hand, co-immunoprecipitation of

untagged SMN and TIA-1/A indicates that overexpression

of SMN indeed induces SGs (Fig. 2D). Furthermore, defects of

SG formation in SMA fibroblasts, which express lower levels

of SMN protein, support the notion that SMN plays a role in

SG formation. However, more direct experiments should be
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conducted preferably in motor neurons to examine the possible

involvement of SGs in the pathogenesis of SMA.

It is important to point out that the Y–G motif within exon

6 is conserved across species and present in several other RNA

binding proteins [23], however, its function has not been well

defined. Immunofluorescence analysis clearly showed that ex-

ons 1–5 with intact exon 6 were translocated into the nucleus,

while deletion of Y–G motif reversed SMN distribution from

the nucleus into the cytoplasm, suggesting that Y–G motif is

essential for nuclear targeting. Interestingly, addition of extra

sequence of exon 7 or an unrelated sequence into exon 6

downstream inhibited the nuclear translocation. We hypothe-

size that although functions at the C-terminus (exon 7) of

SMN are largely unknown, its presence may modulate effects

of Y–G motif in exon 6. In contrast to a recent report that a

cytoplasmic localization sequence is present in exon 7 [18], we

conclude that the specific exon 7 sequence may not be im-

portant for the inhibition.
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