A Characteristic Property of Labelings and Linear Extensions of Posets of Dimension 2*

M arilena Barnabei and Flavio Bonetti

Dipartimento di Matematica. Università di Bologna. 40127 Bologna. Italv
metadata, citation and similar papers at core.ac.uk

R oberto Pirastu

Research Institute for Symbolic Computation, J. Kepler Universität, 4040 Linz, Austria
R eceived D ecember 19, 1996; accepted M ay 5, 1998

1. INTRODUCTION

The notion of dimension of a partially ordered set was introduced by Dushnik and Miller in 1941 [2]. Every partial order is the intersection of a family of linear orders; the dimension of the partial order is defined as the minimum number of linear orders in such a representation.

In particular, finite posets of dimension 2 are isomorphic to suborders of $N \times N$ or $N \times N^{*}$, where N denotes the set of nonnegative integer numbers with the natural linear order and N^{*} denotes the dual order. Furthermore, without loss of generality, one can say [10] that a poset of dimension 2 over n points is isomorphic to a suborder of the product of $\{1$, $2, \ldots, n\}$ and its dual. In general, such an isomorphism is not unique for a given poset of dimension 2 . There are, in fact, several ways to assign a pair of "coordinates" to each element of the poset, so that for p and q elements with coordinates (a, b) and (a^{\prime}, b^{\prime}), one has $p \leq q \Leftrightarrow a \leq a^{\prime}$ and $b \geq b^{\prime}$. We will call such a correspondence a labeling of the poset.

The main result of this work, Theorem 2, consists of proving that in every poset of dimension 2 the difference between the coordinates of each element does not depend on the chosen labeling. In other words, the

[^0]theorem states that, given a linear extension of the poset P, there is at most one way to extend this order to a labeling of P.

This result yields an efficient algorithm for computing all labelings of a finite poset. If the algorithm does not find any labeling, then the poset has dimension strictly greater than 2.

Note that a labeling of a poset of dimension 2 can be seen as a permutation; thus it corresponds to a pair of standard Y oung tableaux [6 , 8, 9], which are strictly related to the structure of the poset (refer to [3, 4]). Our algorithm produces all permutations and, hence, all pairs of Y oung tableaux associated with a given finite poset of dimension 2. For this reason the algorithm seems to be a useful tool for the study of the relationships between these pairs of tableaux.

2. LABELINGS OF FINITE POSETS OF DIMENSION 2

R ecall that a finite partially ordered set (P, \leq) has dimension 2 whenever the order relation " \leq " is the intersection of two different linear orders on P (refer to [2]). For our purposes it is convenient to express this fact in terms of labels, as in the following proposition, in which $[n$] denotes the set $\{1,2, \ldots, n\}$.

Proposition 1. Let (P, \leq) be a finite poset and $n=|P|$. Then (P, \leq) has dimension 2 if and only if there exists a map $\varphi: P \rightarrow[n]^{2}$ such that for every $p, q \in P$ with, say, $\varphi(p)=(a, b)$ and $\varphi(q)=\left(a^{\prime}, b^{\prime}\right)$, we have

$$
p \leq q \quad \Leftrightarrow \quad a \leq a^{\prime} \text { and } b \geq b^{\prime} .
$$

Without loss of generality [10], we can assume that $p \neq q$ implies $a \neq a^{\prime}$ and $b \neq b^{\prime}$.
We call such a map φ a labeling of P. Note that if φ is a labeling of P, then the maps

$$
\varphi_{l}: P \rightarrow[n], \varphi_{l}(p):=a \quad \text { and } \quad \varphi_{r}: P \rightarrow[n], \varphi_{r}(p):=b,
$$

where $\varphi(p)=(a, b)$, are linear extensions of P and of its dual P^{*}, respectively. Conversely, a linear extension $f: P \rightarrow[n]$ of P will be called a semilabeling of P if there exists a linear extension g of P^{*} such that the map

$$
\varphi: P \rightarrow[n]^{2}, \varphi(p)=(f(p), g(p))
$$

is a labeling of P.

Remark. It is easy to check that for a labeling φ of P, the map $\tilde{\varphi}$ defined by

$$
\tilde{\varphi}: P \rightarrow[n]^{2}, \tilde{\varphi}(p):=\left(n+1-\varphi_{r}(p), n+1-\varphi_{l}(p)\right)
$$

is a labeling of P as well. We call $\tilde{\varphi}$ the complementary labeling of φ.
A s an immediate consequence of the previous remark, we get that every finite poset of dimension 2 admits at least two different labelings and that a finite poset has dimension 1 if and only if it admits exactly one labeling φ that coincides with $\tilde{\varphi}$.

3. THE VARIANCE

We now introduce the concept of variance of a point p in P, which will be used in Theorem 2 below.

Definition. Let (P, \leq) be a finite poset. For every $p \in P$, set

$$
\delta^{+}(p):=|\{q \in P ; q \geq p\}|, \quad \delta^{-}(p):=|\{q \in P ; q \leq p\}|
$$

We define the variance of p as the integer

$$
\delta(p):=\delta^{+}(p)-\delta^{-}(p)
$$

Theorem 2. Let (P, \leq) be a finite poset of dimension 2 , with $n=|P|$ and $\varphi: P \rightarrow[n]^{2}$ a labeling of P. Then we have, for all $p \in P$,

$$
\delta(p)=\varphi_{r}(p)-\varphi_{l}(p)
$$

Proof. Let p be an arbitrary element in P with $\varphi(p)=(a, b)$. Consider the sets

$$
\begin{aligned}
& A:=\{(x, y) \in \varphi(P) ; x>a \text { and } y>b\}, \\
& B:=\{(x, y) \in \varphi(P) ; x<a \text { and } y<b\}, \\
& C:=\{(x, y) \in \varphi(P) ; x<a \text { and } y>b\},
\end{aligned}
$$

Then we have

$$
\begin{aligned}
n-\delta^{+}(p) & =|\{q \in P ; q \nexists p\}|=|A \cup B \cup C| \\
& =|A \cup C|+|B \cup C|-|C| .
\end{aligned}
$$

Since p is the only element in P with $\varphi_{l}(p)=a$ and $\varphi_{r}(p)=b$, and since $\varphi_{l}(P)=\varphi_{r}(P)=[n]$, we obtain

$$
\begin{aligned}
& |A \cup C|=|\{y \in[n] ; y>b\}|=n-b \\
& |B \cup C|=|\{x \in[n] ; x<a\}|=a-1,
\end{aligned}
$$

while $|C|=|\{q \in P ; q<p\}|=\delta^{-}(p)-1$. Hence

$$
n-\delta^{+}(p)=n-b+a-\delta^{-}(p),
$$

which gives the assertion.

4. THE ALGORITHM

Theorem 2 implies that a labeling φ of P is completely determined by the variance and by the semilabeling φ_{l} of P or, equivalently, by the semilabeling φ_{r} of P^{*}.

This suggests using the notion of variance to implement an algorithm that checks whether a given finite poset P has dimension 2 and, in such a case, constructs all possible labelings of P. We need to build all linear extensions φ_{l} of P and test whether $\varphi(p)=\left(\varphi_{l}(p), \varphi_{l}(p)+\delta(p)\right)$ defines a labeling of P.

Consider the classical algorithm for the construction of all linear extensions of a partial order (see, for instance, [7]), where $\min (A)$ denotes the set of minimal points of $A \subseteq P$ with respect to the given partial order and $n=|P|$:

Let $P_{0}=P$. Choose $p_{0} \in \min \left(P_{0}\right)$ and set $\omega\left(p_{0}\right):=1, P_{1}=P_{0} \backslash\left\{p_{0}\right\}$. Suppose now that $P_{1}, P_{2}, \ldots, P_{i}$ have already been constructed for some i with $1 \leq i<n$. Choose $p_{i} \in \min \left(P_{i}\right)$ and set $\omega\left(p_{i}\right)=i+1$. Then let $P_{i+1}=P_{i} \backslash\left\{p_{i}\right\}$ and repeat the procedure for $i+1$ until $i=n$.

We eventually get $P_{n}=\varnothing$ and $\omega: P \rightarrow[n]$ is a linear extension of P, having defined $p<{ }_{\omega} q \Leftrightarrow \omega(p)<\omega(q)$.
By executing all possible choices of $p \in \min \left(P_{i}\right)$, the algorithm produces all possible linear extensions of P by depth-first search. By Theorem 2, we only need to check if ω is a semilabeling, i.e., if the map $\varphi(p):=(\omega(p)$, $\omega(p)+\delta(p))$ is a labeling of P.
A partial check can be done during the construction itself, as soon as a new element $p \in P_{i}$ is chosen. A ssume that $\omega(p)$ is initially set to zero for all $p \in P$ and that the variance $\delta(p)$ has been computed; then the algorithm takes the following form:

Let $P_{0}=P$. Choose $p_{0} \in \min \left(P_{0}\right)$ and set $\omega\left(p_{0}\right):=1, P_{1}=P_{0} \backslash\left\{p_{0}\right\}$. Suppose now that $P_{1}, P_{2}, \ldots, P_{i}$ have already been constructed for some i with $1 \leq i<n$. Choose $p_{i} \in \min \left(P_{i}\right)$ with the property that there is no $j<i$ such that $\omega\left(p_{j}\right)+\delta\left(p_{j}\right)=(i+1)+\delta\left(p_{i}\right)$. If such an admissible p_{i} does not exist, then set $\omega\left(p_{i-1}\right)=0$ and go back to step $i-1$ to select a different p_{i-1}. Otherwise set $\omega\left(p_{i}\right)=i+1$ and let $P_{i+1}=P_{i} \backslash\left\{p_{i}\right\}$. Repeat recursively the procedure for $i+1$ until $i=n$ or no feasible choice is possible.

By considering all possible elements p_{i}, one gets all possible candidates for labelings of P. Note that we still have to test whether $(\omega, \omega+\delta)$ is indeed a labeling. The intermediate tests on the admissibility of the $p_{i}{ }^{\prime} \mathrm{s}$, though, cut a considerable number of branches from the search tree and shorten the execution time.
Terminating the algorithm whenever the first labeling is found gives a procedure for checking whether P has dimension 2.

5. SUPER-GREEDY DIMENSION

In [5] the super-greedy dimension of a poset P is defined to be the least integer t such that P is the intersection of t super-greedy linear extensions. A super-greedy linear extension of the finite poset P is defined as a linear extension of P obtained by the following linearization algorithm, called the Super-G reedy algorithm:

Set $P_{0}=\min (P)$ and choose $p_{1} \in P_{0}$.
Suppose $p_{1}, p_{2}, \ldots, p_{i}$ have been chosen for some i with $1 \leq i<|P|$. Let $M_{i}=\min \left(P \backslash\left\{p_{1}, \ldots, p_{i}\right\}\right)$
and $J_{i}=\left\{j ; 1 \leq j \leq i\right.$, and there exists $p \in M_{i}$ such that $p_{j}<p$ in $P\}$. If $J_{i} \neq \varnothing$, let k be the largest integer in J_{i} and set $P_{i}=\left\{p \in M_{i}\right.$; $\left.p_{k}<p\right\}$. Else, set $P_{i}=M_{i}$. Choose $p_{i+1} \in P_{i}$.
As in the previous section, we can add to the choosing step in this algorithm the intermediate check of admissibility of the semilabeling. Thus, we can speak of super-greedy labelings of P.

Furthermore, if P has dimension 2, then the super-greedy dimension of P is 2 as well (see Theorem 3 in [5]).

Therefore we can use the modified super-greedy algorithm to check if the dimension of P is 2 . This last method is more efficient than the algorithm in the previous section, since more branches of the search tree are not involved, as a consequence of a more restrictive choice of the $p_{i}{ }^{\prime} \mathrm{s}$.

REFERENCES

1. K. A. Baker, P. C. Fishburn, and F. S. R oberts, Partial orders of dimension 2, Networks 2 (1972), 11-28.
2. B. Dushnik and E. W. M iller, Partially ordered sets, Amer. J. Math. 63 (1941), 600-610.
3. S. V. Fomin, Finite partially ordered sets and Y oung tableaux, Sov. Math. Dokl. 19 (1978), 1510-1514.
4. C. Greene, A n extension of Schensted's theorem, Adv. Math. 14 (1974), 254-265.
5. H. A. Kierstead and W. T. Trotter, Super-greedy linear extensions of ordered sets, "Combinatorial M athematics, Proc. 3rd Int. Conf. New Y ork/NY (USA) 1985," Ann N.Y. Acad. Sci. 555 (1989), 262-271.
6. D. E. K nuth, Permutations, matrices and generalized Y oung tableaux, Pacific J. Math. 34 (1970), 709-727.
7. D. E. K nuth, "The A rt of Computer Programming I: Fundamental A Igorithms," 2nd ed., A ddison-W esley, R eading, M A, 1973.
8. G. de B. R obinson, "Representation Theory of the Symmetric Group," U niv. of Toronto Press, Toronto, 1961.
9. C. Schensted, Longest increasing and decreasing subsequences, Canad. J. Math. 13 (1961), 179-191.
10. M. P. Schützenberger, Quelques remarques sur une construction de Schensted, Math. Scand. 12 (1963), 117-128.
11. W. T. Trotter, "Combinatorics and Partially Ordered Sets," J ohns H opkins U niv. Press, Baltimore, M D, 1992.

[^0]: *This work was partially supported by MURST ex 40% and 60% projects, CNR project "calcolo simbolico," and by U niversity of Bologna, funds for selected research topics.

