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1. Introduction

In an attempt to find efficient q-shift operators to deal with basic hypergeometric series identities in the framework
of the q-umbral calculus [1,2,10], Chen and Liu [7,8] introduced two q-exponential operators, Fang [9] introduced a new
q-exponential operator, Chen and Gu [6] introduced a Cauchy operator for deriving identities from their special cases. In
this paper, motivated by their work, we study some applications of the Cauchy operator for basic hypergeometric series.

Following [5] we will define the q-shifted factorial by

(a;q)0 = 1, (a;q)n =
n−1∏
k=0

(
1 − aqk), (a;q)∞ =

∞∏
k=0

(
1 − aqk),

where a is a complex variable. And for convenience, we always assume 0 < q < 1 throughout the paper.
For a complex number α, we define

(a;q)α = (a;q)∞/
(
aqα;q

)
∞. (1.1)

We also adopt the following compact notation

(a1,a2, . . . ,am;q)n = (a1;q)n(a2;q)n . . . (am;q)n, n = 0,1,2, . . . ,∞.

In this paper, we will frequently use the following property

(
aq1−n/c;q

)
∞ = (−a/c)nq(−n

2 )(c/a;q)n(aq/c;q)∞, n = 0,1,2, . . . ,∞. (1.2)
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The q-binomial coefficient and the q-binomial theorem are given by[
n
k

]
= (q;q)n

(q;q)k(q;q)n−k
and

∞∑
n=0

(a;q)n

(q;q)n
xn = (ax;q)∞

(x;q)∞
, |x| < 1, (1.3)

respectively.
Recall that the q-difference operator is defined by

Dq
{

f (a)
} = f (a) − f (aq)

a
(1.4)

and the Leibniz rule for Dq is referred to the following identity

Dn
q

{
f (a)g(a)

} =
n∑

k=0

qk(k−n)

[
n
k

]
Dk

q

{
f (a)

}
Dn−k

q

{
g
(
aqk)}. (1.5)

The following relations are easily verified.

Proposition 1.1. Let k be a nonnegative integer. Then we have

Dk
q

{
1

(at;q)∞

}
= tk

(at;q)∞
,

Dk
q

{
(at;q)∞

} = (−t)kq(n
2)

(
atqk;q

)
∞,

Dk
q

{
(av;q)∞
(at;q)∞

}
= tk(v/t;q)k

(avqk;q)∞
(at;q)∞

.

We recall that Chen and Gu [6] introduced the Cauchy operator

T(a,b; Dq) =
∞∑

n=0

(a;q)n

(q;q)n
(bDq)

n, (1.6)

as the basis of parameter augmentation which serves as a method for proving extensions of the Askey–Wilson integral, the
Askey–Roy integral and so on.

Liu [12] established two general q-exponential operator identities by solving two simple q-difference equations. Zhu [15]
established the following q-exponential operator identity by solving a simple q-difference equation.

Proposition 1.2. Let f (a,b, c) be a three variables analytic function in a neighborhood of (a,b, c) = (0,0,0) ∈ C 3 , satisfying the
q-difference equation

(c − b) f (a,b, c) = abf (a,bq, cq) − bf (a,b, cq) + (c − ab) f (a,bq, c). (1.7)

Then we have

f (a,b, c) = T(a,b; Dq)
{

f (a,0, c)
}
. (1.8)

Proof. We write (1.7) in the form

c
{

f (a,b, c) − f (a,bq, c)
} = b

{
f (a,b, c) − f (a,b, cq) − af (a,bq, c) + af (a,bq, cq)

}
. (1.9)

Now we begin to solve this q-difference equation. From the theory of several complex variables (see, for example, [14]), we
may assume that

f (a,b, c) =
∞∑

n=0

An(a, c)bn (1.10)

and then substitute the above equation into (1.9) to obtain

c
∞∑

n=0

(
1 − qn)An(a, c)bn =

∞∑
n=0

{
An(a, c) − An(a, cq) − aqn An(a, c) + aqn An(a, cq)

}
bn+1.

Equating coefficients of bn , we readily find that, for each integer n � 1,
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An(a, c) = 1 − aqn−1

1 − qn
Dq,c

{
An−1(a, c)

}
.

By iteration, we easily deduce that

An(a, c) = (a;q)n

(q;q)n
Dn

q,c

{
A0(a, c)

}
. (1.11)

It remains to calculate A0(a, c). Putting b = 0 in (1.10), we immediately deduce that A0(a, c) = f (a,0, c). Substituting (1.11)

back into (1.10), we find that

f (a,b, c) =
∞∑

n=0

(a;q)n(bDq)
n

(q;q)n

{
f (a,0, c)

} = T(a,b; Dq)
{

f (a,0, c)
}
,

which completes the proof of proposition. �
If we take a = 0 and then substitute c with a in Proposition 1.2, it reduces to Theorem 1 of [12]. Proposition 1.2 tell us

that if a analytic function f (a,b, c) in three variables a, b and c satisfies q-difference equation (1.7), then we can recover
f (a,b, c) from its special case f (a,0, c). To get f (a,b, c) we should use the Cauchy operator T(a,b; Dq) to act on f (a,0, c).

In Section 2, we verify four operator identities.
In Section 3, we use the operator identities to obtain a generating function for Rogers–Szegö polynomials for hn(x, y|q).

And it can be stated in the equivalent forms in terms of the continuous big q-Hermite polynomial.
In Section 4, applying the technique of parameter augmentation to two multiple generalizations of q-Chu–Vandermonde

summation theorem given by Milne, we obtain two multiple generalizations of the Kalnins–Miller transformation which
extend the results of Zhang [16].

2. Cauchy operator identities

In fact, Proposition 1.2 contain the following two operator identities as special cases.

Theorem 2.1. We have

T(a,b; Dq)

{
1

(ct;q)∞

}
= (abt;q)∞

(bt, ct;q)∞
, (2.1)

provided |bt| < 1.

T(a,b; Dq)

{
1

(cs, ct;q)∞

}
= (abt;q)∞

(bt, cs, ct;q)∞
2φ1

(
a, ct
abt

;q,bs

)
, (2.2)

provided max{|bs|, |bt|} < 1.

Proof. We first prove (2.1). Using the identity, (x;q)∞ = (1 − x)(xq;q)∞ , by direct calculation, we find that

f (a,b, c) := (abt;q)∞
(bt, ct;q)∞

satisfies the functional equation

(c − b) f (a,b, c) = abf (a,bq, cq) − bf (a,b, cq) + (c − ab) f (a,bq, c).

And the identity (1.8) becomes

(abt;q)∞
(bt, ct;q)∞

= T(a,b; Dq)

{
1

(ct;q)∞

}

which is (2.1). Similarly we can verify that

f (a,b, c) := (abt;q)∞
(bt, cs, ct;q)∞

2φ1

(
a, ct
abt

;q,bs

)

satisfies the functional equation

(c − b) f (a,b, c) = abf (a,bq, cq) − bf (a,b, cq) + (c − ab) f (a,bq, c).

And the identity (1.8) becomes
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T(a,b; Dq)

{
1

(cs, ct;q)∞

}
= (abt;q)∞

(bt, cs, ct;q)∞
2φ1

(
a, ct
abt

;q,bs

)

which is (2.2). �
We can verify the following operator identity by using (2.1) directly.

Theorem 2.2. We have

T(a,b; Dq)

{
(cv;q)∞
(ct;q)∞

}
= (cv;q)∞

(ct;q)∞
2φ1

(
a, v/t

cv
;q,bt

)
, (2.3)

provided |bt| < 1.

Proof. Recall the operator identity in (2.1), namely

T(a,b; Dq)

{
1

(ct;q)∞

}
= (abt;q)∞

(bt, ct;q)∞
. (2.4)

We now introduce the following linear transform

L
{

tn} = (v/t;q)ntn, n = 0,1,2, . . . ,∞.

By the q-binomial theorem, we find that

L

{
1

(ct;q)∞

}
=

∞∑
n=0

cn

(q;q)n
L
{

tn}

=
∞∑

n=0

cn

(q;q)n
(v/t;q)ntn

= (cv;q)∞
(ct;q)∞

.

Employing the same type argument as the above, we have

L

{
(abt;q)∞

(bt, ct;q)∞

}
= (cv;q)∞

(ct;q)∞

∞∑
n=0

(a, v/t;q)n

(q, cv;q)n
(bt)n. (2.5)

Applying the operator L to both sides of (2.4) and then use the above two equations, we conclude that

T(a,b; Dq)

{
(cv;q)∞
(ct;q)∞

}
= (cv;q)∞

(ct;q)∞
2φ1

(
a, v/t

cv
;q,bt

)
,

which is (2.3). Thus we complete the proof of theorem. �
By using (2.2), we can verify the following operator identity.

Theorem 2.3.

T(a,b; Dq)

{
(cv;q)∞

(cs, ct;q)∞

}
= (abt, cv;q)∞

(bt, ct, cs;q)∞
3φ2

(
a, ct, v/s
abt, cv

;q,bs

)
, (2.6)

provided max{|bs|, |bt|} < 1.

Proof. Recall the operator identity in (2.2), namely

T(a,b; Dq)

{
1

(cs, ct;q)∞

}
= (abt;q)∞

(bt, cs, ct;q)∞
2φ1

(
a, ct
abt

;q,bs

)
.

It can be rewritten as

T(a,b; Dq)

{
1

(cs, ct;q)∞

}
= (abt;q)∞

(bt, ct;q)∞

∞∑ n∑ cn−kbk(a, ct;q)k

(q;q)n−k(q,abt;q)k
sn. (2.7)
n=0 k=0



D.-q. Lu / J. Math. Anal. Appl. 359 (2009) 265–274 269
We now introduce the following linear transform

L
{

sn} = (v/s;q)nsn, n = 0,1,2, . . . ,∞.

By the q-binomial theorem, we find that

L

{
1

(cs;q)∞

}
=

∞∑
n=0

cn

(q;q)n
L
{

sn}

=
∞∑

n=0

cn

(q;q)n
(v/s;q)nsn

= (cv;q)∞
(cs;q)∞

.

Applying the operator L to both sides of (2.7) and then use the above equation, we have

T(a,b; Dq)

{
(cv;q)∞

(cs, ct;q)∞

}
= (abt;q)∞

(bt, ct;q)∞

∞∑
n=0

n∑
k=0

cn−kbk(a, ct;q)k

(q;q)n−k(q,abt;q)k
(v/s;q)nsn

=
n∑

k=0

(a, ct, v/s;q)k(bs)k

(q,abt;q)k

∞∑
n=0

(vqk/s;q)n−k(cs)n−k

(q;q)n−k

=
∞∑

k=0

(a, ct, v/s;q)k(bs)k

(q,abt;q)k

∞∑
n=0

(vqk/s;q)n(cs)n

(q;q)n

=
∞∑

k=0

(a, ct, v/s;q)k(bs)k

(q,abt;q)k

(cvqk;q)∞
(cs;q)∞

= (abt, cv;q)∞
(bt, ct, cs;q)∞

∞∑
k=0

(a, ct, v/s;q)k(bs)k

(q,abt, cv;q)k
,

which is (2.6). Thus we complete the proof of theorem. �
3. The bivariate Rogers–Szegö

The bivariate Rogers–Szegö polynomials are introduced by Chen, Fu and Zhang [5], as defined by

hn(x, y|q) =
n∑

k=0

[
n
k

]
Pk(x, y). (3.1)

Setting y = 0, the polynomials hn(x, y|q) reduce to the classical Rogers–Szegö polynomials hn(x|y) defined by

hn(x|y) =
n∑

k=0

[
n
k

]
xk. (3.2)

The continuous big q-Hermite polynomials [11] are defined by

Hn(x,a|q) =
n∑

k=0

[
n
k

](
aeiθ ;q

)
kei(n−2k)θ , x = cos θ.

We observe that the bivariate Rogers–Szegö polynomials hn(x, y|q) are equivalent to the continuous big q-Hermite poly-
nomials owing to the following relation

Hn(x,a|q) = einθhn
(
e−2iθ ,ae−iθ

∣∣q)
, x = cos θ. (3.3)

The polynomials hn(x, y|q) have the generating function

∞∑
hn(x, y|q)

tn

(q;q)n
= (yt;q)∞

(t, xt;q)∞
, |t| < 1, |xt| < 1. (3.4)
n=0
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A direct calculation shows that

Dk
q

{
an} =

{
an−k(q;q)n/(q;q)n−k, 0 � k � n;
0, k > n.

(3.5)

From the identity (3.5), we can easily establish the following lemma.

Lemma 3.1. We have

T(a,b; Dq)
{

cn} =
n∑

k=0

[
n
k

]
(a;q)kbkcn−k. (3.6)

From (3.1) and (3.6), we can easily obtain

hn(x, y|q) = lim
c→1

T(y/x, x; Dq)
{

cn}. (3.7)

Carlitz [4] studied generating functions for Rogers–Szegö polynomials systematically and gave a formula

∞∑
n=0

hm+n(a|q)hn(b|q)
zn

(q;q)n
= (az;q)m(abz2;q)∞

(abz2;q)m(z,az,bz,abz;q)∞
2φ1

(
q−m,bz

q1−m/(az)
;q,

q

z

)
, (3.8)

where m ∈ N and max{|z|, |az|, |bz|, |abz|} < 1.
Cao [3] used the q-exponential operator to prove (3.8). In this section, we will use the Cauchy operator to derive (3.8)

for hn(x, y|q).

Theorem 3.1. We have

∞∑
n=0

hm+n(x, y|q)hn(u, v|q)
zn

(q;q)n
=

m∑
i=0

[
m
i

]
ai(b/a;q)i

(buzqi, vzqi;q)∞
(auz, uzqi, zqi;q)∞

3φ2

(
bqi/a, uzqi, v

buzqi, vzqi ;q,az

)
, (3.9)

where max{|az|, |auz|} < 1.

Proof. By Lemma 3.1, the left side of (3.9) can be written as

∞∑
n=0

lim
c→1

T(b/a,a; Dq)
{

cm+n}hn(u, v|q)
zn

(q;q)n
= lim

c→1
T(b/a,a; Dq)

{
cm

∞∑
n=0

hn(u, v|q)
(cz)n

(q;q)n

}

= lim
c→1

T(b/a,a; Dq)

{
cm (cvz;q)∞

(cz, cuz;q)∞

}
.

In view of (1.6) and (1.5), the above sum equals

lim
c→1

∞∑
n=0

(b/a;q)n

(q;q)n
an Dn

q

{
cm (cvz;q)∞

(cz, cuz;q)∞

}

= lim
c→1

∞∑
n=0

(b/a;q)n

(q;q)n
an

n∑
i=0

qi(i−n)

[
n
i

]
Di

q

{
cm}

Dn−i
q

{
(cqi vz;q)∞

(cqi z, cqiuz;q)∞

}
.

In view of (3.5), the above sum equals

lim
c→1

∞∑
n=0

(b/a;q)n

(q;q)n
an

n∑
i=0

qi(i−n)

[
n
i

]
(q;q)m

(q;q)m−i
cm−i Dn−i

q

{
(cqi vz;q)∞

(cqi z, cqiuz;q)∞

}

= lim
c→1

n∑
i=0

(q;q)maicm−i(b/a;q)i

(q;q)i(q;q)m−i

∞∑
n=0

(bqi/a)n−i

(q;q)n−i
qi(i−n)an−i Dn−i

q

{
(cqi vz;q)∞

(cqi z, cqiuz;q)∞

}

= lim
c→1

m∑
i=0

[
m
i

]
cm−iai(b/a;q)i

∞∑
n=0

(bqi/a;q)n

(q;q)n
q−inan Dn

q

{
(cqi vz;q)∞

(cqi z, cqiuz;q)∞

}

= lim
c→1

m∑[
m
i

]
cm−iai(b/a;q)i

∞∑ (bqi/a;q)n

(q;q)n

(
aq−i Dq

)n
{

(cqi vz;q)∞
(cqi z, cqiuz;q)∞

}
.

i=0 n=0
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In view of (1.6), the above sum equals

lim
c→1

∞∑
i=0

[
m
i

]
cm−iai(b/a;q)iT

(
bqi/a,aq−i; Dq

){ (cqi vz;q)∞
(cqi z, cqiuz;q)∞

}

= lim
c→1

∞∑
i=0

[
m
i

]
cm−iai(b/a;q)i

(buzqi, cvzqi;q)∞
(auz, cuzqi, czqi;q)∞

3φ2

(
bqi/a, cuzqi, v

buzqi, cvzqi ;q,az

)

=
∞∑

i=0

[
m
i

]
ai(b/a;q)i

(buzqi, vzqi;q)∞
(auz, uzqi, zqi;q)∞

3φ2

(
bqi/a, uzqi, v

buzqi, vzqi ;q,az

)
,

where max{|az|, |auz|} < 1. This complete the proof of theorem. �
Remark 3.1. Setting b = 0, v = 0 and u = b, (3.9) reduce to (3.8).

From the above theorem and (1.3), we get the following equivalent formula for Hn(x,a|q).

Corollary 3.1. We have

∞∑
n=0

Hm+n(x,a|q)Hn(u,b|q)
zn

(q;q)n
= eimθ

m∑
j=0

[
m
j

]
a j(b/a;q) j

(bzei(θ−β)q j,bzei(θ+2β)q j;q)∞
(azei(θ−β), zei(θ−β)q j, zei(θ+β)q j;q)∞

× 3φ2

(
bq j/a, zei(θ−β)q j,beiβ

bzei(θ−β)q j,bzei(θ+2β)q j ;q,azei(θ+β)

)
,

where x = cos θ , u = cosβ and max{|azei(θ−β)|, |azei(θ+β)q j |} < 1.

4. The U (n + 1) generations of the Kalnins–Miller transformation

Proposition 4.1 (The U (n + 1) generations of the q-Chu–Vandermonde summation theorem). (See [13, Theorem 5.10].) Let b, c and
x1, . . . , xn be indeterminate, let Ni be nonnegative integers for i = 1,2, . . . ,n with n � 1. Suppose that none of the denominators in
the following identity vanishes. Then{

bN1+···+Nn

n∏
i=1

(
xi
xn

c/b;q)Ni

(
xi
xn

c;q)Ni

}
=

∑
0�yi�Ni
i=1,2,...,n

{ ∏
1�r<s�n

[1 − xr
xs

qyr−ys

1 − xr
xs

] n∏
r,s=1

[
( xr

xs
q−Ns ;q)yr

(q xr
xs

;q)yr

]

×
n∏

i=1

[(
xi

xn
c;q

)−1

yi

]
(b;q)y1+···+yn qy1+2y2+···+nyn

}
. (4.1)

Proof. See [13]. �
Theorem 4.1 (The U (n + 1) generalization of the fourth Kalnins–Miller transformation). Let b, c, x, y and x1, . . . , xn be indeterminate,
let Ni be nonnegative integers for i = 1,2, . . . ,n with n � 1. Suppose that none of the denominators in the following identity vanishes,
and that max{|dx|, |dy|, |dyqy1+···+yn |, |dxqy1+···+yn |} < 1. Then

∑
0�yi�Ni
i=1,2,...,n

{ ∏
1�r<s�n

[1 − xr
xs

qyr−ys

1 − xr
xs

] n∏
r,s=1

[
( xr

xs
q−Ns ;q)yr

(q xr
xs

;q)yr

] n∏
i=1

[(
xi

xn
cx;q

)−1

yi

]

× (bx,dx;q)y1+···+yn

(adx;q)y1+···+yn

2φ1

(
a,bxqy1+···+yn

adxqy1+···+yn
;q,dy

)
qy1+2y2+···+nyn

}

= (dx,ady;q)∞
(dy,adx;q)∞

(
x

y

)N1+···+Nn n∏
i=1

(
xi
xn

cy;q)Ni

(
xi
xn

cx;q)Ni

∑
0�yi�Ni

{ ∏
1�r<s�n

[1 − xr
xs

qyr−ys

1 − xr
xs

]

i=1,2,...,n
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×
n∏

r,s=1

[
( xr

xs
q−Ns ;q)yr

(q xr
xs

;q)yr

] n∏
i=1

[(
xi

xn
cy;q

)−1

yi

]

× (by,dy;q)y1+···+yn

(ady;q)y1+···+yn

2φ1

(
a,byqy1+···+yn

adyqy1+···+yn
;q,dx

)
qy1+2y2+···+nyn

}
. (4.2)

Proof. Replacing (b, c) by (bx, cx) and (by, cy), respectively, in Proposition 4.1, we have

{
(bx)N1+···+Nn

n∏
i=1

(
xi
xn

c/b;q)Ni

(
xi
xn

cx;q)Ni

}
=

∑
0�yi�Ni
i=1,2,...,n

{ ∏
1�r<s�n

[1 − xr
xs

qyr−ys

1 − xr
xs

] n∏
r,s=1

[
( xr

xs
q−Ns ;q)yr

(q xr
xs

;q)yr

]

×
n∏

i=1

[(
xi

xn
cx;q

)−1

yi

]
(bx;q)y1+···+yn qy1+2y2+···+nyn

}
(4.3)

and

{
(by)N1+···+Nn

n∏
i=1

(
xi
xn

c/b;q)Ni

(
xi
xn

cy;q)Ni

}
=

∑
0�yi�Ni
i=1,2,...,n

{ ∏
1�r<s�n

[1 − xr
xs

qyr−ys

1 − xr
xs

] n∏
r,s=1

[
( xr

xs
q−Ns ;q)yr

(q xr
xs

;q)yr

]

×
n∏

i=1

[(
xi

xn
cy;q

)−1

yi

]
(by;q)y1+···+yn qy1+2y2+···+nyn

}
. (4.4)

Comparing (4.3) and (4.4), we immediately obtain

∑
0�yi�Ni
i=1,2,...,n

{ ∏
1�r<s�n

[1 − xr
xs

qyr−ys

1 − xr
xs

] n∏
r,s=1

[
( xr

xs
q−Ns ;q)yr

(q xr
xs

;q)yr

] n∏
i=1

[(
xi

xn
cx;q

)−1

yi

]
(bx;q)y1+···+yn qy1+2y2+···+nyn

}

=
(

x

y

)N1+···+Nn n∏
i=1

(
xi
xn

cy;q)Ni

(
xi
xn

cx;q)Ni

∑
0�yi�Ni
i=1,2,...,n

{ ∏
1�r<s�n

[1 − xr
xs

qyr−ys

1 − xr
xs

]

×
n∏

r,s=1

[
( xr

xs
q−Ns ;q)yr

(q xr
xs

;q)yr

] n∏
i=1

[(
xi

xn
cy;q

)−1

yi

]
(by;q)y1+···+yn qy1+2y2+···+nyn

}
. (4.5)

We rewrite (4.5) as

∑
0�yi�Ni
i=1,2,...,n

{ ∏
1�r<s�n

[1 − xr
xs

qyr−ys

1 − xr
xs

] n∏
r,s=1

[
( xr

xs
q−Ns ;q)yr

(q xr
xs

;q)yr

]

×
n∏

i=1

[(
xi

xn
cx;q

)−1

yi

]
1

(by,bxqy1+···+yn ;q)∞
qy1+2y2+···+nyn

}

=
(

x

y

)N1+···+Nn n∏
i=1

(
xi
xn

cy;q)Ni

(
xi
xn

cx;q)Ni

∑
0�yi�Ni
i=1,2,...,n

{ ∏
1�r<s�n

[1 − xr
xs

qyr−ys

1 − xr
xs

] n∏
r,s=1

[
( xr

xs
q−Ns ;q)yr

(q xr
xs

;q)yr

] n∏
i=1

[(
xi

xn
cy;q

)−1

yi

]

× 1

(bx,byqy1+···+yn ;q)∞
qy1+2y2+···+nyn

}
. (4.6)
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Applying the operator T(a,d; Dq) with respect to the variable b to both sides of the equation and using (2.2), we get

∑
0�yi�Ni
i=1,2,...,n

{ ∏
1�r<s�n

[1 − xr
xs

qyr−ys

1 − xr
xs

] n∏
r,s=1

[
( xr

xs
q−Ns ;q)yr

(q xr
xs

;q)yr

]

×
n∏

i=1

[(
xi

xn
cx;q

)−1

yi

]
(adxqy1+···+yn ;q)∞

(dxqy1+···+yn ,by,bxqy1+···+yn ;q)∞

× 2φ1

(
a,bxqy1+···+yn

adxqy1+···+yn
;q,dy

)
qy1+2y2+···+nyn

}

=
(

x

y

)N1+···+Nn n∏
i=1

(
xi
xn

cy;q)Ni

(
xi
xn

cx;q)Ni

∑
0�yi�Ni
i=1,2,...,n

{ ∏
1�r<s�n

[1 − xr
xs

qyr−ys

1 − xr
xs

]

×
n∏

r,s=1

[
( xr

xs
q−Ns ;q)yr

(q xr
xs

;q)yr

] n∏
i=1

[(
xi

xn
cy;q

)−1

yi

]
(adyqy1+···+yn ;q)∞

(dyqy1+···+yn ,bx,byqy1+···+yn ;q)∞

× 2φ1

(
a,byqy1+···+yn

adyqy1+···+yn
;q,dx

)
qy1+2y2+···+nyn

}
.

We obtain the theorem after using (1.1). �
Remark 4.1. If we take a = 0 in Theorem 4.1, we get Theorem 3.2 of [16].

Proposition 4.2 (The U (n + 1) generations of the q-Chu–Vandermonde summation theorem). (See [13, Theorem 5.26].) Let b, c and
x1, . . . , xn be indeterminate, let Ni be nonnegative integers for i = 1,2, . . . ,n with n � 1. Suppose that none of the denominators in
the following identity vanishes. Then{[

(c;q)−1
N1+···+Nn

n∏
i=1

(
xi

xn
c/b;q

)
Ni

][
bN1+···+Nn qe2(N1, . . . , Nn)

n∏
i=1

(
xn

xi

)Ni
]}

=
∑

0�yi�Ni
i=1,2,...,n

{ ∏
1�r<s�n

[1 − xr
xs

qyr−ys

1 − xr
xs

] n∏
r,s=1

[
( xr

xs
q−Ns ;q)yr

(q xr
xs

;q)yr

]

×
n∏

i=1

[(
xn

xi
bqy1+···+yn−yi ;q

)
yi

]
(c;q)−1

y1+···+yn
qy1+2y2+···+nyn

}
, (4.7)

where e2(N1, . . . , Nn) is the second elementary symmetric function of {N1, . . . , Nn}.

Proof. See [13]. �
Theorem 4.2 (The U (n + 1) generalization of the first Kalnins–Miller transformation). Let b, c, x, y and x1, . . . , xn be indeterminate,
let Ni be nonnegative integers for i = 1,2, . . . ,n with n � 1. Suppose that none of the denominators in the following identity vanishes
and that max{|dxqN1+···+Nn |, |dyqN1+···+Nn |, |dyqy1+···+yn |, |dxqy1+···+yn |} < 1. Then

∑
0�yi�Ni
i=1,2,...,n

{ ∏
1�r<s�n

[1 − xr
xs

qyr−ys

1 − xr
xs

] n∏
r,s=1

[
( xr

xs
q−Ns ;q)yr

(q xr
xs

;q)yr

]
qy1+2y2+···+nyn

×
n∏

i=1

[(
xn

xi
bxqy1+···+yn−yi ;q

)
yi

]
1

(cx,ady;q)y1+···+yn

× 2φ1

(
a, cyqy1+···+yn

adyqy1+···+yn
;q,dxqN1+···+Nn

)}
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=
(

x

y

)N1+···+Nn (cy,dy;q)N1+···+Nn

(ady, cx;q)N1+···+Nn

∑
0�yi�Ni
i=1,2,...,n

{ ∏
1�r<s�n

[1 − xr
xs

qyr−ys

1 − xr
xs

]

×
n∏

r,s=1

[
( xr

xs
q−Ns ;q)yr

(q xr
xs

;q)yr

]
qy1+2y2+···+nyn

n∏
i=1

[(
xn

xi
bqy1+···+yn−yi ;q

)
yi

]

× 1

(cy,dy;q)y1+···+yn

2φ1

(
a, cyqN1+···+Nn

adyqN1+···+Nn
;q,dxqy1+···+yn

)}
.

Proof. Similar to the proof of Theorem 3.1. �
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