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1. Introduction

Let £2 be a C2 domain in RN, where N > 2 and 92 is not necessarily bounded, and let ¢ : R — R
satisfy

pecC2R), $0)=0, and 0<8 <P ()< forseR, (11)
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where 81, 8, are positive constants. Consider the unique bounded solution u = u(x, t) of either the
initial-boundary value problem:

du=Adu) in x (0, +00), (12)
u=1 onds2 x (0, 4+00), (1.3)
u=0 onf x {0}, (1.4)
or the Cauchy problem:
du=A¢u) inRN x (0,+00) and u=xoc onRN x{0}; (1.5)

here xgoc denotes the characteristic function of the set £2¢ = RN\ £2. Note that the uniqueness of the
solution of either problem (1.2)-(1.4) or (1.5) follows from the comparison principle (see Theorem A.1
in the present paper). Since 352 is of class C2, we can construct barriers at any point on the boundary
952 x (0, +o0) for problem (1.2)-(1.4). Thus, by the theory of uniformly parabolic equations (see [6]),
we have the existence of a solution u € C21(£2 x (0, +00)) NL>®(§2 x (0, +00)) NC2(£2 x (0, +00)) such
that u(-,t) - 0 in L}OC(.Q) as t — 0 for problem (1.2)-(1.4). For problem (1.5), since for any bounded
measurable initial data there exists a bounded solution of the Cauchy problem for d;u = A¢(u) by
the theory of uniformly parabolic equations, we always have a solution u € CZ1(RN x (0, +00)) N
L®(@RN x (0, 400)) such that u(-,t) - xoc() in L, (RN) as t — 0 for any domain £2, that is, in the
case of problem (1.5), we only need that the set §2 is measurable.

The differential equation in (1.2) or in (1.5) has the property of infinite speed of propagation of
disturbances from rest, since

1
/ ¢ f) dg = +o0, (1.6)
0

as it follows from (1.1).
By the strong comparison principle, we know that

O<u<1 eitherin £ x (0, 4+00) orin RN x (0, +00);

also, as t — 0T, u exhibits a boundary layer: while u — 0 in £, u remains equal to 1 on 9. The
profile of u as t — 07 is controlled by the function @ defined by

D(s) = @ d¢ fors > 0. (1.7)

1

In fact, in [9, Theorems 1.1 and 4.1] we showed that, if 352 is bounded and u is the solution of either
problem (1.2)-(1.4) or problem (1.5), then

1im+ —4t® (u(x, t)) =d(x)? uniformly on every compact subset of §2. (1.8)
t—0
Here, d =d(x) is the distance function:

d(x) =dist(x,082) forxe £2. (1.9)
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Formula (1.8) generalizes one obtained by Varadhan [13] for the heat equation (and quite general
linear parabolic equations); in that case, @(s) = logs since ¢(s) =s; (1.8) tells us about an interaction
between nonlinear diffusion and geometry of domain, since the function d(x) is deeply related to
geometry of £2.

We point out that (1.8) was proved in [9] when 062 is bounded. In Theorem 2.1 in Section 2,
we will show how to extend its validity to the case in which 9£2 is unbounded. Moreover, with
Theorem 2.1 in hand, in Theorem 2.3 we obtain a characterization of hyperplanes as stationary level
surfaces of the solution u (i.e. surfaces where u remains constant at any given time); this result
generalizes one of those obtained in [8,10] for the heat equation. As in [8, Theorem 3.4], the proof
still relies on the sliding method due to Berestycki, Caffarelli, and Nirenberg [2] but, by a different
argument, allows us to treat more general assumptions on §2.

Let us now state our main theorem which shows a more intimate link between short-time nonlin-
ear diffusion and the geometry of the domain £2.

Theorem 1.1. Let u be the solution of either problem (1.2)-(1.4) or problem (1.5). Let xo € §2 and assume that
the open ball Bg(xo) centered at xo and with radius R is contained in §2 and such that Br(xo) N 352 = {yo}
for some yg € 952.

Then we have:

[NE

N-1 -
N+1 1
lim t~ % ux,t)ydx=c(p,N — —Kj . 110
Jim, / (x.)dx = c(p >{1‘[[R ](yo):” (110)
B (Xo) J=1
Here, k1(yo), ..., kN—1(Yo) denote the principal curvatures of 052 at yo with respect to the inward normal

direction to 052 and c(¢, N) is a positive constant depending only on ¢ and N (of course, c(¢, N) depends on
the problems (1.2)-(1.4) or (1.5)).

When kj(yo) = % for some j € {1,...,N — 1}, the formula (1.10) holds by setting the right-hand side
to oo (notice that kj(yo) < 1/R forevery je{1,...,N —1}).

Remark 1.2. In view of the proof given in the end of Section 3, under the existence of the solution
u of problem (1.2)-(1.4), we need not assume that the entire 952 is of class C? but only that it is of
class C2 in a neighborhood of the point yo. Of course, in the case of problem (1.5) we only need to
assume that 962 is of class C2 in a neighborhood of yg.

A version of Theorem 1.1 was proved in [7] for problem (1.2)-(1.4), under the assumptions that
342 is bounded and ¢ satisfies either f01 "’Eﬁds < +00 or ¢(s) =s. The reason why we could not

treat cases in which f()] %ﬁ dé =400 and ¢ is nonlinear was merely technical. To be precise, in [7],

the construction of supersolutions and subsolutions to problem (1.2)-(1.4) was eased by the prop-
erty of finite speed of propagation of disturbances from rest that descends from the assumption

fol @ d& < +o0. In fact, such barriers were constructed in a set £2, x (0, t], with

2,={xe:dx < p}, (111)

where o and T were chosen sufficiently small so that the solution u equals zero on the set I', x (0, 7],
with

I, ={xe:dx =p}. (112)

This property does not occur when (1.6) is in force. However, formula (1.10) seems general and
is expected to hold for general diffusion equations. Here, we in fact overcome some of those techni-
cal difficulties and prove (1.10) for a class of nonlinear diffusion equations satisfying (1.6); moreover,
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the method of the proof of the present article enables us to treat also the case in which 962 is un-
bounded. To be more specific, we construct the supersolutions and subsolutions for u without using
the linearity of the heat equation and the result of Varadhan [13] as done in [7], but instead we
exploit Theorem 2.1 together with a result of Atkinson and Peletier [1, Lemma 4, p. 383] concern-
ing the asymptotic behavior of one-dimensional similarity solutions (see (3.15) in the present paper).
Then, as in [7], we take advantage of their explicit form fi(t*% d(x)) (see Lemmas 3.1 and 3.2 in
the present paper) to calculate their integrals over the ball Br(xp) with the aid of the co-area for-
mula. The proof of Theorem 1.1 is finally completed by letting t — 0" and using a geometric lemma
[7, Lemma 2.1, p. 376] (see Lemma 3.3 in the present paper). These will be done in Section 3.

In Appendix A, we give proofs of several facts used in Section 3, and prove a comparison prin-
ciple (see Theorem A.1) for d;u = A¢(u) over general domains §2 including the case where 952 is
unbounded (in this case we could not find a proof of Theorem A.1 in the literature). Once the com-
parison principle is proved, then the strong comparison principle follows immediately.

2. Short-time asymptotic profile in the unbounded case and application

We begin with our extension of formula (1.8) to the case in which 92 is unbounded.

Theorem 2.1. Let 2 C RN, N > 2, be any domain with boundary 352 of class C? and let u be the solution of
either problem (1.2)-(1.4) or (1.5).
Then (1.8) holds true.

Remark 2.2. In view of the proof given below, instead of assuming that 952 is of class C2, we only
need to assume that 962 = d(RN \ £2) under the existence of the solution u of problem (1.2)-(1.4). Of
course, in the case of problem (1.5), we only need to assume that 32 = 3(RN \ £2).

Proof. The case where 952 is bounded is treated in [9]; here, we shall assume that 92 is unbounded.
Take any point xo € £2. For each ¢ > 0, there exists an open ball B;(z), centered at z and with
radius 8, contained in RN \ £2, and such that |xg — z| < d(xp) + €.

Consider problem (1.2)-(1.4) first. Let u* = u*(x,t) be bounded solutions of the following initial-
boundary value problems:

dut =A¢(u™) in Bywg) (X0) x (0, +00),
ut =1 on 3By (X0) x (0, 4+00),

ut =0 on By (x0) x {0},
and
deu~ = A¢(u”) in (R \ Bs@) x (0, +00),

u =1 ondBs(z) x (0,400),
u” =0 on (RV\Bs() x {0},

respectively. Then it follows from the comparison principle that
u” (%, t) <u(xp, t) <ut(xg,t) foreveryt >0, (2.1)
which gives

—4t® (u™ (x0,1)) > —4t® (u(xo,t)) > —4t® (ut(xo,t)) foreveryt > 0.
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By [9, Theorem 1.1], letting t — 07 yields that

(d(xo) + €)* > lim sup(—4t® (u(xo, 1)) > lim nf(~4t9 (u(x0.1))) = d(x0)”.

t—07t

This implies (1.8), since ¢ > 0 is arbitrary. Furthermore, let pg and p; be given such that 0 < pg <
p1 < +oo; then by a scaling argument, we infer that the convergence in (1.8) is uniform in every
subset F of {x € £2: po <d(x) < 01} in which the number § > 0 can be chosen independently of each
point x € F. In particular, when F is compact, it was shown in [13, Lemma 3.11, p. 444] that § > 0
can be chosen independently of each point x € F only under the assumption that 822 = d(RN \ £2).

It remains to consider problem (1.5). Let u® = u*(x, t) be bounded solutions of the following initial
value problems:

dut = Ag(ut) inRYx (0,400) and ut =yxp, e onRYx {0},
and
du”=A¢(u”) inRN x (0,+00) and u” = X5z on RN x {0},

respectively. Then by the comparison principle we get (2.1). Thus, (1.8) follows similarly also in this
case, with the aid of [9, Theorem 4.1]. O

We now give a simple application of the theorem just proved. Let f € C2(RN~1) and set
Q= {xeRN: x> f(¥)},

where X' = (x1,...,xy—1) € RN~1, Consider the solution u = u(x, t) of either problem (1.2)-(1.4) or
problem (1.5). In the sequel, it will be useful to know that

9
87” <0 eitherin £2 x (0, +00) or in RN x (0, +00): (2.2)
N

this is obtained by applying the comparison principle to u(x’, xy + h, t) and u(x,t) for h > 0 and then
the strong maximum principle to the resultant nonnegative function ‘);)T(:) since v = ¢ (u) satisfies
v =9 (U)Av.

A hypersurface I" in §2 is said to be a stationary level surface of u if at each time t the solution u re-
mains constant on I” (a constant depending on t). The following theorem characterizes the boundary
942 in such a way that u has a stationary level surface in 2.

Theorem 2.3. Assume that for each y’ € RN~ there exists h(y’) € R such that

lim [f(xX' +y) = f(x)]=h(y). (2.3)

|X'|—00

Let u be the solution of either problem (1.2)—(1.4) or problem (1.5). Suppose that u has a stationary level surface
I'in Q2.
Then f is affine, that is, 02 must be a hyperplane.

Remark 2.4. In view of the proof given below, instead of assuming that f € C2(RN~1), we only need
to assume that f € CO(RN-1) under the existence of the solution u of problem (1.2)-(1.4). Of course,
in the case of problem (1.5), we can replace the assumption f € C2(RN=1) with f e CO@RN-1).
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Proof. We shall use the sliding method due to Berestycki, Caffarelli, and Nirenberg [2]. The condition
(2.3) is a modified version of (7.2) of [2, p. 1108], in which h(y’) is supposed identically zero.

Since I' is a stationary level surface of u, it follows from Theorem 2.1, (2.2) and the implicit
function theorem that there exist a number R > 0 and a function g € C2(R¥N-1) such that

r={(x.,g(x))eR": ¥ eR"" "} =[x e R": d(x) = R}; (2.4)

moreover, it is easy to verify that the function g satisfies

gx)= sup {f(y)+yR*—|x— y/|2} for every X' e RN=1, (2.5)

¥ —y'|<R

Conversely, let v(y’) denote the unit upward normal vector to I" at (¥, g(y")) € I'; the facts that
g is smooth, 352 is a graph, and (', g(¥)) — Rv(y’) € 82 for every y’ € RN~1 imply that

F()=_ inf_{8()~\R2— ¢~y '} foreveryx cBN: 26)

IX'=y'I<R
32 ={xeRN: dist(x, {y e R": yn > g(¥')}) =R} (2.7)

Thus, it follows from (2.4) and (2.7) that for every x € 92 there exists z € I" satisfying

Br(z) C 2 and 0Bgr(z)N0S2 ={x}. (2.8)

For fixed y' e RN~1 and h € R, we define the translates:
Qn=(V.h)+2.  Tyn=(.h)+I

(2.3) guarantees that the values

hi(y)=inflheR: 2y, C 2} and

h_(y') =supth e R: 2 C 2y p} (2.9)

are finite, since in fact, h_(y") <h(y") < hy(y') for every y’ e RN-1,
To complete our proof, it suffices to show that

h-(y) =h(y') =h+(¥)-
Indeed, this yields that £2 = 2, () for every y’ € RN~ and hence

f(X)=Ff( —y)+h(y") foreveryx, y'e RN-1, (2.10)

Then, Vf(x) =V f(x' —y’) for every X', y’ ¢ RN-1 and hence V f must be constant in RN~1, Namely,
f is affine and 82 must be a hyperplane. When it is assumed only that f € CO(RN~1), without using
differentiability of f, we can solve (2.10) as a functional equation with the help of continuity of f
and we can also conclude that f is affine.

Thus, set hy = hy(y’) and suppose by contradiction that hy > h(y’). Then it follows from (2.3)
and (2.8) that there exist xo € 92N 382y, and ze I' N Iy p, satisfying

Qy/,th ; 2 and 0Br(z)Nof2N 3Qy/7h+ ={xo}.
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On the other hand, from the strong comparison principle we have

u(x =y, xy —hy, t) >u(x,t) forevery (x,t) € 2y p, x (0, 00).

Therefore, u(z' — y’, xy — hy, t) > u(z,t) which contradicts the fact that ze I' N I'yr ,, and that I' is
a stationary level surface of u.
The proof that h_(y’) = h(y’) runs similarly. O

3. Short-time asymptotics and curvature

This section is devoted to the proof of Theorem 1.1. We first prove two lemmas in which we
construct useful barriers for problems (1.2)-(1.4) and (1.5), respectively.

In the former lemma, we use a result from Atkinson and Peletier [1]: for every ¢ > 0, there exists
a unique C2 solution f. = f.(¢) of the problem:

;1 .
(¢'(fofe) + 58 f¢=0 in[0,+00), 3.1)
fc(0)=c, fc(§) >0 as& — 4o0, (3.2)
fl<0 inJ0,400). (3.3)

Note that, if we put w(s,t) = fc(t‘%s) for s >0 and t > 0, then w satisfies the one-dimensional
problem:

dw=02p(w) in(0,+00)?, w=c on{0}x(0,+00), and w=0 on (0,+o0) x {0}.
Lemma 3.1. Let 352 be bounded and of class C2 and let py > 0 be such that the distance function d belongs to

CZ(Q—,,O) (see [5]); then, set p1 = max{2R, po}. Let u = u(x, t) be the solution of problem (1.2)-(1.4).
Then, for every & € (0, 1/4), there exist two C? functions fi+ = f+ (&) : [0, +00) — R satisfying

0 < fa(6) <ae P forevery & €0, +o00); (3.4)

f+ — f1 ase& — Ouniformly on [0, +00), (3.5)

where « and B are positive constants independent of &, and there exists a number T = tz > 0 such that the
functions w., defined by

Wi, t) = fi(t72d(X) for (x,t) € 2 x (0, +00), (3.6)
satisfy the inequalities:

wo<u<wy inf2, x(0,1] (3.7)

Proof. We begin by deriving some properties of the solution f. of problem (3.1)-(3.3); by writing
Ve =vc(§) = ¢(fc(§)) for & €0, +00), we see that

in [0, +00). (3.8)
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With the aid of the last assumption in (1.1), integrating (3.8) yields that

£ £
% (O) exp{——} < v’c(g) C(O)exp{——} <0 foreveryé& >0,
1) 451
and hence
ve© exp{ 52 } fl&) < C(O) Xp{—i} <0 forevery& >0
81 48, ¢ 48 '

Furthermore, by integrating (3.10) and using (3.2), we have that for every & > 0

/0) o0 nz %
- /eXp{—E}dn2fc(é‘)> / { 451} n.
§ 3

Thus, with the aid of (3.9) and (3.11), by integrating (3.1), we have:

—v’C(O):%/fC(E)dS forc > 0.
0

Moreover, a comparison argument will give us

0< fe; < fe, on[0,400)if0 < ¢y <2 < +o00;

0> v}, (0)>v,,(0) if0<c;<ca<+oo.

In Appendix A, we will give a proof of (3.12)-(3.14).

243

(3.9)

(3.10)

(3.11)

(312)

(313)
(314)

Furthermore, [1, Lemma 4, p. 383] tells us that, for every compact interval I contained in (0, 4+00),

—42(fc(§))
£2

— 1 asé — +oo uniformly for c € I.

(3.15)

Let 0 < & < 7. Then, by continuity we can find a sufficiently small 0 < . < ¢ and two €2 functions

fx = fx(§) for S > 0 satisfying:

f£@) = fixe (V1 F20:8) if& > ne;
fi <0 in[0, +o0);

fo<fi<fy in[0,+o0);

ro 1, P
(¢'(f) fL) + S8 fe=he@ fL in[0, +o00),
where hy = hy (&) are defined by

_ inss lf$>n87
ha(®) = {inz if& <.
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(Here, in order to use the functions hy also in Lemma 3.2 later, we defined hi(¢) for all £ e R.) It is
important to notice that

hy=—h_>n?> onR. (3.16)

Moreover, (3.5) follows directly from the above construction of fi, and (3.11) together with (3.13)
yields (3.4).
Set ¥ = @1, Then it follows from (3.15) that there exists & > 1 such that

2 2
d/(—%(l — %)) > fc(&) > W(—%(l + %)) foré >&:.andc e I, (3.17)

where we set I, =[1—2¢,1+ 2¢].
Since 952 is bounded and of class €%, Theorem 2.1 yields that

—4t® (u(x,t)) - d(x)* ast— 0" uniformly on £2,, \ 2. (3.18)
Then there exists 71 ¢ > 0 such that for every t € (0, 71 ¢] and every x € [2—,,1 \ £2p,
2 1 2 1 2
|4t (u(x, 1)) —dx)?| < 37605 < 5Med ()%,

which implies that

_1 2 ! 2
W(_u 11e) d(x) >>U(X,t)>w<_mdﬁ>, (3.19)
4 t 4 t

for every t € (0, T1,¢] and every x € 2, \ 2,
From (3.17), we have

2
f+@E) = fipe (1 =210 &) > w(—s (1 - ﬁ)) if& > 5 (3.20)

4 2 ST =21
_ ‘%‘2 n&‘ . Sg
ff(‘é;_)—flfa(\/l+27785)<l1/(—z(1+7>> lfé%?ﬁ. (3.21)

Now, consider the two functions w1 = w(x, t) defined by (3.6). It follows from (3.19), (3.20) and
(3.21) that there exists 12 ¢ € (0, 71 ¢] satisfying

Wo <u<wi in(2p \2p) x (0, 2] (3.22)
Since d € C2(£2,,) and |Vd| =1 in £2,,, we have
dwa — Ap(w) = —fit Hhe +VE¢ (fr)Ad} in £25 x (0, +00).
Therefore, it follows from (3.16) that there exists 73 ¢ € (0, 72 ¢] satisfying

FWw_ — AP(W_) <0 < dwy — Ap(Wy) inQpy x (0, T3]
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Observe that

wo=u=wy =0 iny x {0},
wo=f(0)<1=fi0)=u<fr(0)=wi ond2 x (0,713,

w_<u<wy onlp x(0,73.].

Note that the last inequalities above come from (3.22).
Thus, (3.7) holds true with T = 73 ¢, by the comparison principle and (3.22). O

In the next lemma, instead of (3.1)-(3.3), we will work with the following problem:

ro1 .
(&' (fOfY) + S6fe=0 inR, (3.23)
fe(€) > ¢ as& — —oo, fe(€) >0 as& — o0, (3.24)
fl<0 inR. (3.25)

In Appendix A we will prove that, for every ¢ > 0, (3.23)-(3.25) has a unique C? solution f, = f.(£).
Note that, if we put w(s,t) = fc(t*%s) for se R and t > 0, then w satisfies the one-dimensional
initial value problem:

ow = BSZQS(W) inR x (0,+00) and W =cC)(-o0,00 ONR x {0}.

Also, let us consider the signed distance function d* = d*(x) of x € RN to the boundary 32 defined
by

dist(x, 082) ifx e $2,

() = ! _dist(x, 32) ifx¢ Q.

If 352 is bounded and of class CZ, there exists a number pg > 0 such that d*(x) is C2-smooth on a
compact neighborhood A of the boundary 352 given by

N={xeR": —pg <d*(x) < po}.
For simplicity we have used the same letter po > 0 as in Lemma 3.1.
Lemma 3.2. Let 352 be bounded and of class C2, set p; = max{2R, po} and let u = u(x, t) be the solution of

problem (1.5).
Then, for every € € (0, 1/4), there exist two C? functions fi = fi(£) : R — R satisfying

0 < fi(e) <ae P forevery & €0, +00); (3.26)

f+— f1 as e — Ouniformly on [0, +00), (3.27)

where « and B are positive constants independent of &, and there exists a number T = 7. > 0 such that the
functions w., defined by

Wi, t) = fi(t72d* () for (x,t) € RN x (0, +00), (3.28)



246 R. Magnanini, S. Sakaguchi / . Differential Equations 252 (2012) 236-257

satisfy the inequalities:

w_<u<wy inNUR, x(0,T]. (3.29)

Proof. Let f. be the solution of problem (3.23)-(3.25); by writing v, = vc(§) = ¢ (fc(§)) for & € R,
we have:

o0
1
—v.(0) = 5/fc(g)ds forc > 0: (3.30)
0
0< fe; < fe, INRIif0<cy <2 <+o0; (3.31)
0> v, (0) > v, (0) if0<cy <cy <o, (3.32)

In Appendix A we will give a proof of (3.30)-(3.32). Then [1, Lemma 4, p. 383] tells us that (3.15) also
holds for the solution f. of this problem.

Let 0 <€ < %. We can find a sufficiently small 0 <, <« & and two C? functions fi = fi(¢) for
& € R satisfying:

[ &) = fixe (V1 F20: ) ifE > ne; (3.33)

fi <0 inR; (3.34)

f-(=00) <1= f1(~=00) < f1(-00) and f_ < f1<fy inR; (3.35)
/A P

(o' (fo)fL) + igfi =hy(§)fL inR. (3.36)

In Appendix A we will prove (3.35) by choosing 7, > 0 sufficiently small.

Here, we also have (3.16), (3.26), and (3.27). Moreover, it follows from (3.15) that there exists
& > 1 satisfying (3.17). Proceeding similarly yields (3.18), (3.19), (3.20) and (3.21).

Now, consider the functions w4 defined by (3.28). Then we also have (3.22) and, since d* € C2(\)
and |Vd*| =1 in NV, we obtain that

dwr — A (W) = — fit™ {he +VE ¢ (f2)Ad*} in N x (0, +00).

Therefore, it follows from (3.16) that there exists 73 ¢ € (0, 72,¢] satisfying:

dw_ —Ap(w_) <0< dqwy — Ap(wy) inN x (0, T3],
w_<u<wy inN x {0},
w_o <u<wy ondN x(0,13¢]
Note that, in the last inequalities, the ones on Iy, x (0, 73] come from (3.22) and the others on

(ON'\ I'py) x (0, 13,¢] come from the former formula of (3.35).
Thus, (3.29) follows, with T = 73 ¢, from the comparison principle and (3.22). O
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In the proof of Theorem 1.1, we will also use a geometric lemma from [7] adjusted to our situa-
tion.

Lemma 3.3. (See [7, Lemma 2.1, p. 376].) Let kj(yo) < %for every j=1,..., N — 1. Then we have:

[NE

N-1

N-1
lim s~°2 1N"1(1: N Brx0)) =27 wn_1 : I1 (l - Kj(}’o))] :

s—0t ! R
j=1

where HN=1 is the standard (N — 1)-dimensional Hausdorff measure, and wy_1 is the volume of the unit ball
in RN-1,

Proof of Theorem 1.1. We distinguish two cases:

(I) 92 is bounded and of class C?; (II) 9£2 is otherwise.

Let us first show how we obtain case (II) once we have proved case (I). Indeed, we can find two C2
domains, say 21 and £2;, with bounded boundaries, and a ball Bs(yo) with the following properties:
21 and RN\ £2; are bounded; Bg(xp) C 21 C £2 C £2;;

Bs(yo)N32 C 321N 352, and Br(xo) N (RN \ £2i) ={yo} fori=1,2.

Let u; = uj(x,t) (i=1,2) be the two bounded solutions of either problem (1.2)-(1.4) or prob-
lem (1.5) where £2 is replaced by £2; or §2,, respectively. Since 27 C 2 C £2;, it follows from the
comparison principle that

uy<u in2 x(0,400) and u<u; in2q x (0, +00).

Therefore, it follows that for every t > 0

N+1 N+1
t / Uy(x, t)dx <t~ & / u Hdx <t~ / uq(x, t) dx.
BRr(x0) Br(x0) Br(x0)

These two inequalities show that case (I) implies case (II).
Now, let us consider case (I). First, we take care of problem (1.2)-(1.4). Lemma 3.1 implies that for
every t € (0, 7]

t— 3 / w,dx<t7¥ / udx<t7¥ / w dx. (3.37)

Br(x0) BRr(xo) Br(xo)

Also, with the aid of the co-area formula, we have:

2Rt_%
[ weax=t' [ e e T
0

t%é N BR(X())) d&.
Br(x0)
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Thus, when «;(yo) < % for every j=1,...,N — 1, by Lebesgue’s dominated convergence theorem,
(3.4), and Lemma 3.3, we get

N-1 -

I (% —x,-(m))} [ e de.
0

. Nt N-1
lim t~ / widx=2"2 a)N1{

t—0t i1
Br(xo) =

Moreover, again by Lebesgue’s dominated convergence theorem, (3.4), and (3.5), we see that
o o
. N-1 N-1
lim [ fo) s de= [ fi©)5 7 de.
0 0
Therefore, since € > 0 is arbitrarily small in (3.37), it follows that (1.10) holds true, where we set
[o¢]
LS| N-1
(@, N)=2"7wn-1 | f1(§)E 7 d&.
0
It remains to consider the case where k;(yo) = % for some je{1,...,N — 1}. Choose a sequence

of balls {Bg, (xk)};2, satisfying:

Rir <R, Yo € 0Bg, (xx), and Bg,(xx) C BR(xo) foreveryk>1, and lim Ry =R.

k— o0

Since xj(yo) < % < le for every j=1,...,N—1 and every k > 1, we can apply the previous case to
each Bg, (x) to see that for every k > 1

N1 N+1
liminft= % / u(x, t)dx > liminft= 4 f u(x, t)dx
t—0t t—>0t+

Br(x0) Br (X)

ST

N-1

I1 (le - Kf(yo))}

j=1

= C(¢, N){

Hence, letting k — oo yields that

P 251
liminft— 4 fu(x,t)dx:—i—oo,
t—0t+

BRr(x0)

which completes the proof for problem (1.2)-(1.4).
The proof of (1.10) in the case of problem (1.5) runs similarly with the aid of Lemmas 3.2
and 33. O
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Appendix A
Here, for the reader’s convenience, we give proofs of several facts used in Section 3, and prove
a comparison principle (Theorem A.1) for o;u = A¢(u) over general domains £2 including the case

where 92 is unbounded.

Proof of (3.12)-(3.14). First of all, (3.12) and (3.13) imply (3.14). It suffices to prove (3.12) and (3.13).
Let ¢ > 0. By integrating Eq. (3.1) on [0, n] for every n > 0 and integrating by parts, we get

1
1 1
ve(n) = ve(0) + iﬂfc(ﬂ) - iffc(f)df =0.
0

Then, with the aid of (3.9) and (3.11), letting n — oo yields (3.12).
Let 0 < ¢1 < 2 < +00. Since f¢, (0) =c1 <2 = f,(0), suppose that there exists & > 0 satisfying

fei(60) = fe,(60) and  f,(§) < fc,(§) forevery§ € [0, £o).

Then it follows from the uniqueness of solutions of Cauchy problems for ordinary differential equa-
tions that

v}, (E0) < Vi (50) <O. (A1)
Thus, we distinguish two cases:

(i) There exists & € (&g, 00) satisfying

fe(61) = fe,(61) and  fe,(§) > fc,(§) forevery§ € (5o, §1).
(ii) For every & € (&0, 00), fe;(§) > fc,(§).
In case (i), by the uniqueness, we also have
Ve, (§1) < Vg, (§1) <O. (A2)

By integrating Eq. (3.1) on [&p, &1] for f¢, and f, and integrating by parts, we see that for j=1,2

&1
1 1 1
Ve (61) = Ve (60) + 561 e, (1) — 560 f 60 — 5 / fe;®)dg =0.
o

Then, considering the difference of these two equalities yields

&1
1
Ve, (61 = Vi ) = (vl (B0) = Vi, 60) = 5 / (for (€)= fop (8)) dE =0,
o

This contradicts (A.1), (A.2) and the situation of case (i).
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In case (ii), by integrating Eq. (3.1) on [&g, 0o) for f¢, and f¢, and integrating by parts, we see that

for j=1,2

1 17
~Vey&0) = Sy @) — 5 [ foy 61 =0.
o

Then, considering the difference of these two equalities yields

—(ve, (6o) — ve, (60) — /(fq &) — fe,(§))dé =0.

o

N[ =

This contradicts (A.1) and the situation of case (ii). O

Proof of the existence and uniqueness of the solution of problem (3.23)-(3.25). Let ¢ > 0 and define

¥ :R— R by

Y(S)=¢() —p(c—s) forseR.

(A3)

Then v satisfies the same condition (1.1) as ¢ does. It was shown in [1] that, for every a > 0, there

exists a unique C2 solution gz = g4(£) of the problem:

/ AV 1 2 .
(V'(8a)8a) + 558, =0 in[0,+00),
g(0)=a, g()—0 as§— +oo,
g, <0 in[0,+00).
Hence, writing Vg = V4(&) = ¥ (gq(&)) for & € [0, +00) and proceeding similarly yield that

o

1
V0= [ &®d fora>o
0
0 <8¢ <8 O0n[0,+00)if0<ay <az < +o0;

0> Vg (0)>V,(0) if0<ay <az<+oo.

For a € (0, ¢), define fq = fq, (&) by

fa,— () =c—ga(=&) foré& e (—o0,0].

Then, in view of (A.3)-(A.6), fq — satisfies the following:

;1
(¢/(fa,f)f¢;,_) + Eé‘f;,_ =0 in(—o0,0],
fa,—(0)=c—a, fa,—-(§) > ¢ as& — —oo,
fa_ <0 in(—o0,0].

(A4)
(A.5)
(A.6)
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Let fo1 = fa+ (&) (£ €[0,400)) be the unique C? solution f._, of problem (3.1)-(3.3) where c is
replaced by ¢ — a. Then we have

(¢(fa)) |eo=Va® and ($(fa+)) [;_o="Vi_q(0),

where ve_q(§) = ¢ (fa,+(&)) for & € [0, +00). Observe that both V/(0) and v,_,(0) are continuous as
functions of a on the interval [0,c], V/(0) is strictly decreasing, v,_,(0) is strictly increasing, and
limg_,p V(0) = limg_¢ v;_,(0) = 0. Therefore, there exists a unique a, € (0, ¢) satisfying V, (0) =
vé,a* (0), and hence the unique C? solution f. = fc(£) of problem (3.23)-(3.25) is given by

fa.+ (&) if§ €0, +00),

fe®)= { fa (&) if€ € (—00,0).

Proof of (3.30)-(3.32). The proof of (3.12) also works for (3.30). (3.30) and (3.31) imply (3.32). Thus
it suffices to prove (3.31). Let 0 < ¢1 < ¢z < 400. Since limg, o f,(§) =¢1 < ¢z =limg, o fc, (8),
there exists &, < 0 satisfying

fei () < fe, (&) forevery & <&,.

Hence we can begin with supposing that there exists & > &, satisfying

fey(60) = fe,(60) and  fe, (§) < fc,(§) forevery & € [&x, &o).
Therefore, the rest of the proof runs along that of (3.13). O

Proof of (3.35). In view of (3.31) and (3.32), by continuity, we can find a sufficiently small 0 < n, < €
and two C? functions fi = fi(£) for & € R satisfying (3.33), (3.34), (3.36) and the following:

f-<fi<fy onl0,+o0); (A7)
O<f]7%8<J~’_<f17%8<f1+%8<]+<f1+%8 at& =0; (A.8)
0> v;%E > (p(f0) > VL%.»; > v’H%E > (p(fp) > v’H%g até =0, (A.9)

where we put fi(£) = fi (€ +2n2) for & € R. Notice that fi = fy(£) satisfy
. - 1 - )
(&' (Fo)FL) + 6FL=0 in(=c0,0]. (A10)
In order to prove (3.35), it suffices to show that
fiize < fo< fiige and fi, < fe< fir3e in (00,0l (A11)
Indeed, (3.34) implies that f_ < ]‘, and ]‘+ < f+ in R, and hence (A.11) and (3.31) give us

f-<fi<fy on(—o0,0].



252 R. Magnanini, S. Sakaguchi / . Differential Equations 252 (2012) 236-257

Combining this with (A.7) yields that

f-<fi<fy inR. (A12)

Also, since limg_, oo fo =limg_ _o fi, (A.11) implies that

3 1 1 3
1-— 58 < fo(—o00)<1— 58 <1=fi(—00) <1+ 58 < fy(—o0) <1+ 58. (A13)

Therefore, (A.12) and (A.13) yield (3.35).
Thus, it remains to prove (A.11). (A.11) consists of four inequalities. Since we will see that all the
proofs are similar, let us prove the fourth one:

f+ < fiy3e in(=00,0] (A14)

By (A.8), we have ]‘+ < f1+%s at £ = 0. Hence, suppose that there exists & < 0 satisfying

f+Go)=f1,3,60) and fi<fi 3, on(&.0]. (A15)

Then, by the uniqueness we also have

Vi > (0(F0) até=t. (A16)
By (A.9), we have

(6(F0) > v’H% até =0. (A17)

&

Here, integrating Egs. (A.10) for f+ and (3.23) for f]+%£ on the interval [&p, 0], integrating by parts,

considering the difference of the two resultant equalities, and using the fact that ]‘+ o) = fH_%s(éo),
yield that

0
ANV / PNV, 1 ~
Vi3, (0 = (¢(f1) (0) — {VH%S(SO) —(@(f) G0} — 5/(f1+%8($) — f+(§))dg =0.

?8
&o

On the other hand, by combining (A.15), (A.16), and (A.17), we see that the left-hand side of this
equality is negative, which is a contradiction. Therefore, we get (A.14). O

In the next theorem, we prove a comparison principle over general domains including the case
where their boundaries are unbounded, by adjusting a proof that Bertsch, Kersner and Peletier gave
for the Cauchy problem (see [3, Appendix, pp. 1005-1008]). Observe that, when £2 = RN (and (A.19)
is dropped), there is no need to use the approximating sequences {D;} and {D;} constructed in our
proof below, since the sequence of balls {Bg, (0)} suffices, as in [3].
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Theorem A.1 (Comparison principle). Let T > 0 and let $2 be a domain in RN, with N > 2, where 9$2 is not
necessarily bounded. Assume that u, v € C>1(£2 x (0, T]) N L>®(§2 x (0, T]) N C%($2 x (0, T]) satisfy the
following:

oty — Ap(u) < ov—Ap(v) ing2 x(0,T], (A18)
u<v ondf2 x(0,T], (A19)
u(-,t) > ug(-) and v(,t)— vo() in L}OC(.Q) ast |0, (A.20)

where ug, vo € L°°(82) satisfy the inequality ug < vg in £2.
Thenu <vin £ x (0, T].

Proof. (a) Approximating the domain £2. Let d = d(x) be the distance of x from the closed set RN \ £
and let U = {x € RN: d(x) < 1}. From a lemma due to Calderén and Zygmund [14, Lemma 3.6.1,
p. 136] (see also [4, Lemma 3.2, p. 185]) it follows that there exist a function § = §(x) € C®°(U N £2)
and a positive number M = M(N) such that

M~ 1dx) <8(x) < Md(x) forallxeUnN 2. (A21)

Since § € C*°(U N £2), in view of (A.21) and the definition of U, Sard’s theorem (see [11,12]) yields
that there exists a strictly decreasing sequence of positive numbers {o;} with lim;j_ . 0j =0 and
01 < M~1 such that every level set

yi={xeUng:sx =pj} (A.22)

is a union of smooth hypersurfaces in RN. For each j € N, denote by D; the set satisfying 3D = y;
and D_j C £2 (Dj is in general a union of smooth domains). Moreover, in view of (A.21), we may have

oo
DjcDjy1 forjeN and 2=|JD;. (A23)
j=1

Without loss of generality, we may also assume that the origin belongs to all the D;’s.

The intersection D N Bg(0) of D; with the ball Bg(0) may not be a finite union of Lipschitz do-
mains; however, again by Sard’s theorem, the restriction to y; of the C°°-smooth map x |x|% is
regular at almost any of its values, and hence there exists a strictly increasing and diverging sequence
{Ry} of positive numbers such that each 9B, (0) is transversal to all the y;’s; thus, for each pair of
j and k, Dj N Bg,(0) is a finite union of Lipschitz domains with piecewise C°*°-smooth boundaries.
Therefore, by using a partition of unity, we can modify the boundary of D; N Bg,(0) near the com-
pact submanifold y; N dBg,(0) to get a family {D;} of finite unions of smooth domains, each one
approximating D; N Bg, (0), and satisfying the relations

Dj_1NBg(0) C Djk C Djq NBg(0)(C Bg,(0)) and

dDjxNDj_1=0Bg,(0)NDj_1, (A.24)

for every j >2 and ke N.
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(b) Constructing test functions. Set

ow)—¢pv)
A:A(x,t):{ﬁ 1fu(x,t?;év(x,t),xe.(2, andt > 0,
81 otherwise.

Then 8; < A <8, on RN*! and we can approximate A by a sequence {A,} of regularizations satisfying

Ane C®°(RN) and & <Ap <8 inRNt!foreachneNl, (A.25)
A—Ay—0 inLi (RN asn— oc. (A.26)

Let 0 <7 <s < T and choose x € CSO(RN), with support supp x contained in £2, such that 0 <
x <1in RN, In view of (A.21), there exist jg, ko € N such that

supp x C Dj forevery pair of j > jo and k > ko. (A.27)

Now, choose an integer k > ko and then a number & > 0. Since u, v € C°(82 x (0, T]), it follows
from (A.19) that there exists p > 0 satisfying

o) <Pp(v)+e in2, NBg,,0) x[t,T], (A.28)

where £, is given by (1.11). Hence, by (A.21) and (A.24), we see that there exists ji > jo such that

pw)<p(v)+¢& on(dDjr\Dj_1) x [T, T]forevery j > j1. (A.29)

For each j> j; and ne€ N, let wy j € C®(Dj x [0,5)) N CO(Djy x [0,s]) be the unique bounded
solution of the problem:

oW j+ AnAwy j=8wyj inDjy x[0,s), (A.30)
Wpj=0 ondDj x[0,s), (A31)

(x|

wpj(x,s) =e " x(x) foreveryxeDj. (A32)

Then, by the parabolic regularity theory (see [6]), we see that
W j € C®((Djr x [0,s]1)\ ({0} x {s})) and Vwy;jeL™(Djkx[0,s]),
and, as in [3, Lemma B, p. 1007], we can prove the following lemma.

Lemma A.2. There exists a constant ¢ > 0 depending only on x such that, for each j > j1 and n € N, the
solutions wy, j have the following properties:

() 0<wyj<e ™ inDjyxI0,s],

S
(if) /dt/An(Awn,,«)zdxgc,
0

Dj
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2
(iiiy  sup /|an,j(x, O dx <c,
0<t<s
J.k

) 9
(iv) 0<-—

W
az’] <ce R on (3D, NdBg,(0)) x [0, 5],

where v denotes the unit outward normal vector to 9D j .

Remark A.3. The fact that D C Bg,(0) (see (A.24)) guarantees that the same barrier function as in
[3, Lemma B, p. 1007] can be used to prove (iv). The proofs of the others are the same.

(c) Completion of the proof. For each j > j; and n € N, multiplying (A.18) by w = wy, j and integrat-
ing by parts the resultant inequality over Dj; x [, s] yield that

0> / {0r(u = v) — Alp ) — p(v)]}wdxdt

Djka[‘[,S]

= / [(w—v)(x, DHw(x, t)]st dx — / (u — v)owdxdt

Djk DjxIt,s]

—/dt/ %[¢(u)—¢(v)]wda+ / V[gpw) —¢(v)]- Vwdxdt

T  0Djy Djyxlt,s]

= [ {w—vx9)e My x) — u—v)x, Wk, 1)} dx

Dj,k

- f (u — v)owdxdt + / V[pw) —¢(v) — ] Vwdxdt; (A33)

Djixlz,s] Djkx[t,s]

here we used (A.31) and (A.32), and we modified the last term a little for later use. The last in (A.33)
term equals

; d
/dt / [qb(u)—qb(v)—s]a—r)vda

T aDj\Dj_1
) ow
+/dt / [¢(u)—¢(v)—8]wda— f [¢) —p(v) —e]Awdx.
T 9DjNDj Djix[t.s]

Since %—"v" <0on dDjy x [0,s], it follows from (A.29) that the first term above is nonnegative; also, in

the third term, we write:

pw) —p(v) —e={An+(A—Ap}u—v)—e.
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Therefore, it follows from (A.33) and (A.30) that

0> [ (u—v)(x, s)e""')((x) dx — / u—-—v)(x, mH)w(x, 7)dx

Dj Djk

+/dt / [¢(u)—¢(v)—8]z—‘;vd0—82 / (u — v)wdxdt

T 9DjxNDj4 DjxI[t,s]
- f (u—v)(A—Ap)Awdxdt + ¢ / Awdxdt. (A.34)
Djgxl7,s] Djyx[t,s]

Since u and v are bounded, there exists a constant K > 0 such that

max{|u — v/,

pu)—p(v)—¢e|} <K in2x[0,T]

Combining (A.24) with (iv) of Lemma A.2 yields that the third term in (A.34) is bounded from below
by

—cKe ™ TNawyR) ",

where wy is the volume of the unit ball in RN. By using (i) of Lemma A.2, we see that the fourth
term in (A.34) is bounded from below by

S

—82/ dt/max{u —v,0le W dx.
2

T

With the aid of (A.25), (ii) of Lemma A.2 yields that the fifth and the sixth terms in (A.34) are
bounded from below by

[NE

T

e AT oM

KW(()/dtD/(A Ap)-dx and sm T|Djkl,
J.k

respectively, where |D; ;| denotes the N-dimensional Lebesgue measure of D; . Consequently, with
these bounds and by using (A.27) in the first term in (A.34), from (A.34) we obtain:

/(u —V)(x, s)e""‘x(x) dx < / (U —v)(x, T)wy j(x, T)dx
2 Djk
S
+cKe " TNoyR) ™! +82/ dt[ max{u — v, 0}e ¥l dx
2

T

T 1
([ [ ammran) oo
+ K— dt A—Ap“dx] +e—=/T|Djkl-
m((} . ( ) \/a | ],l|

j.k
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Since ¢ > 0 is arbitrarily chosen and D; C Bg,(0), we can remove the last term in the above
inequality. Also, letting n — oo and T — 0 with in mind (A.26) and (A.20), respectively, yield that

f(u —v)(x, s)e M x ) dx < cKe R TNwyRY ' + 6, / max{u — v, 0}e ™ dxdt.
2 2x[0.5]

By letting k — oo, we remove the first term in the right-hand side of this inequality. Then, since
X € CSO(RN) is an arbitrary function satisfying that 0 < y <1 in RN and its support is contained
in £2, we conclude that for every s € [0, T]

S

/max{(u —v)(x,5), 0}e ™dx < 82/ dtf max{u — v, 0}e ™ dx. (A.35)
2 0 2

Finally, Gronwall's lemma implies that u < v in £ x (0,T]. O
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