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We show that the new pseudo-random number function, introduced recently by
M. Naor and O. Reingold, possesses one more attractive and useful property. Namely,
it is proved that for almost all values of parameters it produces a uniformly distributed
sequence. The proof is based on some recent bounds of character sums with exponen-
tial functions. ( 2001 Academic Press
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1. INTRODUCTION

Let p be an n-bit prime, 2n~14p42n!1, and let l be a prime divisor of
p!1.

Denote by F
p

the "nite "eld of p elements and select an element g3FH
p

of
multiplicative order l. We recall that 0 3FH

p
is of multiplicative order t if and

only if

0 iO1, 14i4t!1, 0 t"1.

Then for each n-dimensional vector a"(a
1
,2, a

n
)3(Z/l)n one can de"ne the

function

fa (x)"gax11 2a
xn
n 3F

p
,
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where x"x
12

x
n

is the bit representation of an integer x, 04x42n!1,
with some extra leading zeros if necessary.

In [11] Naor and Reingold proposed the function fa(x) as an e$cient
pseudo-random function (for a randomly chosen vector a3(Z/l)n). It is shown
in [11] that this function can be computed in parallel by threshold circuits of
bounded depth and polynomial size and also that it has some very desirable
security property, provided certain standard cryptographic assumptions hold.

Here we show that this function has one more useful feature, which comes
as an additional bonus to the aforementioned cryptographic properties of
fa (x). Namely, we prove that for almost all vectors a3(Z/l)n, the sequence
fa (x), x"0, 1,2, 2n!1, is asymptotically uniformly distributed.

We note that although this property does not seem to have any immediate
cryptographic implications, the inverse fact, that is, nonuniformity of distri-
bution, if true, would have disastrous consequences for applications of this
function. Besides this, studying the uniformity of distribution of interesting
functions is a very attractive number theoretic question. Our main tool is the
bound of character sums with exponential functions which is due to
Konyagin and the author [7], which in turn is based on the estimate of
Gaussian sums of Heath-Brown and Konyagin [6]. Previously known
bounds of character sums with exponential functions, which are due to
Korobov [8, 9] and Niederreiter [12, 13], can also be used; however, they
imply weaker results.

We also remark that an exponential lower bound on the linear complexity
of this generator has been obtained in [4, 16]. In [2] this bound has been
extended to nonlinear complexity.

Finally, for the elliptic curve version of this generator similar results have
been obtained in [15, 17].

2. PREPARATIONS

We identify F
p

with the set M0,2, p!1N.
For a set M-F

p
we de"ne the discrepancy D(M ) modulo p as

D(M)" sup
If*0,1+

K
N(I)

dM
!DIDK ,

where N(I) is the number of fractional parts Mm/pN with m3M which hit the
interval I"[a, b]-[0, 1] of length DID"b!a.

We denote by D
l,p,g

(a) the discrepancy of the set M fa(x) Dx"0, 1,2,
2n!1N. We show that D

l,p,g
(a)"o (1) for all except possibly o(ln) vectors

a3(Z/l)n, provided that l5p1@3`e with any "xed e'0.
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Throughout the paper the implied constants in symbols O and @ are
absolute (we recall that A@B is equivalent to A"O (B)).

We also denote by log u the binary logarithm of a real u and put

e
p
(a)"exp(2nia/p), a3F

p
.

Thus e
p
(a) is a nontrivial additive character of F

p
.

We need a form of the Erdo( s}Tura&n inequality which relates the discrepancy
and character sums; see Corollary 1.1 to Chapter 1 of [10] or Corollary 3.11
of [13].

LEMMA 1. For any set M-F
p

the bound

D(M)@
1

p
#

1

dM

p~1
+
h/1

1

h K +
m|M

e
p
(hm) K

holds.

We also need the following upper bound on character sums with exponen-
tial functions which is essentially Theorem 3.4 of [7].

LEMMA 2. ¸et p be prime and let 0 3FH
p

be of multiplicative order t modulo
p. ¹hen the bound

max
'#$ (h,p)/1 K

t~1
+
r/0

e
p
(h0 r) K@B(t, p),

where

B (t, p)"G
p1@2, if t5p2@3,

p1@4t3@8, if p2@3't5p1@2,

p1@8t5@8, if p1@2't5p1@3,

holds.

This bound is nontrivial for t5p1@3`e with any "xed e'0. Our next result
shows that for almost all primes p even much shorter sums admit a non-
trivial estimate. It readily follows from Theorem 5.5 of [7]; see also remarks
after the proof of this result in [7].

LEMMA 3. ¸et e'0 be su.ciently small and let an integer t and a real
A'2 be such that there are at least ;5tA~1~e primes p,1 (mod t) with
tA4p42tA. ¹hen for all except possibly o(;) such primes p and any ,xed
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integer k52 the bound

max
'#$(h,p)/1 K

t~1
+
r/0

e
p
(h0 r

p
) K@t (t~(2k~A)@2k2#t~(A~2)@2k2`e )

holds for all elements 0
p

of multiplicative order t modulo p.

3. MAIN RESULTS

Now we are prepared to prove our main results.

THEOREM 4. ¹he bound

1

ln
+

a|(Z@l)n
D

l,p,g
(a)2@* (l, p)

holds, where

* (l, p)"G
p1~cl~1 log2 p, if l5pc,
pl~2 log2 p, if pc'l5p2@3,

p1@2l~5@4 log2 p, if p2@3'l5p1@2,

p1@4l~3@4 log2 p, if p1@2'l5p1@3,

and c"2.5!log 3"0.91502.

Proof. We may assume that p is large enough, in particular that n53.
From Lemma 1 and the Cauchy inequality we conclude that

+
a|(Z@l)n

D
l,p,g

(a)2@ +
a| (Z@l)n

A
1

p
#

1

2n
p~1
+
h/1

1

h K
2n~1
+
x/0

e
p
(hfa (x))KB

2

@ +
a| (Z@l)n

A
1

p2
#

1

22n A
p~1
+
h/1

1

h K
2n~1
+
x/0

e
p
(hfa(x))KB

2

B
@

ln

p2
#

1

22n
+

a| (Z@l)n

p~1
+
j/1

1

j

p~1
+
h/1

1

h K
2n~1
+
x/0

e
p
(hfa (x))K

2
.

Therefore,

+
a|(Z@l)n

D
l,p,g

(a)2@
ln

p2
#

log p

22n
p~1
+
h/1

1

h
=

h
, (1)
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where

=
h
" +

a|(Z@l)n
K
2n~1
+
x/0

e
p
(hfa (x))K

2
.

We recall that DzD2"zzN for any complex z and that e
p
(a)"e

p
(!a) for any

real a. Then, it is easy to see that replacing the square of the inner sum by
a double sum and changing the order of summation we obtain

=
h
"

2n~1
+

x,y/0

+
a|(Z@l)n

e
p
(h( fa (x)!fa(y))).

If x"y the inner sum is equal to ln.
Now we consider the case xOy. We say that xzy if x

i
5y

i
, i"1,2, n,

where x"x
12

x
n

and y"y
12

y
n

are the bit representation of x and y.
We also say that integers x and y are comparable if either xzy or yzx.
If xOy and xzy we "x i, 14i4n, with x

i
"1, y

i
"0.

We see that the term fa(y) does not depend on a
i
.

Let the vector (z
1
,2, z

n~1
) be formed by all the bits of x except x

i
, that is,

z
k
"x

k
if 14k(i and z

k
"x

k`1
if i4k4n!1. Therefore,

K +
a|(Z@l)n

e
p
(h( fa (x)!fa(y))) K4 +

b|(Z@l)n~1 K
l~1
+
r/0

e
p
(h0 rb,x

) K ,

where b"(b
1
,2, b

n~1
) and

0b,x
"gbz11 2b

zn~1
n~1 .

We see that if

b
12

b
n~1

I0 (mol l )

then, because l is prime, 0b,x
is of multiplicative order l. Hence the bound of

Lemma 2 applies to the inner sum. For other O (nln~2) vectors b we estimate
the inner sum trivially by l.

It is easy to see that there are

n
+
k/0
A
n

kB 2k"3n
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pairs of (x, y), 04x, y42n!1, with xzy. Thus this part of the sum can be
estimated as

K
2n~1
+

x,y/0
xEy, x}y

+
a|(Z@l)n

e
p
(h( fa(x)!fa (y))) K@3n(nln~1#ln~1B (l, p)).

The case xOy and yzx can be considered quite analogously.
Finally, let us consider pairs of x and y which are not comparable. In this

case there are i and j, 14i, j4n, with x
i
"y

j
"1 and x

j
"y

i
"0. We see

that the term fa (y) does not depend on a
i
and the term fa (x) does not depend

on a
j
.

Let the vector (z
1
,2, z

n~2
) be formed by all the bits of x except x

i
and x

j
;

that is, z
k
"x

k
if 14k(I, z

k
"x

k`1
if I4k(J!1, and z

k
"x

k`2
if

J!14k4n!2, where I"minMi, jN and J"maxMi, jN. We also form the
vector (w

1
,2,w

n~2
) in a similar way from all the bits of y except y

i
and y

j
.

Therefore,

K +
a|(Z@l)n

e
p
(h ( fa (x)!fa(y)))K4 +

b|(Z@l)n~2 K
l~1
+
r/0

e
p
(hjrb,x

) K K
l~1
+
s/0

e
p
(hksb,y

) K ,
where b"(b

1
,2, b

n~2
),

jb,x
"gbz11 2b

zn~2
n~2 and kb,y

"gbw1
1 2b

wn~2
n~2 .

We see that if

b
12

b
n~2

I0 (mol l )

then, because l is prime, jb,x
and kb,y

are both of multiplicative order l. Hence
the bound of Lemma 2 applies to both inner sums. For other O(nln~3) vectors
b we estimate the inner sums trivially by l each.

Therefore, for each pair of x and y which are not comparable the bound

K +
a|(Z@l)n

e
p
(h( fa(x)!fa (y))) K@nln~1#ln~2B (l, p)2

holds.
Putting everything together and taking into account that 2n"O(p) and

3n"O(pa), where a"log 3, we derive

=
h
@2nln#3n(nln~1#ln~1B (l, p))#22n (nln~1#ln~2B (l, p)2)

@pln#npaln~1#paln~1B (l, p)#np2ln~1#p2ln~2B (l, p)2.
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It is easy to see that the terms including B (l, p) dominate all other terms. Thus

=
h
@paln~1B (l, p)#p2ln~2B (l, p)2. (2)

Combining (1) and (2), we derive

1

ln
+

a|(Z@l)n
D

l,p,g
(a)2@

1

p2
#

log p

22n
p~1
+
h/1

pal~1B (l, p)#p2l~2B (l, p)2

h

@(pa~2l~1B (l, p)#l~2B (l, p)2) log2p.

Remarking that the "rst term in the numerator dominates if and only if
l5pc, we obtain the desired result. j

In particular, if the vector a3(Z/l)n is chosen uniformly at random then for
any d'0 with probability at least 1!d

D
l,p,g

(a)@d~1* (l, p)1@2.

Lemma 3 can be used in a similar way to produce the following result which
essentially tells that even elements of very small period are likely to produce
uniformly distributed sequences.

THEOREM 5. ¸et e'0 be su.ciently small and let a prime l and a real
A'2 be such that there are at least ;5lA~1~e primes p,1 (mol l ) with
lA4p42lA. For each such prime p let us ,x an element g

p
3F

p
of order l.

¹hen, for any ,xed integer k52, for all, except possibly o (;), such primes p, if
the vector a3(Z/l)n is chosen uniformly at random then for any d'0 with
probability at least 1!d

D
l,p,gp

(a)@d~1(l~(2k~A)@2k2`e
#l~(A~2)@2k2`e) log p.

4. REMARKS

It is easy to see that the bound of Theorem 4 is nontrivial beginning with
l5p1@3`e with any "xed e'0. It is also useful to recall that there exist
in"nitely many primes p such that p!1 has a prime divisor l'p0.677;
see [1]. For such p and l we see that D

l,p,g
(a)4l~0.26 for almost all a3(Z/l)n.

Moreover, it is expected that l"(p!1)/2 is prime for in"nitely many primes
p. Such pairs of p and l are of special value for cryptography. For them we
deduce that D

l,p,g
(a)4l~0.41 for almost all a3(Z/l)n.
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It is well known that assuming the extended Riemann hypothesis one can
select any A'2 in Lemma 3 and Theorem 5; see Chapter 20 of [3] or
Section 5 of Chapter 7 of [14]. In fact only such values of A are of our interest
because otherwise Lemma 2 provides stronger results. The author is unaware
of any unconditional results of such kind but they can probably be obtained
as well (possibly with much larger value of A); see [5]. It is also useful to
remark that if A53 is an integer then the optimal choice for k is k"A!1
which produces the estimate

D
l,p,gp

(a)@l~(A~2)@2(A~1)2`e

for almost all p satisfying the conditions of Theorem 5 and almost all vectors
a3(Z/l)n.

Analogues of Theorems 4 and 5 can also be obtained for other pseudo-
random functions from [11]. The same method can also be used to study the
distribution of fa (x) for x"0, 1,2,N!1 with N42n.

Finally, it would also be interesting to study the distribution of k-tuples
( fa (x),2, fa (x#k!1)).
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