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Abstract

While discrepancy theory is normally only studied in the context of 2-colorings, we explore
the problem of k-coloring, for k¿ 2, a set of vertices to minimize imbalance among a family
of subsets of vertices. The imbalance is the maximum, over all subsets in the family, of the
largest di6erence between the size of any two color classes in that subset. The discrepancy
is the minimum possible imbalance. We show that the discrepancy is always at most 4d − 3,
where d (the “dimension”) is the maximum number of subsets containing a common vertex.
For 2-colorings, the bound on the discrepancy is atmost max{2d − 3; 2}. Finally, we prove
that several restricted versions of computing the discrepancy are NP-complete. c© 2002 Elsevier
Science B.V. All rights reserved.
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1. Introduction

We begin with some basic notation and terminology. Let L be a family of nonempty
subsets of a Fnite set P. We call the elements of P vertices and the elements of L
lines. A vertex v∈P lies on a line ‘∈L if v∈ ‘. We denote the number of vertices
on a line ‘ by |‘|.
One topic in the area of combinatorial discrepancy theory [2,4,6,15] is the study

of the minimum possible “imbalance” in a 2-coloring of the vertices. Formally, a
2-coloring is a function � from the vertices in P to the two colors −1;+1 (note that
we do not speak about coloring the nodes of a graph such that endpoints have di6erent
colors). The imbalance of � is the maximum di6erence between the size of the two
color classes considered for every line, i.e., max‘∈L |∑v∈‘ �(v)|. The discrepancy is
the minimum possible imbalance over all 2-colorings; to avoid confusion, we call this
standard notion the 2-color discrepancy.
In this paper we consider the following more general setting. A k-coloring of P is

a mapping from the vertices in P to the k colors 1; : : : ; k. It is called c-balanced if for
any line ‘ and any two colors i; j; 16i; j6k, we have

|#{vertices on ‘ colored i} − #{vertices on ‘ colored j}|6c:
We call c the imbalance of the coloring; it is a strong measure of additive error relative
to the uniform distribution. The k-color discrepancy of a family L is the minimum
possible imbalance over all k-colorings.
Ideally, we would hope for perfectly balanced colorings, i.e., with imbalance 0,

but a necessary condition for the existence of a perfectly balanced coloring is that the
number of vertices on each line is a multiple of k. Otherwise, the best we can hope for
is an almost-balanced coloring which is a coloring with imbalance 1. Indeed, de Werra
showed that an almost-balanced coloring (which he calls equitable) always exists if
the incidence matrix of the lines is unimodular [17]. In general, however, this is not
always possible.
Our work is strongly motivated by two previous results. In the context of 2-colorings,

Beck and Fiala [5] gave an upper bound of 2d − 1 on the discrepancy, where the
dimension d (also often called the maximum degree) of a family L is the maximum
number of lines passing through a common vertex.
On the other hand, Akiyama and Urrutia [1] studied k-colorings, for arbitrary k,

for lines that form a two-dimensional grid and vertices that are a subset of the inter-
sections. In this geometric setting (with d=2), they showed that there is always an
almost-balanced k-coloring. The same result for 2-colorings can also be derived using
the algorithm by &SLMma for table rounding [14] (where each grid point corresponds to
a table entry of 1

2 ). A more general table rounding problem with applications in dig-
ital image processing has recently been studied by Asano et al. [3]. Since Fnding a
k-coloring of points on lines that form a two-dimensional grid can be reformulated
as Fnding an edge k-coloring of a simple bipartite graph, the existence of almost-
balanced k-colorings of two-dimensional grid points was actually already proven much
earlier by de Werra [17,18]. He also showed that any simple multigraph (not necessar-
ily bipartite) has a 2-balanced edge k-coloring (see also [12]). Akiyama and Urrutia
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also showed that not all conFgurations of points in higher-dimensional grids have an
almost-balanced k-coloring, but asked whether an O(1)-balanced k-coloring might be
possible for such grids.
In Section 2, we generalize the results of Beck and Fiala [5] and Akiyama and

Urrutia [1] to k-colorings of an arbitrary family of lines. In particular, we settle the
open questions posed by Akiyama and Urrutia within a constant factor. SpeciFcally,
our most general result states that the k-color discrepancy is atmost 4d− 3. Note that
this bound is independent of the number of colors.
We can tighten the bound by 1 in the case that the number of vertices on each line

is a multiple of k. For 2-colorings we can tighten the bound further to max{2d−3; 2},
improving by an additive constant, the results of Beck and Fiala [5]. 3 For d=2, the
bound of 2 is tight because the three vertices of a triangle have no almost-balanced
2-coloring. And in the special case of two-dimensional geometric settings our proof
can be strengthened to give the Akiyama and Urrutia result [1], i.e., we can prove
there is always an almost-balanced 2-coloring.
In Section 4 we show that a simpler divide-and-conquer algorithm (which has appar-

ently been known in the Feld of discrepancy theory [16] but has never been published
until recently [11]) computes k-colorings which are slightly less balanced than the col-
orings computed by the algorithm in Section 2. Both algorithms can be implemented
ePciently in polynomial time. Recently, Doerr and Srivastav [11] used a randomized
recursive approach to obtain colorings with low discrepancies.
Finally, in Section 5 we show that for k¿2 Fnding almost-balanced k-colorings is

NP-complete for line families of dimension at least max{3; k − 1}. For k =2; 3, this
result even holds for the special case of various geometric settings. We suspect that
Fnding an almost-balanced k-coloring is NP-complete for any k¿2 and d¿3.
An independent treatment of multicolor discrepancy theory was recently made by

Doerr and Srivastav [10]. This paper and our paper prove several di6erent results; for
example, Doerr and Srivastav generalize other theorems in 2-color discrepancy theory,
and our NP-completeness results are new. The main overlap between the two papers
is in our most general result, bounding the discrepancy by 4d− 3 (Theorem 1), which
improves Theorem 7 in [10] by an additive constant. And very recently, Doerr [9]
discovered graphs which have very di6erent discrepancies in di6erent numbers of
colors.
A good survey on discrepancy theory as well as various other new results can be

found in Doerr’s Ph.D. thesis [8].

2. The balance theorem

In this section we prove our main theorem which states that any set of vertices on
a set of lines of dimension d can be k-colored such that the imbalance on each line is
bounded by a constant only depending on the dimension d (and not on k, or on the
number of vertices, or on the number of lines).

3 We recently learned that this result was independently obtained by Bednarchak and Helm [7].
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Theorem 1 (Balance Theorem). Let d¿2 and k¿2. Let L be a set of lines of
dimension d containing a set of vertices P. Then P has a (4d−3)-balanced k-coloring.
The imbalance is atmost 4d− 4 for all lines with a multiple of k many vertices.

Proof. This proof is an adaptation of the proof given by Beck and Fiala [5] (see
also [2,15]) for 2-colorings.
With each vertex v∈P we associate k variables xv;1; : : : ; xv; k which will change in

time. At all times all xv; i lie in the closed interval [0; 1]. Initially, all xv; i are set to 1=k.
If 0¡xv; i¡1 then xv; i is called :oating, so initially all variables are Roating. If xv; i=0
or xv; i=1 then xv; i is called ;xed. Once a variable is Fxed, it can never change again.
Eventually, all variables will be Fxed.
At that time, the variables deFne a k-coloring of the vertices: vertex v is colored

with color i if and only if xv; i=1 and xv; j =0 for j �= i. To ensure that there is exactly
one i with xv; i=1, we require that at all times

k∑

i=1

xv; i=1 (Cv)

for all vertices v. We call these equations color equations.
For each line ‘, we want to balance the colors. This can be expressed by k balance

equations E‘; i, for i=1; : : : ; k:
∑

v∈‘
xv; i=

|‘|
k (E‘; i):

The color and balance equations form a system (LP) of linear equations in the variables
xv; i. Ideally, we would like to Fnd an integer solution of (LP) which would then
correspond to a perfectly balanced coloring. But such an integer solution does not
always exist (if a line ‘ contains a number of vertices which is not a multiple of k
then there can be no integer solution to the corresponding balance equations). So we
allow some imbalance in the coloring by ignoring equations with only a ‘few’ Roating
variables. Setting these variables later to arbitrary values of 0 or 1 can only create a
small imbalance.
We say a balance equation is active if it contains at least 2d Roating variables;

otherwise, it is inactive. And a color equation is active if it contains at least two
Roating variables; otherwise, it is inactive. Note that a color equation always contains
either zero or at least two Roating variables. We call the subsystem of active equations
(LPact), and we only require at all times that the active equations are satisFed. Since
initially all variables are Roating, (LPact) initially consists of all balance equations with
at least 2d variables.
Now suppose we have a solution of (LPact) at a certain time. Let f be the number

of Roating variables at this time. Each vertex is contained in atmost d lines. Therefore,
each variable is contained in atmost d balance equations. In particular, each Roating
variable is contained in atmost d active balance equations. On the other hand, each
active balance equation contains at least 2d Roating variables, so the number of active
balance equations is atmost f=2. Moreover, each variable appears in exactly one color
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equation, whereas each active color equation contains at least two Roating variables.
Therefore, the number of active color equations is atmost f=2. If (LPact) is underdeter-
mined, with more variables than equations, then we can move along a line of solutions
of (LPact) in Euclidean space. We do so until one of the Roating variables reaches 0
or 1; then we stop. This Fxes at least one previously Roating variable. We continue
this procedure until all of the xv; i are Fxed, or until (LPact) is not underdetermined.
The latter can only happen if there are exactly f=2 active balance equations and f=2
active color equations. But then, none of these balance equations can have 2d + 1 or
more Roating variables, and none of these color equations can have 3 or more Roating
variables (otherwise there would be strictly more than f Roating variables, a contra-
diction). Thus, each active balance equation contains exactly 2d Roating variables and
each color equation contains exactly 2 Roating variables. If we now round the two
Roating variables in each color equation to 0 and 1, respectively, we change the value
of each balance equation by atmost d. We call this the rounding step. This yields an
imbalance of atmost 2d (which is less than 4d−3 for d¿2) for the lines corresponding
to the active balance equations.
Since the Fnal values of the xv; i still satisfy all the color equations (but not nec-

essarily all the balance equations), we can read o6 a k-coloring of the vertices. We
claim that this k-coloring is (4d− 3)-balanced. Consider any balance equation E‘; i. At
the Frst time it becomes inactive we have

∑
v∈‘ xv; i= |‘|=k, and atmost 2d− 1 of the

xv; i are Roating. Later, each of these Roating variables can change by less than 1 from
that value to its Fnal value. As such, |∑v∈‘ xv; i − |‘|=k|¡2d− 1 for the Fnal values
of the xv; i. Hence the imbalance is bounded from above by 2(2d− 2)=4d− 4 if |‘|
is a multiple of k, and 2(2d− 1)− 1=4d− 3 if |‘| is not a multiple of k.

3. 2-colorings

If we want to Fnd balanced 2-colorings we can improve Theorem 1 by approximately
a factor of 2.

Theorem 2 (2-Color Balance Theorem). Let d¿2. Let L be a set of lines of dimen-
sion d containing a set of vertices P.

(a) If d=2 then P has a 2-balanced 2-coloring.
(b) If d¿3 then P has a 2d− 3-balanced 2-coloring. If d¿4 then the imbalance is
atmost 2d− 4 for all lines with an even number of vertices.

Proof. We adjust the proof of Theorem 1 in the following way. Since we try to Fnd
a 2-coloring we have only two variables xv;1 and xv;2 assigned to each vertex v. These
two variables are related by xv;2 = 1 − xv;1 by the color equation (Cv). Since it is
impossible that only one of the two variables is Roating, Fxing one will automatically
Fx the other one. Therefore, it is suPcient to consider only one of the two variables,
xv;1 for example, by replacing xv;2 by 1 − xv;1 in all equations. When we do this
substitution for all variables xv;2 for all vertices v then for any line ‘ the balance
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equations E‘;1 and E‘;2 are identical. So we can remove all equations E‘;2 and only
keep the equations E‘;1.
Since there are also no color equations left after the substitution we can

strengthen the deFnition of active balance equations. We say a balance equation is
active if it contains at least d Roating variables. Then we proceed as in the proof
of Theorem 1. Note that now (LPact) is not underdetermined if each active balance
equation contains exactly d Roating variables, yielding an imbalance of atmost d in
the rounding step.

Part (a) also follows from the results of Werra et al. [17,12]. In the case of two-
dimensional geometric settings as studied by Akiyama and Urrutia [1] our proof can be
adapted to show the existence of an almost-balanced 2-coloring (the rounding step never
happens in this case because it can be shown that (LPact) is always underdetermined,
even if the number of equations equals the number of variables). We note however
that both mentioned previous works give the same discrepancy bound for k-colorings
for k¿2, whereas we only obtain them for 2-colorings.

4. Alternative approaches

It is tempting to try to use Theorem 2 to derive a greedy algorithm for k-colorings.
We could start with a monochromatic coloring of all nodes, and then consecutively
compute a good 2-coloring for all the nodes of a certain pair of two colors, until all the
colors are suPciently well distributed along the lines. The problem is that computing
a good 2-coloring for one pair of colors can increase the imbalance of another color
on some of the lines by 2d− 3 (or by 2, if d=2). It is not immediately clear which
imbalance we can achieve by this greedy algorithm (and whether it would stop in Fnite
time).
But we can also exploit Theorem 2 in another way. Instead of computing the colors

of all vertices at the same time, we could Frst identify all vertices which should be
colored with color 1, then discard these vertices and identify all vertices which should
be colored with color 2, etc. In one step of this iteration, we only need to associate
one variable xv to each vertex v. Finally, when all variables are Fxed, the vertices v
with xv=1 belong to one color class; we then iterate on the set of all vertices w with
xw =0. In this approach we do not need color equations, and we have just one balance
equation (E‘) for each line ‘:

∑

v∈‘
xv= �|‘| (E‘);

where �=1=k. A balance equation is active if it contains at least d+1 Roating variables.
As before, we conclude that at any time the system (LPact) of active balance equations
is underdetermined, so we can Fx at least one Roating variable. If all variables are Fxed
the number of variables with value 1 must be in the open interval (�|‘| − d; �|‘|+ d)
for every line ‘.
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Iterating this procedure yields k color classes, but the imbalance could be as high
as approximately 2d ln k. To get an imbalance independent of k, we can use divide-
and-conquer instead of the iteration just described. If k is even we do one iteration
step with � set to 1

2 , i.e., we search for a 2-coloring; we then recursively k=2-color
the vertices of color 1 and k=2-color the remaining vertices. If k is odd we do one
iteration step with � set to (k − 1)=2k; we then recursively (k − 1)=2-color the vertices
of color 1 and (k + 1)=2-color the remaining vertices. It can be shown that the total
imbalance after the recursion will be a least 4d− 1 for suPciently large k.
This bound is slightly worse than the bound in Theorem 1, but it has the advantage

that it will adapt to any theorems proved about balanced 2-colorings. For example,
it was conjectured that there always exists an O(

√
d)-balanced 2-coloring [2,6]. If

this were proved it would immediately imply the existence of an O(
√
d)-balanced

k-coloring.

5. NP-completeness results

Akiyama and Urrutia [1] showed that every set of points on the two-dimensional
rectangular grid has an almost-balanced k-coloring for k¿2, and there is an ePcient
algorithm to compute such a coloring. They also gave an example of points on a
3-dimensional grid that do not admit an almost-balanced coloring. We strengthen
this result by showing that testing whether a set of vertices has an almost-balanced
2-coloring is NP-complete for line families of dimension d¿3.

Theorem 3. Let d¿3. Let L be a set of lines of dimension d containing a set of
vertices P. Then the problem to decide whether P has an almost-balanced 2-coloring
is NP-complete.

Proof. Clearly, the problem is in NP, because given a 2-coloring, one can verify in
polynomial time whether it is almost-balanced. In the following, we will therefore
only show that the problem is NP-hard by reduction from NOT-ALL-EQUAL 3SAT which is
known to be NP-hard [13]. The problem NOT-ALL-EQUAL 3SAT is the following: Given n
Boolean variables x1; : : : ; xn and m clauses c1; : : : ; cm which each contain exactly three
literals (i.e., variables or their negative), determine whether there exists an assignment
of Boolean values to the variables such that for each clause at least one literal is true
and at least one literal is false.
Assume an instance S of NOT-ALL-EQUAL 3SAT is given. We want to construct a set

of vertices P and a family L of lines containing the vertices P such that P can be
almost-balanced 2-colored if and only if S has a solution. For ease of description, we
will assume that the two colors are red and blue. For each clause cj, we will have one
line lj that contains three vertices, one for each literal in cj. The lines corresponding
to di6erent clauses use di6erent vertices. In any almost-balanced coloring of P at least
one of the vertices on any line must be red and at least one of the vertices must be
blue.
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Now, by adding additional lines and vertices, we will ensure that two vertices rep-
resenting the same literal must have the same color, and two vertices representing
a literal and its negation, respectively, must have di6erent color. Let x be a literal.
Let p1; p3; : : : ; p2s+1 be the vertices corresponding to the s occurrences of x in S,
and let p2s+2; p2s+4; : : : ; p2t be the vertices corresponding to the t occurrences of Wx
in S. Let p2j be a set of new vertices, for j=1; : : : ; s, and let p2j+1 be a set of
new vertices, for j= s + 1; : : : ; t − 1. We create new lines ‘i, for i=1; : : : ; 2t − 1,
where ‘i contains exactly the vertices pi and pi+1. Since these two vertices must
be colored di6erently in any almost-balanced 2-coloring, the colors of the vertices
p1; p2; : : : ; p2s; p2s+1; p2s+2; : : : ; p2t−1; p2t must alternate. In particular, all vertices rep-
resenting x must have the same color, and all vertices representing Wx must have the
other color.
This construction can be done in polynomial time. Note that each vertex is contained

in atmost three lines. Hence, we have constructed a set L of dimension 3 (which could
also be considered to be of any dimension d¿3). Following the construction, one
immediately veriFes that there exists an almost-balanced 2-coloring for this construction
if and only if the instance S of NOT-ALL-EQUAL 3SAT has a solution.

5.1. Geometric settings

We just showed that the problem of Fnding an almost-balanced coloring is
NP-complete for line families of dimension at least three. Now, we want to strengthen
this result to hold in geometric settings as well. In other words, we want to ensure
that the vertices (called points in a geometric setting) are placed on grid-lines in di-
mension D, of which atmost d intersect in one point. We show that the problem for
the following geometric settings is also NP-complete:

• Finding an almost-balanced 2-coloring of points in the 2-dimensional rectangular
grid with one set of diagonals, i.e., D=2; d=3; k =2.

• Finding an almost-balanced 2-coloring of points in the 3-dimensional rectangular
grid, i.e., D=3; d=3; k =2.

• Finding an almost-balanced 3-coloring of points in the 2-dimensional rectangular
grid with one set of diagonals, i.e., D=2; d=3; k =3.

We suspect that Fnding an almost-balanced k-coloring is NP-complete in all geometric
settings with d¿3, but leave this as an open problem. Note that an NP-completeness
result for 2-colorings in some setting does not immediately imply NP-completeness for
k-colorings, for k¿3, in the same setting, although we would intuitively expect that
using more colors should make the problem more diPcult.

5.1.1. NP-completeness for 2-colorings
Assume an instance S of NOT-ALL-EQUAL 3SAT is given. We want to construct an

instance S ′ of an almost-balanced 2-coloring problem on a grid such that S ′ has a
solution if and only if S does.
The principal idea is the same as for the previous proof. As before for each clause

cj, we will have one grid line ‘j that contains three points, one for each literal in cj.
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Fig. 1. Placing points for one variable xi . In this example, s=3 and t=2.

In any almost-balanced coloring at least one of these points must be red and at least
one of these points must be blue.
To ensure that all points representing the same literal have the same color, we need

to add more points than before in a geometric setting. More precisely, for each variable
xi, we will have one point pi which can be freely colored with either red or blue. Point
pi will have the same color as a literal xi, and the opposite color as a literal Wxi.

We give the construction Frst for D=2 and d=3, i.e., for the rectangular grid with
one set of diagonals. As before, let s (t) be the number of times that xi ( Wxi) appears
in a clause. We represent xi by points that are arranged in a staircase with s+ t many
steps. At the Frst s steps, we duplicate the left point one unit away in the diagonal, and
at the t remaining steps, we duplicate the right point one unit away in the diagonal.
The topmost point of the staircase is pi. See Fig. 1.
Assume that we have an almost-balanced 2-coloring of this conFguration, and that pi

is colored red. Then, assuming that no other points are added in the rows and columns
containing the steps, one can argue that any left point of a step must be red and any
right point of a step must be blue.
If p′

i is the point in the diagonal of pi, then p′
i must be blue because pi is red. At

some point later, we will place exactly one more point p′′
i in the row of p′

i . This point
then has to be red because p′

i is blue. Hence, point p′′
i has the same color as pi in

any almost-balanced coloring, and can be used to represent literal xi in some clause.
Let qi be one of the right points of a step that have another point q′i in their diagonal.

Then qi must be blue, so q′i must be red. At some point later, we will place exactly
one more point q′′i in the row of q′i . This point then has to be blue because q′i is red.
Hence, point q′′i has the opposite color as pi in any almost-balanced coloring, and can
be used to represent literal Wxi in some clause.
We now have s rows to add a point for literal xi, and t rows to add a point for

literal Wxi.
We combine these constructions for x1; : : : ; xn in such a way that no two points for

two di6erent variables share a grid line. For example, this can be done by placing
them along the other diagonal, as illustrated in Fig. 2.
Finally, we add points in m extra columns, one for each clause. If c is the column

for clause cj, then for each literal l of cj we put a point into one of the rows that
correspond to this literal. Furthermore, we choose the row in such a way that for each
row there is exactly one point in one of the columns for the clauses.
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Fig. 2. Placing all variables.

Fig. 3. Adding columns for the clauses. For readability the Fgure is not to scale.

Also, care must be taken that the columns for the clauses are far enough apart such
that no two points in two di6erent columns could possibly be on one diagonal. This
can be achieved by spacing the columns at least 6m+ 1 units aparts. See Fig. 3.
Following the construction, one immediately veriFes that there exists an almost-

balanced coloring for this construction if and only if the instance of NOT-ALL-EQUAL

3SAT has a solution. This proves the following theorem.

Theorem 4. The problem of ;nding an almost-balanced 2-coloring in a two-dimen-
sional rectangular grid with one set of diagonals is NP-complete.

The construction for 2-colorings of points in the three-dimensional rectangular grid
is identical. The only change is that Fig. 3 should now be interpreted as a three-
dimensional picture, with two planes depth. All points for clauses are added in the
second (deeper) of these planes. Thus, we obtain:

Theorem 5. The problem of ;nding an almost-balanced 2-coloring in a three-dimen-
sional rectangular grid is NP-complete.
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Note one interesting feature: we “barely” use the third dimension, because we ac-
tually only use two parallel planes. Nevertheless, having two planes instead of one
makes the problem NP-complete.

5.1.2. NP-completeness for 3-colorings
Now we show that the problem does not become easier if we allow one more

color. More precisely, the problem of Fnding an almost-balanced 3-coloring in a two-
dimensional rectangular grid with one set of diagonals is also NP-complete.
We use almost the same reduction as in the previous section. The main di6erence is

that having two points per grid line is not suPcient because this does not enforce any
color. Therefore, for every grid line that contains two points in the above construction,
we will add a third point. By adding even more points, we force these third points
all to have the same color, say white. Hence, the two original points have exactly as
much color choice as before, which means that the same reduction applies. For each
column of a clause (which are the only grid lines containing three points) we add one
point that also must be white. The remaining three points in such a column must all be
red or blue (because their row contains now two more points, one of which is forced
to be white), so as before, we must have at least one red and at least one blue point
per column for a clause.
The precise addition of points works as follows. Assume that in the above construc-

tion, we have v grid lines that are vertical or diagonal and contain at least two points,
and we have h horizontal grid lines that contain exactly two points.
Imagine placing v vertical diamonds, one attached to each other. See the left picture

in Fig. 4. Assume we have an almost-balanced 3-coloring of this construction. Let p
be a tip of one diamond. The two points at the middle of this diamond both share a
grid line with p, and because every grid line contains atmost three points, they must
have di6erent colors from p. But then the other tip of the same color, which also
shares grid lines with these points, must have the same color as p. Hence, all the tips
of all diamonds have the same color.
Now add h horizontal diamonds, scaled such that they do not share any grid lines

with the vertical diamonds, except at the attachment point. Again this construction has
an almost-balanced 3-coloring, and all tips of all diamonds have the same color. See
Fig. 4.
Assume that all tips of diamonds are colored white. In this construction, which we

call a color splitter, there are then v rows and h columns that contain exactly one
red and one blue point. These rows=columns are indicated with dashed lines in Fig. 4.
Hence, if we place a third point in these rows=columns, then that point must be colored
white.
All that remains to do is to place the color splitter in such a way that all these extra

points can at the same time be in some grid line of the original construction. This can
be done as follows:
Start with the construction of the previous section. Extend all lines that contain at

least two points inFnitely. Place the color splitter such that it is below and to the
right of any of the intersection points of these inFnite lines. Now, for every horizontal
inFnite line from the original construction, choose one of the h columns of the color
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Fig. 4. The construction of a color splitter. We show here v=3 and h=2, though normally these numbers
would be bigger.

Fig. 5. Combining the construction for the 2-coloring with a color splitter.

splitter, and place a point at their intersection. Similarly, for any vertical inFnite line
or any diagonal inFnite line of the original construction, choose one of the v rows of
the color splitter and place a point at their intersection. See Fig. 5.
All these added points must be white. Hence, any of the grid lines of the original

construction that contained two points before now must color these two points with
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red and blue. Hence, adding the third color does not give us any additional freedom,
and the problem remains NP-complete.

Theorem 6. The problem of ;nding an almost-balanced 3-coloring in a two-
dimensional rectangular grid with one set of diagonals is NP-complete.

We leave as an open problem whether Fnding an almost-balanced coloring is
NP-hard for k¿4 colors on a rectangular grid with one set of diagonals. We would
expect that the answer to this problem is yes, at least if we also increase d (the number
of grid lines that are allowed to cross in one point). Observe that it would be enough to
Fnd a color splitter for k¿4 colors; if this exists, then the problem becomes NP-hard
for k colors with a similar technique as in the previous section. We note however, that
the construction of the color-splitter can be generalized to non-geometric settings with
d¿max{3; k − 1} so we have NP-completeness for these cases as well.
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