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Abstract

The main purpose of the paper is to construct a sequence of graphs of constant degree with indefinitely
growing girths admitting embeddings into �1 with uniformly bounded distortions. This result solves the
problem posed by N. Linial, A. Magen, and A. Naor (2002).
© 2012 Elsevier Inc. All rights reserved.
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Definition 1. Let C < ∞. A map f : (X,dX) → (Y, dY ) between two metric spaces is called
C-Lipschitz if

∀u,v ∈ X dY

(
f (u), f (v)

)
� CdX(u, v).

A map f is called Lipschitz if it is C-Lipschitz for some C < ∞. For a Lipschitz map f we
define its Lipschitz constant by

Lipf := sup
dX(u,v) �=0

dY (f (u), f (v))

dX(u, v)
.
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A map f : X → Y is called a C-bilipschitz embedding if there exists r > 0 such that

∀u,v ∈ X rdX(u, v) � dY

(
f (u), f (v)

)
� rCdX(u, v). (1)

A bilipschitz embedding is an embedding which is C-bilipschitz for some C < ∞. The smallest
constant C for which there exists r > 0 such that (1) is satisfied is called the distortion of f . (It
is easy to see that such smallest constant exists.)

The infimum of distortions of all embeddings of a finite metric space X into the Banach space
�1 is called the �1 distortion of X and is denoted c1(X).

The �1 distortion of finite metric spaces plays an important role in the theory of approximation
algorithms, see [10,11,16,17,19].

Our main purpose is to solve the following problem suggested in [12, p. 393] and repeated
in [10, Open Problem 7] and [18, Problem 2.3]: does there exist a sequence of simple k-regular
graphs, k � 3, with indefinitely growing girths and uniformly bounded �1 distortions? (All graphs
mentioned in this paper are endowed with their shortest path distance.) We are going to show that
such sequences exist.

The construction of this paper is inspired by the paper [2]. Recall that the girth g(G) of a
graph G is the length of a shortest cycle in G. We start with a sequence of k-regular connected
simple graphs {Gn} with indefinitely increasing girths g(Gn), such that

g(Gn)� α diam(Gn) (2)

for some absolute constant α > 0. Existence of such sequences of graphs is known for long
time, see [6] and [3, Chapter III]. In the 1980s the constants involved in the construction were
significantly improved, see [14,9,13,15]. For each graph G in the sequence {Gn} we consider its
lift G̃ in the sense of the papers [1] and [5]. (We would like to warn the reader that somewhat
different terminology (graph covers, voltage graphs) is used in other publications on the topic,
such as in [2,7,8].) The particular version of the lift which we use is close to the lift used in [2],
but it is applied to a different sequence of graphs. We changed the lift to make the argument
simpler, also we need somewhat stronger estimates than those which were sufficient for [2].
Another difference of our presentation from the presentation in [2] is that we try to keep the
presentation as elementary as possible, without assuming any topological and group-theoretical
background of the reader. We use only some basic notions of graph theory and the definition of
the space �1. We hope that our graph-theoretical terminology is standard, readers can find all
unexplained terminology in [4].

Definition 2. Let L be a finite set. A lift G̃ of a graph G = (V (G),E(G)) is a graph with vertex
set V (G̃) = V (G) × L. The edge set G̃ is the union of matchings corresponding to edges of
E(G). The matching corresponding to an edge uv matches all vertices of {u} × L with vertices
of {v} × L.

Definition 2 immediately implies that there are well-defined projections E(G̃) → E(G) and
V (G̃) → V (G): edges of the matching corresponding to uv are projected onto uv and vertices
of {u} × L are projected onto u. We denote both of the projections by π . It is clear from the
definition that the degrees of all vertices in G̃ whose projection in G is u are the same as the
degree of u. In particular, any lift of a k-regular graph is k-regular.
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Remark 3. It is easy to see that for each walk {ei}ni=1 in G and each vertex ũ ∈ V (G̃) of the form
ũ = (u, �) with � ∈ L and u being the initial vertex of the walk {ei}ni=1; there is a uniquely deter-
mined lifted walk {̃ei}ni=1 in G̃ for which π(̃ei) = ei and ũ is the initial vertex. It is important that
if G is connected, this remark remains true if instead of G̃ we consider a connected component
of it.

Remark 4. It is clear that if a walk in G has an edge e which is backtracked (that is, the walk
contains two consecutive edges e), then the corresponding edge in the lifted walk is also back-
tracked.

Remark 4 implies that the projection of a cycle in G̃ to G cannot be such that its edges induce
in G a subgraph having vertices of degree 1. In particular, the graph induced by edges of the
projection of a cycle in G̃ contains cycles in G. This immediately implies g(G̃) � g(G).

We apply the lift construction to the graphs {Gn} mentioned above. The fact that we get
k-regular graphs with indefinitely increasing girths follows immediately from the observations
which we just made. It remains to specify lifts for which there are suitable estimates for �1

distortions of connected components of the obtained graphs. The bounds for the distortions which
we get are in terms of the constant α in (2).

For each G ∈ {Gn}∞n=1 we do the following. Let L be the set {0,1}E(G), so each element of
L can be regarded as a {0,1}-valued function on E(G). For each uv ∈ E(G) we need to specify
a perfect matching of {u} × L and {v} × L. To specify the perfect matching it suffices, for each
edge in E, to pick a bijection of the set L. We do this as follows. The bijection corresponding
to e ∈ E(G) maps each function f on E(G) to the function h, which has the same values as f

everywhere except the edge e, and on the edge e its value is the other one (recall that we consider
{0,1}-valued functions).

We denote the graphs obtained from {Gn} using such lifts by {Ĝn}. Observe that the graphs
{Ĝn} are disconnected. To see this consider two vertices: (v, f1) and (v, f2), where v ∈ V (Gn),
f1, f2 ∈ {0,1}E(Gn), f1 �= f2. If (v, f1) and (v, f2) are connected in Ĝn by a path P , it is clear
that the projection π(P ) of this path is a closed walk in G which contains each of the edges
corresponding to different values of f1 and f2 an odd number of times. Each of the other edges
contained in π(P ) is contained there an even number of times. This implies that degrees of all
vertices in the subgraph of Gn spanned by edges at which f1 and f2 have different values are
even (we give a detailed proof of a more general statement in Lemma 8 below). Therefore (v, f1)

and (v, f2) are not connected in Ĝn if the condition of the last sentence does not hold.
For this reason (�1 distortions are well-defined for connected graphs only) we pick in each of

Ĝn a connected component which we denote G̃n. It is easy to see that a connected component of
a k-regular graph with girth g is a k-regular graph with girth � g. The following theorem is the
main result of this paper.

Theorem 5. c1(G̃n) = O(1).

The main steps in our proof are presented as lemmas, where G is one of the {Gn}.

Lemma 6. For each edge e ∈ E(G) the set of all edges ẽ ∈ E(G̃) for which π(̃e ) = e forms an
edge cut in G̃.
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Proof. Recall that G is assumed to be connected. Combining this with Remark 3 we get that for
each e ∈ E(G) and each v ∈ V (G) the sets {̃e ∈ E(G̃) : π(̃e ) = e} and {̃v ∈ V (G̃) : π(̃v ) = v}
are nonempty.

Now let e ∈ E(G). We can just describe the sets separated by the set of edges {̃e ∈
E(G̃) : π(̃e ) = e}: they are the sets (V (G) × Ae,0) ∩ V (G̃) and (V (G) × Ae,1) ∩ V (G̃) where
Ae,0 and Ae,1 are the sets of functions in {0,1}E(G) whose values on e are equal to 0 and 1,
respectively.

The only thing which is not obvious is that the sets (V (G) × Ae,0) ∩ V (G̃) and (V (G) ×
Ae,1) ∩ V (G̃) are nonempty. Let e = uv and let ṽ ∈ V (G̃) be such that π(̃v ) = v. Then ṽ is in
one of the sets (V (G)×Ae,0)∩V (G̃) or (V (G)×Ae,1)∩V (G̃). We lift the one-edge-walk e to
G̃ starting at ṽ. The other end of this walk is in the other set of the pair (V (G) × Ae,0) ∩ V (G̃)

and (V (G) × Ae,1) ∩ V (G̃). �
Let �1(E(G)) be the space of real-valued functions on E(G) with its �1-norm. By the �1-

norm of a function H : E(G) → R we mean the norm ‖H‖1 = ∑
e∈E(G) |H(e)|. It is easy to

see that the space �1(E(G)) is isometric to a subspace of �1 and therefore to prove Theorem 5 it
suffices to find an embedding F of V (G̃) into �1(E(G)) with distortion bounded from above by
a universal constant.

For each edge cut R(e) defined by the set of edges ẽ in G̃ satisfying π(̃e ) = e, we call one
of the sides of the cut R(e) the 0-side, and the other side the 1-side, and define a function F :
V (G̃) → �1(E(G)) by

(
F(x)

)
(e) =

{
1 if x is in the 1-side of R(e),

0 if x is in the 0-side of R(e).

The Lipschitz constant of this embedding is 1. In fact, the cuts R(e) are disjoint and each edge
of G̃ is in exactly one of the cuts. Therefore ‖F(x)−F(y)‖1 = 1 if x and y are adjacent vertices
of G̃.

To estimate the Lipschitz constant of F−1 we consider x, y ∈ V (G̃), denote by dG̃(x, y) their
distance in G̃, and observe the following:

Observation 7. If P is an xy-walk in G̃, then dG̃(x, y) � length(P ) and ‖F(x) − F(y)‖1 is the
number of edges in the walk π(P ) which are repeated in the walk an odd number of times.

Let us denote by D(P ) the number of edges repeated in π(P ) an odd number of times.
Observation 7 shows that to complete the proof of Theorem 5 it suffices, for each x, y ∈ V (G̃),
to find an xy-walk P in G̃ for which

length(P ) � βD(P ) (3)

for some absolute constant β . This is our next goal.
Let x = (u,f ) and y = (v, g) be two vertices of G̃, where u,v ∈ V (G) and f,g ∈ {0,1}E(G).

Let S ⊂ E(G) be the subset on which the functions f and g differ (recall that we consider f and
g as {0,1}-valued functions on E(G)). Denote by H the subgraph of G induced by edges of S.

Lemma 8. If u �= v, degrees of all vertices of H , except u and v, are even. If u = v degrees of all
vertices of H are even.
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Proof. We use the assumption that G̃ is connected, so there is an xy-walk Q in G̃. We claim that
π(Q) has to contain each of the edges of S an odd number of times and each of the other edges
an even number of times (possibly 0).

To see this we recall our construction of the lift of G and our definition of a lifted walk
(see Remark 3). It is obvious that Q is a lifted walk of π(Q). Our definitions are such that the
change in the L-coordinate in each step (when we walk along the lifted walk) is made in exactly
one value of the corresponding {0,1}-valued function on E(G), the choice of this coordinate
depends only on the π -projection of the edge which we are passing, and not on the direction in
which we pass it, or on the L-coordinate of the vertex we are at (this is a very important property
of the graph lift which we consider). Also, we need an obvious observation that if we change
some value of a {0,1}-valued function twice, it returns to its original value.

We denote the subgraph of G induced by edges of π(Q) by I (Q) (π(Q) and I (Q) are slightly
different objects: π(Q) is a sequence of edges in which some edges can be repeated, I (Q) is the
subgraph of G induced by edges which are listed in π(Q) at least once). Now we introduce a
non-simple graph N(Q) having I (Q) as its underlying simple graph and having as many parallel
edges for each edge of I (Q), as many times the edge is repeated in π(Q).

It is clear that the graph N(Q) contains an Euler trail which is a uv-walk (we just follow the
walk π(Q), each time using a different parallel edge for edges repeated in π(Q)). Therefore, if
u �= v degrees of all vertices of N(Q), except u and v are even. If u = v degrees of all vertices
of N(Q) are even. It is clear that if we delete from N(Q) an even number of parallel edges, this
property continues to hold. In particular, it continues to hold if we delete all edges parallel to
edges repeated in π(Q) an even number of times, and leave one copy of each edge repeated in
π(Q) an odd number of times. It is clear that what we get after this deletion is the graph H . �
Proof of Theorem 5. Our goal is to construct an xy-walk P satisfying (3). We use the graph
H introduced above. Lemma 8 implies that all components of H , except possibly the one that
contains u and v, contain cycles. Therefore each of them has at least g(G) edges. It is also clear
that the component containing u and v (if exists) has an Euler trail whose initial vertex is u

and whose terminal vertex is v; and all other components have Euler tours (that is, closed Euler
trails).

Let H1, . . . ,Ht be the components of H . We assume that H1 contains u and v. Observe that
in the case where u = v such component does not have to exist. In this case we introduce H1 as
a trivial component containing one vertex u = v. Observe that we may assume that this trivial
component contains an Euler trail joining u and v, it is just a trail with no edges.

Observe that any two components of H can be joined by a path in G of length � diam(G).
Let M1, . . . ,Mt−1 be paths of length � diam(G) each, such that

1. Mi joins Hi and Hi+1.
2. The terminal vertex of Mi coincides with the initial vertex of Mi+1.

Now we form the following uv-walk M in G:

• It starts at u and follows an Euler trail of H1 to the initial vertex of M1.
• It follows M1 to H2.
• It follows the Euler tour of H2.
• It follows M2 to H3.
• It continues in an obvious way to Ht .
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• It follows the Euler tour of Ht .
• It follows Mt−1 back to Ht−1.
• It follows Mt−2 back to Ht−2.
• It continues in an obvious way till it reaches H1.
• It follows the final part of the Euler trail of H1 (the initial part of that Euler trail was followed

in the first step) and completes it at v.

We lift the walk M taking x = (u,f ) as the initial vertex of the lifted walk. Denote the
obtained walk by P . It is clear that all edges of S are used in M an odd number of times and
that all other edges are used in M an even number of times. Therefore the lifted walk P has
y = (v, g) as its terminal vertex (to see this we use observations made in the proof of Lemma 8).
So P is an xy-walk. Also it is clear that D(P ) = |S|.

Counting the number of edges in P , we get that its length does not exceed

2(t − 1)diam(G) + ∣∣E(H1)
∣∣ + ∣∣E(H2)

∣∣ + · · · + ∣∣E(Ht)
∣∣ = 2(t − 1)diam(G) + |S|. (4)

In the case where t = 1, we use the right-hand side of (4) and get

length(P ) � D(P ),

so (3) holds with β = 1. In the case where t > 1 we use the left-hand side of (4) to get

length(P ) �
∣∣E(H1)

∣∣ +
t∑

i=2

(∣∣E(Hi)
∣∣ + 2 diam(G)

)
.

After that we combine the fact that |E(Hi)| � g(G) for i � 2 with the assumption that g(G) �
α diam(G), and get

length(P ) �
∣∣E(H1)

∣∣ +
t∑

i=2

∣∣E(Hi)
∣∣(1 + 2

α

)

�
(

1 + 2

α

)
|S|

=
(

1 + 2

α

)
D(P ).

Thus (3) holds with β = ( 2
α

+ 1). This completes the proof of Theorem 5. �
Remark 9 (Remark on coarse embeddings). The main purpose of [2] is to construct metric
spaces with bounded geometry which are coarsely embeddable into a Hilbert space, but do not
have property A introduced by Yu in [23].

Definition 10. A discrete metric space X has property A if for every ε > 0 and every R > 0 there
is a family {Ax}x∈X of finite subsets of X ×N and a number S > 0 such that
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• |Ax
Ay |
|Ax∩Ay | < ε whenever d(x, y)� R,

• Ax ⊆ B(x,S) ×N for every x ∈ X, where B(x,S) is the ball of radius S centered at x.

Definition 11. A metric space X is said to have a bounded geometry if for each r > 0 there exists
a positive integer M(r) such that each ball in X of radius r contains at most M(r) elements.

First we would like to mention that Theorem 5 also provides examples of metric spaces with
bounded geometry, which are coarsely embeddable into a Hilbert space, but do not have prop-
erty A. In fact, since �1 admits a coarse embedding into a Hilbert space (see [19, Corollary 3.1]),
Theorem 5 implies that the graphs G̃n admit uniformly coarse embeddings into a Hilbert space.
Therefore, combining our Theorem 5 with a recent result of Willett [22], we get more examples
of metric spaces with bounded geometry but without property A, admitting coarse embeddings
into a Hilbert space. (It is worth mentioning that without the bounded geometry condition such
examples were known earlier [20].)

Also, it is worth mentioning that in [21] it was proved that locally finite metric spaces which
do not admit coarse embeddings into a Hilbert space contain substructures which are “locally
expanding” (see [21] for details). Our example, as well as the example in [2], show that the con-
verse is false, since families of simple graphs with constant degree � 3 and indefinitely growing
girth are “locally expanding” in the sense of [21].
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