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We study the longitudinal-transverse double spin asymmetry ALT for direct photon production in
nucleon–nucleon scattering by using the collinear twist-3 approach. This asymmetry, which, for instance,
could be measured at RHIC, contains a complete set of collinear twist-3 correlation functions in a
transversely polarized nucleon.

© 2012 Published by Elsevier B.V. Open access under CC BY license.
1. Introduction

High energy experiments with polarized beams and targets
have opened a new window for revealing QCD dynamics and
hadron structure. Based on QCD factorization theorems, polariza-
tion-dependent cross sections generally can be factorized into the
convolution of perturbatively calculable hard parts and universal
nonperturbative (soft) parts, which are expressed through various
spin-dependent parton correlation functions. Among these func-
tions, higher-twist spin-dependent correlation functions are poorly
known in comparison to the three leading-twist ones: the spin-
averaged parton distribution f1, the helicity distribution g1, and
the quark transversity h1 [1–3]. Along with leading-twist distribu-
tions, the higher-twist correlation functions provide us with impor-
tant information on the structure of hadrons, even though they do
not have a probability interpretation. The best way of extracting
them is to investigate spin observables which have no leading-
twist contribution. A classic example is the twist-3 double spin
asymmetry ALT (longitudinally polarized lepton beam, transversely
polarized target) in inclusive deep-inelastic lepton–nucleon scat-
tering (DIS), which allows one to study the parton correlator gT .
In the case of nucleon–nucleon scattering, the double spin asym-
metry ALT in the Drell–Yan process, involving two polarized inci-
dent hadrons, has been extensively investigated for the purpose of
studying higher-twist correlators [3–6]. More recently, ALT for in-
clusive lepton production from the decay of W -bosons in proton–
proton scattering and for jet production in lepton–proton scatter-
ing has been derived [7,8]. In this Letter we focus on the double
spin asymmetry ALT for direct photon production in nucleon–
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nucleon scattering, which also allows one to study twist-3 spin-
dependent parton distributions as leading effects. In contrast to
the aforementioned processes, direct photon production contains
a complete set of collinear twist-3 correlation functions in a trans-
versely polarized nucleon.

The crucial tool required for the extraction of twist-3 corre-
lation functions is collinear higher-twist factorization, which has
been established in studying transverse single spin asymmetries
(SSAs) [9–14]. The exploration of SSAs in hadronic reactions has
a long history, starting from the mid 1970’s. In particular, the
large size of the observed SSAs for single inclusive hadron pro-
duction [15–20] came as a big surprise and, a priori, posed a
challenge for QCD, because the collinear parton model predicts
the asymmetries are proportional to αsmq/Ph⊥ [21,22], where mq

is the quark mass and Ph⊥ is the transverse momentum of the
final state hadron. However, significant SSAs in hadronic colli-
sions may be generated by going beyond the naive parton model
and including collinear twist-3 parton correlators, as was first
pointed out in [9], and later on studied in more detail [10–14,23].
(We also note that alternative mechanisms underlying the large
SSAs have been proposed [24–26].) In the process p↑ p → h X ,
the collinear twist-3 formulation has some relation to a descrip-
tion in terms of transverse momentum dependent parton corre-
lators (TMDs) [27–30], provided that initial/final state interactions
in the TMD approach are taken into account [31]. In particular,
for semi-inclusive DIS and related processes, TMDs are of crucial
importance (see, for instance [32–41] and references therein). For
these reactions, also intriguing nonzero spin/azimuthal asymme-
tries were observed [42–45]. In the recent past, important progress
was made in understanding various spin observables in terms of
the collinear twist-3 approach and/or the TMD approach. To men-
tion just one example, it was found that for certain structure func-
tions in semi-inclusive DIS the two formalisms provide the same
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Fig. 1. Generic Feynman diagrams for the partonic channels qg → qγ and qq̄ → gγ . Diagrams (a1) and (b1) contribute to the hard part associated with the soft part 〈ψ̄∂⊥ψ〉;

diagrams (a2) and (b2) contribute to the hard part associated with the soft part 〈ψ̄ A⊥ψ〉.
result at intermediate transverse hadron momenta [46–49], which
can be viewed as a nontrivial consistency check.

By using the collinear higher-twist approach, we are able to
compute the pertinent spin-dependent cross section (numerator
of the asymmetry ALT ) for direct photon production in nucleon–
nucleon scattering and express it in terms of twist-3 parton distri-
butions. In Section 2, we briefly review the factorization formalism
as it applies to the first non-leading term of an expansion in pow-
ers of 1/lγ ⊥ , with lγ ⊥ denoting the transverse momentum of the
observed photon. We also list the twist-3 correlation functions
that appear in the factorization formula and provide the complete
twist-3 spin-dependent cross section. We conclude the Letter in
Section 3.

2. Calculation of double spin-dependent cross section

For definiteness we consider the process

N(P , S⊥) + N( P̄ ,Λ) → γ (lγ ) + X, (1)

where we indicated the 4-momenta and the polarization states
of the particles. Furthermore, we define the Mandelstam variables
through S = (P + P̄ )2, T = (P − lγ )2, and U = ( P̄ − lγ )2. On the
partonic level one has ŝ = xx′ S , t̂ = xT , and û = x′U , with x and
x′ representing the longitudinal momentum fractions of active par-
tons coming from the transversely polarized nucleon and the lon-
gitudinally polarized nucleon, respectively.

The generic form of the (spin-dependent) cross section reads

dσ(lγ ⊥, S⊥,Λ)

= H (0) ⊗ f2 ⊗ f2 + 1

lγ ⊥
H (1) ⊗ f2 ⊗ f3 +O

(
1

l2γ ⊥

)
, (2)

where f2 ( f3) indicates a twist-2 (twist-3) parton distribution,
while H(0) and H(1) are the corresponding perturbatively calcu-
lable coefficient functions. The direct products denote convolutions
in the fractional parton momenta. The second term in Eq. (2) gives
rise to a leading non-vanishing contribution to the double spin
asymmetry ALT . The lowest-order contributions to H(1) are found
from the Born diagrams for the partonic process (see Fig. 1(a1),
(b1)), plus O(g) corrections in which an extra gluon is exchanged
between the remnants of the transversely polarized nucleon and
the hard partonic scattering process (see Fig. 1(a2), (b2)). In order
to isolate the twist-3 contributions to the Born diagrams at this
order, we employ a collinear expansion in the parton momenta.

To proceed further, let us briefly review the relevant twist-3
correlation functions involved in our calculation. For the ALT asym-
metry we consider twist-3 correlators in the transversely polarized
nucleon, together with ordinary twist-2 helicity distributions g1 in
the longitudinally polarized nucleon. The so-called D-type (twist-3)
quark–gluon–quark functions (here denoted by G D and G̃ D ) have
been introduced a long time ago and defined through [3,50]∫

dy−

2π

dy−
1

2π
e−ixP+ y−

ei(x−x1)P+ y−
1

× 〈P , S⊥|ψ̄β

(
y−)

iDμ
⊥
(

y−
1

)
ψα(0)|P , S⊥〉

= M

2P+
[
G D(x, x1)iεμν

⊥ S⊥ν/n + G̃ D(x, x1)Sμ
⊥γ5/n

]
αβ

, (3)

where the gauge links between the field operators have been sup-
pressed. The hadron momentum P is proportional to the light
cone vector n = (1+,0−, 
0⊥), whose conjugate light-cone vector
is n̄ = (0+,1−, 
0⊥). The nucleon mass is denoted by M . The gluon
field enters through the covariant derivative Dμ

⊥ = ∂
μ
⊥ − ig Aμ

⊥ . The
variables x, x1 are the momentum fractions of the hadron carried
by the quarks, implying that the gluon momentum fraction is given
by xg = x − x1. We also recall the relation between the D-type
functions in Eq. (3) and the twist-3 quark-quark correlator gT [3],

xgT (x) =
1∫

0

dx1
[
G D(x, x1) + G̃ D(x, x1)

]
. (4)

In the case of ALT in inclusive DIS, for instance, G D and G̃ D appear
with the same hard scattering coefficient such that the final result
is proportional to gT .

Making use of the field strength tensor offers an alternative way
of defining gauge invariant quark–gluon–quark correlators [9,10],
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∫
dy−

2π

dy−
1

2π
e−ixP+ y−

ei(x−x1)P+ y−
1

× 〈P , S⊥|ψ̄β

(
y−)

g F +μ
⊥

(
y−

1

)
ψα(0)|P , S⊥〉

= M

2

[
T F (x, x1)ε

νμ
⊥ S⊥ν/n + T̃ F (x, x1)i Sμ

⊥γ5/n
]
αβ

, (5)

where T F and T̃ F are the so-called F-type functions. Note that
our definition of these functions differs by a factor 2π M from
the conventions used in Ref. [46,48]. It was found that the F-type
functions directly enter the QCD-description of transverse SSAs in
various processes [10–13].

The D-type functions and the F-type functions are not indepen-
dent as they can be related to each other by means of the equation
of motion [12,51],

G D(x, x1) = P
1

x − x1
T F (x, x1), (6)

G̃ D(x, x1) = P
1

x − x1
T̃ F (x, x1) + δ(x − x1)g̃(x), (7)

where P indicates the principal value prescription, and the func-
tion g̃ is given by [12,51]∫

dy−

2π
e−ixP+ y−〈P , S⊥|ψ̄β

(
y−)

×
(

iDμ
⊥ + g

∞∫
0

dζ− F +μ
⊥

(
ζ−))

ψα(0)|P , S⊥〉

= M

2

[
g̃(x)Sμ

⊥γ5/n
]
αβ

. (8)

Because of the relations in Eqs. (6), (7) we may either use the
D-type or the F-type functions for our calculation. However, it
is mandatory to also include g̃ in order to completely describe
the spin-dependent cross section. (See also [4,52–55] and refer-
ences therein for a discussion about independent twist-3 correla-
tion functions.) It is worthwhile to point out that the function g̃
is related to the twist-2 TMD g1T describing the distribution of
longitudinally polarized quarks in a transversely polarized nucleon
[14,56],

g̃(x) =
∫

d2
k⊥

k2⊥

2M2
g1T

(
x, 
k2⊥

)
, (9)

where we used the definition of g1T as given in [32,38].
As mentioned above, the twist expansion is the key step in

our calculations. The relevant technical ingredients required for
such a twist-3 analysis have been well developed in the last
few decades [9–13,49,50]. In the twist expansion, a set of non-
perturbative matrix elements of the hadron state is analyzed ac-
cording to the power counting of the associated contributions.
At the twist-3 level, the following matrix elements can con-
tribute [50]:

〈ψ̄∂⊥ψ〉, 〈ψ̄ A⊥ψ〉, 〈
ψ̄∂⊥ A+ψ

〉
. (10)

We found it most convenient to work in the light-cone gauge
(A+ = 0) in which only the first two matrix elements survive. The
matrix element 〈ψ̄∂⊥ψ〉 can be transformed into the gauge invari-
ant matrix element g̃ . Moreover, by partial integration, the matrix
element 〈ψ̄ A⊥ψ〉 can be expressed as 〈ψ̄∂+ A⊥ψ〉 and further be
related to the gauge invariant matrix elements T F and T̃ F . These
functions may then be rewritten in terms of the D-type functions
by means of Eqs. (6), (7).

Our goal is to perturbatively calculate the hard scattering co-
efficients associated with these two soft parts. The corresponding
partonic scattering processes are illustrated in Fig. 1. It turns out
that the hard parts are not always real. Imaginary contributions
occur whenever an internal parton line in the hard scattering goes
on-shell. When this happens, we use the distribution identity

1

x ± iε
= P

1

x
∓ iπδ(x). (11)

While for the related calculations of transverse SSAs only the δ-
function contribution matters, in this calculation for ALT we are
left with the principal value part. To be more precise, the imag-
inary parts always cancel between the different cut diagrams. In
order to combine corresponding cut diagrams we use the symme-
try properties

T F (x, x1) = T F (x1, x), T̃ F (x, x1) = −T̃ F (x1, x),

G D(x, x1) = −G D(x1, x), G̃ D(x, x1) = G̃ D(x1, x) (12)

of the F-type functions and the D-type functions.
Making use of these ingredients, the calculation is rather

straightforward, and we obtain the following result for the spin-
dependent cross section:

l0γ
dσ(S⊥,Λ)

d3lγ

= −2M
αsαem

S
Λ
S⊥ ·
lγ ⊥

∑
i=qg,qq̄

∑
a,b

e2
a

1∫
x′

min

dx′

x′
1

x′ S + T

1

xû
gb

1

(
x′)

×
{[

g̃a(x) − x
d

dx
g̃a(x)

]
H g̃

i +
1∫

0

dx1
[
Ga

D(x, x1)H G D
i

+ G̃a
D(x, x1)H G̃ D

i

]}
, (13)

where x = −x′U/(x′ S + T ) and x′
min = −T /(S + U ). The hard coef-

ficient functions for the qg → qγ partonic channel are

H g̃
qg = Nc

N2
c − 1

[
ŝ2 − t̂2

ŝt̂

]
,

H G D
qg = Nc

N2
c − 1

[
ŝ2 − t̂2

(1 − ξ)ŝt̂

]
+ 1

Nc

[
û(ŝ2 + 2t̂2)

ŝt̂2
+ û

(1 − ξ)t̂

]
,

H G̃ D
qg = Nc

N2
c − 1

[
(ξ − 2)(ŝ2 − t̂2)

ξ(1 − ξ)ŝt̂

]

+ 1

Nc

[
û(ŝ2 + 2t̂2)

ŝt̂2
+ (ξ − 2)û

ξ(1 − ξ)t̂
+ 2û

ξ ŝ

]
, (14)

while the coefficient functions for the qq̄ → gγ channel read

H g̃
qq̄ = 1

N2
c

[
t̂2 + û2

t̂û

]
,

H G D
qq̄ = t̂2 + û2

(1 − ξ)t̂ û
+ 2C F

Nc

[
ŝ2(t̂ − û)

t̂2û
− (ξ − 2)(t̂ − û)

(1 − ξ)t̂

]
,

H G̃ D
qq̄ = (ξ − 2)(t̂2 + û2)

ξ(1 − ξ)t̂ û
+ 2C F

Nc

[
ŝ2(t̂ − û)

t̂2û
− ξ(t̂ − û)

(1 − ξ)t̂

]
, (15)

with ξ = xg/x. Note that the spin-dependent cross section rele-
vant for the ALT asymmetry is characterized by the correlation
Λ
S⊥ · 
lγ ⊥ instead of the correlation 
S⊥ ×
lγ ⊥ that arises in the
case of transverse SSAs. We have expressed the cross section in
terms of the D-type functions plus g̃ . By doing so the contributions
from the derivative term and the non-derivative term associated
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with the correlator g̃ can be combined into the same compact
form that was found for the SSAs for direct photon production
and inclusive pion production [10,11,13]. We also point out that,
unlike related previous studies of other processes [7,8], the coeffi-
cient functions for G D and for G̃ D are different. Therefore, in the
present case it does not pay off to involve gT in the final result.
This also means that through direct photon production, in com-
bination with other reactions, one should in principle be able to
study a complete set of twist-3 correlators for a transversely po-
larized nucleon.

3. Summary

By using collinear twist-3 factorization we derived the longitu-
dinal-transverse double spin asymmetry ALT for direct photon pro-
duction in nucleon–nucleon scattering. Our study can be consid-
ered as the counterpart of the calculation of the transverse SSA in
the same process [10]. Measuring this observable might also open
a new window to test the higher-twist approach, for instance by
looking at the transverse momentum behavior of ALT . Also, due
to the derivative term of the correlator g̃ , the asymmetry may be
largest in the large xF region — the same kinematics for which the
largest SSAs in hadron production have been observed. Moreover, if
the gluon helicity distribution (in the small x region) is very small
(see, e.g., Ref. [57]), one can expect ALT to be larger for pp̄ scatter-
ing than for pp-scattering.

The result for ALT depends on a complete set of collinear
twist-3 parton correlators for a transversely polarized nucleon. It
requires numerical studies to find out to what extent these corre-
lators could, at least in principle, be separately explored by varia-
tion of the kinematics. Most likely one would need the combined
information from different processes to address all three twist-3
correlation functions. Besides the twist-3 effect investigated in this
Letter, a collinear twist-3 correlator for the longitudinally polarized
hadron, coupling to the transversity distribution, may also con-
tribute to ALT . This part as well as numerical estimates are left for
future study. One can further extend our work to the ALT asymme-
try in other processes such as single inclusive hadron production
and jet production [58].
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