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A t m t r a c t - - E x t e n d e d  from the Ditiie-Hellman public key distr ibution system (PKDS),  we pmpo6e 
& confe r~ce  key distr ibution system (CKDS) based on the  cro~-product  operations on row vectore 
over a Galois field GF(P) ,  where P is a prime number.  In our CKDS, the clmirperaon computes 
a conference key CK and then  embeds it  to some public interpolat ing polynomials to let  only the 
legal intended pr incipa~ recover CK, while the illegal inte~ided principals can not.  From the public 
parameters,  an  int ruder  or any intended principal in the  network does not  know how many and  who 
are the  legal inteztded principals in the conference. Fttrthe~nore, since the construction of the CK 
does not  interfere with  the secret keys of the intended principals, any inte~ded principals in  the  
network has no  useful information for revealing any other  principals '  secret keys. Besides, our CKDS 
can he  implemented practically. 

1. INTRODUCTION 

In a computer system, we usually apply encryption techniques to safeguard transmitted infor- 
mation from anyone other than the legal receiver(s), for achieving privacy and secrecy. The 
so-called key distribution problem concerns how to secretly distribute an encryption/decryption 
key shared among a sender and the legal receiver(s) in advance. In 1979, Dime and HeUman [1] 
first introduced the concept of public key distribution system (PKDS) for achieving such purpose. 
The Diffie-Hellman PKDS is described in the following. 

Let zi and zj be two secret keys possessed by two communicating principals Ui and Uj, 
respectively. Let P be a large prime number and let a be a primitive element, mod P. Both P 
and a are known to Ui and Uj. For distributing a common secret key shared between principals 
Ui and Uj, U~ computes his public key Yi as 

Yi = a z' (mod P), 

and publishes it to Uj. Similarly, U~ computes his public key yj as 

y j  = a x j  (mod P), 

and publishes it to Ui. Thereafter, a common secret key Kij shared between Ui and Uj is 
computed as 

K i j = a  ~'zj (modP)  

= yi z~ ( m o d P )  

-- yj~' (mod P). 

That is, U~ can use his secret key zi and Ujs public key yj to recompute K~j, and Uj can use his 
secret key zj and Uis public key Yi to reobtain K 0. Once the common secret key K 0 has been 
distributed between U~ and Uj, they can communicate with each other secretly by sending the 
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messages enciphered by an available symmetric cryptosystem, such as DES, with the encryption 
key Kij. 

The Difl~e-Hellman PKDS only allows two communicating principals to share a common se- 
cret key. With the progress in computer networks, we frequently want to admit any group of 
communicating principals to share a common conference key so that a secure multi-destination 
communication or holding a secure electronic conference can be achieved [2,3]. The key dis- 
tribution system concerned with distributing a secret conference key shared among a group of 
communicating principals is referred to as the conference key distribution system (CKDS). In 1982 
Ingemarson, Tang and Wong [4] generalized the Diffie-Hellman PKDS to a CKDS. Lately, Koyarna 
and Ohta [5], and Okamoto and Tanaka [6] also proposed two identity-based CKDSs. However, 
these systems involve large computation for generating the conference key. Recently, Laih, Lee 
and Ham [7] proposed a threshold scheme and its application in designing a CKDS. The Laih- 
Lee-Ham scheme is based on the property of cross-product operations on row vectors. However, 
their proposed CKDS exhibits two potential problems: 

(1) an illegal intended principal may fortuitously compute the conference key, and 
(2) the amount of required storage used for public parameters grows with the square of the 

number of legal intended principals in the conference. 

In this paper, we first extend the definitions of cross-product operations presented in the 
same paper [7] to be suitable over a Galois field GF(P), where P is a prime number. Based 
on some properties of cross-product operations on row vectors over GF(P), we shall propose 
another CKDS that can overcome the disadvantages stated above. In our CKDS, the required 
storage for public parameters is fixed proportionally to the number of intended principals in the 
networks. From the public parameters, an intruder or any intended principal does not know how 
many and who are the legal intended principals participating in the conference. In Section 2, some 
mathematical backgrounds are introduced. Our CKDS is presented in Section 3. In Section 4, the 
security analysis and computational complexity of our CKDS are discussed. Finally, conclusions 
are given in Section 5. 

2. MATHEMATICAL BACKGROUNDS 

In this section, we introduce some properties of cross-product operations on row vectors over 
a Galois field GF(P), where P is a prime number. 

DEFINITION 2.1. Let Vi = (vii, vi2,. . . ,  Vin) be a n-dimensional vector. We define the vector Vi 
over the Galois field GF( P) as 

Vi (mod P) = (vit mod P, vi2 mod P, . . . ,  vi, mod P). 

DEFINITION 2 . 2 .  

V1,V2, . . .  ,Vn-1 over GF(P) is deflned as 
The cross-product of n - 1 as//nearly independent n-dimensional row vectors 

I t)12 '013 

(rood P) = v2~ v23 • 

~n-1,2 I)n-1,3 

V l  X V 2  X ' ' .  X V n - 1  

Vl l  ~13 - . .  Vln 
V21 V23 . . -  V2n 

; : : 

~n-1,1 ~ n - l , 3  . . -  V n - l , n  

"Uln 

1~2n 

"On-- l ,n 

1~21 tJ22 • • • 1~2,n- 1 
7 - - . ,  . . . 

I I / n -  1 , 1  ~ n - - 1 , 2  • • • ' O n - - l , n - - 1  

(mod P), 

where [M[ means the determinant of the matrix M. 

From the above definitions, consider n = 3 and let V 1 and V2 be two linearly independent 
three-dimensional row vectors. The cross-product operations on row vectors Vl and V2 have the 
following properties: 
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PROPOSITION 2.1. Let A be an m x 2 matrix, rn >_ 2, such that any two row vectors of A form 
a full rank square matrix. I f  

K~ V1 (mod P), 
: = A V2 

then Ki x W = c (V 1 X 7 2 )  (mod P), for i = 1,2, . . .  ,m, where c is a constant and W is either 
V l  o r  V2.  

PROOF. Let Vl  = (vii, v12, via), V2 = (V2h v2~, v~3) and 

a l l  a12 I 
A = a21 a22 

am1 am2 / 

Then we have Ki - ( a i l  vii + ai~ v21, ail v12 + aiz v~2, ail via + ai2 v~a) (rood P). Without loss 
of generality, let W -- Vl .  We have 

Ki x W(mod  P)  = ( a i l  vl! + ai2 v21, all 1~12 "1- ai2 I?22, ail V13 .~L ai2 v~3) × (VII, V12, V13) (mod P) 

= (via  (a i l  + a,2 v 2) - v12(ai1 via + 

v13(ai1 ~11 "~" ai2 v21) -- vii(all v13 + ai2 v23), 

v12(ail Vll q- ai~ V~l) -- Vll(ail V12 "b ai2 T)22)) (mod P)  
= (ai~(Vla v2~ - Vl~ v~3), ai~(Vl3 v21 - vii v2a), ai~(Vl2 V~l - vii v~z)) (mod P) 
= ( -a i~ ) (v~  vz~ - via v~, v~z v~a - v~3 V~l, V~l v~ - Vl~ v~) (mod P) 
= (-a i~)(Vl  x V2) (modP)  

= e(V~ x V2) (mod P), for c = (-a/z).  | 

PROPOSITION 2.2. Let Vl  x V~ (mod P) = (dl,d2, da) and dl ~ O. Let Ki x W (modP)  = 
(el, e2, e3) and Kj x W (mod P)  - (fl,  f2, fa) for i ~ j ,  where W is either V l  o r  V 2. If  the 
inverse of dl, i.e., d'~ 1, over GF(P) exists, then 

(1) the inverse of  el, i.e., e'~ 1, and the inverse of f1 ,  i.e., f ~ l ,  over GF(P) exist; 
(2) (d2 d~'l 1, dad~ "1) = (e2el  1, e 3 e l  1) - -  ( f 2 f ~  1, f a l l  1) (mod P). 

PROOF. (1): From Proposition 2.1, we know 

Similarly, we have 

Ki × W  (mod P)  = ei (V1 x V2) (mod P) 

= ci (dl, d2, d3) (mod P)  

= (ci dl, ci d2, ci da) (mod P)  

= (el, ea). 

K i × W  (mod P) = cj (V1 x V2) (mod P) 

= cj (dl, d2, d3) (mod P) 
= (cj dl, cj d2, cj d3) (mod P) 

= ( f l , f 2 , f s ) .  

However, ci ~ 0 and ej ~ 0, because 7 1  and  72  are linearly independent. Note that P is a 
prime number. Again, d~'l 1 exists over GF(P) since dl ~ 0. Thus, e~ "1 - (ci dl) -1 (modP)  and 
f/-1 = (ey dl) -1 (mod P)  also exist, because c~ dl ~ 0 and cy dl ~ 0. 
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(2): By normalizing the row vector (dl, d~, d3) over GF(P),  we have the normalized row vector 

D = (1, d2dl 1, dad'~ 1) (modP) .  

Again, by normalizing the row vector (el, e2, e3) over GF(P),  we have 

E : (1, e2 e l  1, e3 e l  1) (mod P) 

-(1,- ci d2 (ci dl)-I , ci d3 (ci dl) -1 ) 
= (1, d2d'~ 1, d3d~ "1) (modP), 

(mod P) 

since ci c~ "I = 1 (mod P). Similarly, we have 

F = (1, f 2 f l  1, f3fl 1) (modP) 

= (1, cj d2 (cj dl) -1, cj d3 (cj dl) -1) 
-- (1, d2d'~ 1, dad11) (modP) ,  

(mod P) 

since cjcj "1 - 1 (modP). Therefore, D = E = F. That is, 

(d2dl 1, d3dl 1) - (e2el  1, e3e~ "1) -- ( f 2 f ~  1, f3f~ "1) (rood P). | 

The following example illustrates Proposition 2.1 and Proposition 2.2. 

EXAMPLE2.1. LetP=31, V1=(2,3,5),V2=(l,2,4)andA= 2 . Then we have 
4 

K1 2 3 2 3 5 (rood31)= 13 
K2 - 1 2 4 
K3 11 21 

Thus, we have 

Vl x V2 

K1 x Vl  

(mod 31) = (2, 3, 1), and 

(mod 31) = ( - 6 , - 9 ,  -3 )  (mod 31) 

-- (-3) (2,3, 1) (mod 31) 

= 28 (2,3, 1) (mod31) 

= 2 8 ( V l x V 2 )  (mod31) 

= (25, 22, 28). 

The reader may verify that 

K2 × Vl (mod31) = 29(Vi × V2) (mod31), and 

Ks x Vl (mod31) -" 27(V1 × V2) (mod31), 

from which Proposition 2.1 follows. Since P is prime, the inverse of 25 over GF(31) exists, and 
25 -1 = 5 (mod 31). Thus, (22.25 -1, 28.25 -1) (mod31) = (17, 16 I. Again, 2 -1 = 16 (rood31). 
We have ( 3 . 2  -1, 1 . 2  -1) (rood31) = (17,16) = (22 .25  -1, 28 .25  -1) (mod31), from which 
Proposition 2.2 follows. Based upon the above properties, we shall propose a CKDS in the next 
section. 
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3. OUR CKDS 

Let there be n+ 1 intended principals U0, U1,. . . ,  Un in a network system. Let P be a large prime 
number and a be a primitive element, mod P. Both P and a are known to all intended principals. 
When the network is set up, each principal Hi is initially assigned an identification number IDi, 
a distinct secret key zi and a public key Yi, where zi and Yi are derived from the Diflie-Hellman 
public key system. Without loss of generality, let [To be the chairperson who wants to originate a 
secure conference. Let Ul, U2,... ,Urn be legal intended principals, and let Um+l,U,n+a,..., Un 
be illegal intended principals. For holding a secure conference, U0 computes a common conference 
key CK to let only the legal intended principals recover it; while the illegal intended principals 
cannot. Once the conference key CK is retained by all participating members of the conference, 
they can broadcast the conference messages enciphered by CK. Thereafter, a secure conference 
is achieved. The algorithm for originating a secure conference by the chairperson U0 is stated as 
follows. 

Algorithm ORIGINATE 

Input: 1. the secret key z0 of U0; 
2. all public keys yis of Ui, for i = 1, 2 , . . . ,  n. 

Output: 1. a conference key CK; 
2. a three-dimensionM row vector Vl,  and interpolating polynomials FI(X), F2(X) 

and F3(X). 
Step 1: Randomly choose two linear independent three-dimensional row vectors 

Vl = (v11, v12, v13) and V~ = (v21, v22, v2a), 

such that v12 v2s ~ v13 v22. 
Step 2: Compute a row vector (dl, d2, ds) = Vl × V2 (mod P). 
Step 3: Set the conference key CK = (d2 d~ "1, dsd~ 1) (mod P), where d~ "1 is the inverse of dl 

over GF(P). 
Step 4: Randomly choose an m × 2 matrix A, such that any two row vectors in A form a full 

rank square matrix and then compute 

Ks = A Vl 
• V2 

m 

(mod P), 

where Ki = (kil, ki2, kia). 
Step 5: Using an interpolation method [8], do the following: 

(5.1): Construct the polynomial FI(X) over GF(P) by interpolating on points (IDi, y~o. 
hi1 (mod P))s  and (IDj, 0)s, for i = 1, 2, . . . ,  m and j = m + 1, m + 2 , . . . ,  n. 

(5.2): Construct the polynomial F2(X) over GF(P) by interpolating on points (IDi, y~O. 
hi2 (mod P))s  and (IDj, 0)s, for i = 1, 2 , . . . ,  rn and j = m + 1, m + 2, . . . .  n. 

(5.3): Construct the polynomial Fs(X) over GF(P) by interpolating on points (IDi, y~°- 
kis (mod P))s and (IDj, 0)s, for i = 1, 2 , . . . ,  m and j = m + 1, m + 2 , . . . ,  n. 

Step 6: Publish V1, FI(X), F2(X), and Fs(X). 
When the public parameters V1, FI(X), F2(X), and Fs(X) are retained, each intended prin- 

cipal Ui performs the following algorithm to recover the conference key CK. 

Algorithm RECO VER-CK 

Input: 1. secret key zi of Ui; 
2. public key Y0 of U0; 
3. public parameters Vl ,  FI(X), F2(X), and Fs(X). 

Output: the conference key CK. 
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Step 1: Compute 

wil = Ft(IDi) (mod P), 

wi~ = F2(IDi) (mod P), 

wl3 = F3(IDi) (mod P). 

and 

Step 2: If wll = w~2 = w~3 = 0, then stop, because Hi is an illegal intended principal to the 
conference. 

Step 3: Compute z~ = y~' (rood P). 
Step 4: Compute 

~il = UJil" Z~ 1 (modP),  

ki~ = wi~" z~ "1 ( m o d P ) ,  

ki3 = wi3" z~-I (mod P), 
and 

where z~ -1 is the inverse of zl over GF(P). 
Let Ki = (kil, ki2, kia). 

Step 5: Compute (eil,ei2,eia) = Ki X Vl (modP).  
Step 6: Recompute the conference key CK as 

CK = (e,2. e~ 1, ei3. e~ 1) (mod P), 

where e~ 1 is the inverse of eil. 
In Step 3 of algorithm ORIGINATE, the inverse of dl exists, since v12 v2s ~ v13 v22 and P is 

prime. Similarly, the inverse of el exists in Step 6 of algorithm I~ECOVER-CK. It is to see that 
if anyone is able to determine the vector (kil,ki2,ki3), then he can recover the conference key 
CK computed by the chairperson U0. Further, by the Diflie-Hellman PKDS, we have 

y~ , -y~o  (mod P). 

Consequently, each legal intended principal Ui can use his secret key zi and U0s public key y0, 
associated with the public parameters FI(X), F2(X), and F3(X), to recover CK. From Propo- 
sition 2.1 and Proposition 2.2, we see that the conference key CK chosen by the chairperson 
and the CK recovered by the legal intended principals are the same. When all the participating 
members of the conference have recovered the conference key CK, they can transmit conference 
messages enciphered by CK along with the broadcast links of the network. We will give examples 
to show how the algorithms ORIGINATE and RECOVER-CK work. 

EXAMPLE 3.1 [ORIGINATE]. Let there be five principals U0, U1, U2, U3, and U4 in the network. 
Let P - 31 and ~ - 7. Initially, the identification numbers, secret keys and public keys are as 
(ID0, z0, Y0) - (0, 3, 2), (IV1, zl,  Yl) - (1, 7, 28), (IV2, z2, y2) - (2, 6, 4), (IDa, z3, y3) - (3, 4, 14), 
and (ID4, z4, Y4) - (4, 10, 25), respectively. Suppose that U0 wants to originate a secure confer- 
ence, and U1 and U2 are legal intended principals, while U3, U4 are illegal intended principals. 
First, U0 randomly chooses two row vectors, say Vl - (2, 3, 5) and V~ - (1, 2, 4), and computes 

Vl × V2 ( m o d P ) -  (2,3,5) x (1,2,4) ( m o d 3 1 ) -  (2,3,1). 

Then, U0 computes the conference key CK as 

C K - ( 3 . 2  - 1 , 1 . 2  -1 ) (mod 31) = (17,16). 

By performing Step 4 of ORIGINATE, let A = ( 2  32 ~ And the row vectors for the legal 
1 

J 

intended principals U1 and U2 are 

K1 - (7, 12, 22) and K2 "- (4, 7, 13), 
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respectively. After that, three interpolating polynomials can be constructed by applying the 
secret key of U0 and all intended principals' identification numbers IDis and public keys yis, as 

FI(X) = 20X 3 + 10X 2 + 27X + 2 (mod31), 

F2(X) = 30X 3 + 16X 2 + 1 8 X +  15 (mod31), 

Fa(X) = 19 X 3 + 28 X 2 + 10 (mod 31). 

and 

we have 

Wll = Ft(ID1) 

w12 = F2(ID1) 

w13 = F3(ID1) 

(rood P) = FI(1) 

(mod P) = F~(1) 

(rood P) = F3(1) 

Since Wll ~ 0, w12 ¢ 0, and w13 # 0, 
Step 3 of algorithm RECOVER-CK, U1 computes 

Zl --. y~l  

and then retains Ki = (k11, kl~, k13) 

kll -- 28 

kl~ = 17 

k13 ---- 26 

Next, U1 computes 

(e11, e12, els) = K1 × Vl  

Thus, U1 recovers CK as 

(mod P)  = 2 ~ 

as 

• 4 -1 (mod31) = 7, 

• 4 -I (mod31) = 12, 

• 4 -1 (mod31) = 22. 

(mod P) = (7, 12, 22) x (2, 3, 5) 

CK = (22-25 -1, 28.25 -1 ) (mod31) = (17, 16), 

which is identical to the CK generated by the chairperson U0. 
As to the illegal intended principal, say U3, he computes 

Wal = FI(ID3) 

w32 = F2(ID3) 

w33 = F3(ID3) 

(mod P) = F1(3) 

(mod P) = F2(3) 

(mod P) = Fa(3) 

(rood 31) = 0, 

(mod 31) = 0, 

(mod 31) = 0. 

Thus, U3 cannot recompute the CK from the public parameters Vl ,  FI(X),  F~(X), and Fs(X). 
The reader may verify the performing of algorithm RECOVER-CK for Us and U4. 

4. S E C U R I T Y  ANALYSIS AND DISCUSSIONS 

From algorithm RECOVER-CK, it is easy to see that anyone who knows the secret key zi can 
retain the row vector Ki. And then he can recover CK by computing Ki x Vl .  However, the 
difficulty of computing xi from yl is based on the difficulty of computing a discrete logarithm 
over GF(P)  [1]. Suppose the prime number P is represented as 200 bits, then taking logs mod P 
for determining xi requires approximately 10 s° operations. For a sufficiently large value of zi, 
say 664 bits, the fast algorithms for computing the discrete logarithm function are intractable [9]. 

U1 can confirm that he is a legal intended principal. From 

(mod 31) = 4, 

and 

(mod 31) = (25, 22, 28). 

and 

(rood31) = 28, 

(mod31) = 17, 

(mod31) = 26. 

and 

In order to let the legal intended principals have the ability to recover CK, Uo broadcasts Vl ,  
FI(X),  F2(X), and Fs(X) in the network. 

EXAMPLZ 3.2 [RECOVER-KEY].  Reconsider Example 3.1. We will show how the legal in- 
tended principal, say U1, recovers the conference key CK. By Step 1 of algorithm RECOVER-CK, 
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Further, Pholig and HeRman [10] pointed out that  if P - 1 has at least one large prime factor, 
then it is very difficult to compute discrete logarithms on mod P.  

In our scheme, the secret keys of participating members of a secure conference do not interfere 
with the construction of Kis ,  which can be used to recover the conference key CK. Thus, any 
intended principals in the network have no useful information for revealing any other principals' 
secret keys. Again, for the construction of the interpolating polynomials FI (X) ,  F2(X), and 
Fa(X),  we exclude the illegal intended principals Ujs by interpolating on the points (IDj, 0)s. 
Therefore, our CKDS can prevent any illegal intended principals from fortuitously recomputing 
the conference key CK. The amount of storage for the public parameters V h  FI (X) ,  F2(X), 
and Fa(X) are 3(n .6 1) logr(P + 1)1 bits, where 3n [log(P .6 1)1 bits are used for storing the 
coefficients of the F/(X)s  and the 3 [log(P .6 1)1 bits are used for storing the row vector Vi.  

Next, we discuss the computational complexity of our CKDS. Denning [9] presented an efficient 
algorithm for computing the inverse of a number z mod P.  The average number of divisions 
performed by his algorithm is approximately (0.843 In P .6 1.47). For computing the matrix A 
used in Step 4, a straightforward algorithm can be performed by O ( m )  multiplications, where m 
is the number of legal intended principals. Thus, the complexity of our CKDS heavily depends 
on the construction of interpolating polynomials in Step 5 of algorithm ORIGINATE. By using 
the Lagrange formula, it requires n additions, 2n 2 .6 2 subtractions, 2n 2 -6 n - 1 multiplications, 
and n -6 1 divisions, plus one modular operation to compute an interpolating polynomial F ( X )  

with degree of n [8]. As to evaluate the interpolating polynomial F ( X ) ,  we only require n 
multiplications, 2n additions, plus one modular operation by applying Hornet 's rule [8]. Thus, 
our CKDS is practical to implement. 

5. C O N C L U S I O N S  

We have extended the Diffie-Hellman PKDS to a CKDS. Our proposed CKDS is based on the 
properties of cross-product operations on row vectors. We have also shown that  our CKDS is 
crypto-secure. The characteristics of our CKDS are: 

(1) From the public parameters, an intruder or any intended principal in the network cannot 
know how many and who are the legal intended principals in the conference. 

(2) The construction of the conference key does not interfere with the secrets of the intended 
principals. Thus,  any intended principal in the network has no useful information for 
revealing any other principals' secret keys. 

(3) Due to the computational complexity discussed in the previous section, our CKDS can be 
implemented practically. 
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