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The complete nucleotide sequences of two double-stranded RNA (dsRNA) segments, isolated from the
same hypovirulent strain (KL-1) of Sclerotinia sclerotiorum, were determined. Sequence analysis showed
that dsRNAs 1 to be 2513 nts long and is A-U rich (61.7%). Excluding the poly(A) tail, dSRNAs2 is 2421
nts long and its AU content is 53.1%. The 5’ and 3’-terminal sequences of the positive-strand of each
dsRNA could be folded into predicted stable stem-loop structures. Mitochondrial codon usage revealed
that each dsRNA has a single large open reading frame coding for a protein containing RNA-dependent

IQ}’W‘"rde RNA polymerase conserved motifs. Furthermore, dsRNAs 1 and 2 share sequence similarities with other
Mitovirus mitoviruses. These results suggest that dsRNAs 1 and 2 represent two distinct new mitoviruses,
xg’;‘;‘cirr‘;;ae designated Sclerotinia sclerotiorum mitovirus 1 (SsMV1/KL-1) and SsMV2/KL-1, respectively. The

Sclerotinia sclerotiorum hypovirulence traits of strain KL-1 and the two mitoviruses could be co-transmitted to a virus-free

Hypovirulence

virulent strain via hyphal anastomosis.
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Introduction viruses might help to expand our understanding of the origin,

Mycoviruses (or fungal viruses) are prevalent in all major
groups of plant pathogenic fungi (Ghabrial and Suzuki, 2009).
Although the majority of dsRNA mycoviruses have been reported
to be associated with symptomless infections of their hosts, there
are well documented cases for mycoviruses that induce hypoviru-
lence in their plant pathogenic fungal hosts and are currently
being exploited as means of biological control for combating plant
diseases (Pearson et al., 2009; Ghabrial and Suzuki, 2009). The
hypovirus-mediated hypovirulence in Cryphonectria parasitica
was applied effectively to control the chestnut blight disease in
European chestnut (Anagnostakis, 1982; Nuss, 1992). In addition,
another hypovirulence-associated bipartite dsRNA virus, Rosellinia
necatrix megabirnavirus 1, is a potential viral agent for biological
control of the white root rot disease caused by Rosellinia necatrix
(Chiba et al., 2009). Moreover, fungus-mycovirus systems present
an opportunity to understand the molecular basis of virulence in
phytopathogenic fungi and provide insight into the fundamental
features of virus-fungus-plant interactions (Nuss, 2005; Li et al.,
2008). The discovery of more novel mycoviruses including latent
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ecology and evolutionary pathways of mycoviruses (Ghabrial,
1998; Ghabrial and Suzuki, 2009).

The family Narnaviridae of single-stranded (ss) RNA viruses
comprise two genera, Narnavirus and Mitovirus (Hillman and
Esteban, 2011). The genomes of narnaviruses and mitoviruses
are unencapsidated and consist of only a single open reading
frame (ORF) coding for a putative RNA-dependent RNA polymer-
ase (RdRp) that is required for RNA replication. The genomes of
mitoviruses and narnaviruses represent the simplest of all known
autonomously replicating viruses (Deng et al., 2003; Hillman
and Esteban, 2011). The mitoviruses described so far, infect only
filamentous fungi and have been reported in numerous plant
pathogenic fungi (Table 1).

Sclerotinia sclerotiorum (Lib.) de Bary is a necrotrophic fungal
pathogen that causes important diseases in a wide variety of
broadleaf crops including soybean and sunflower (Boland and
Hall, 1994). The diseases caused by this pathogen are difficult to
control via cultural practices or fungicide application. Furthermore,
resistant cultivars are not available for most crops. Annual losses to
crop production have exceeded $200 million in the United States
(Bolton et al.,, 2006). As is the case with some other fungi, several
different mycoviruses including ssRNA, dsRNA and ssDNA mycov-
iruses have been isolated and characterized from S. sclerotiorum
(Xie et al., 2006; Liu et al., 2009, 2010; Yu et al., 2010; Xie et al.,
2011). Examples of viruses that are associated with hypovirulence
of S. sclerotiorum include the ssRNA Sclerotinia sclerotiorum
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Table 1
Lengths of 3'-UTR and AU content of Mitoviruses and Narnaviruses.

Mitovirus Acronym 3’-UTR length (nt) AU content (%) Poly(A) GenBank accession no.
Sclerotinia sclerotiorum mitovirus 1/KL-1 SsMV1/KL-1 16 61.7 N JQ013377
Sclerotinia sclerotiorum mitovirus 2/KL-1 SsMV2/KL-1 82 53.1 Y JQ013378
Ophiostoma novo-ulmi mitovirus 1a OnMV1b 394 64.3 N AMO087548
Ophiostoma novo-ulmi mitovirus 1b OnMVla 170 63.5 N AMO087549
Ophiostoma novo-ulmi mitovirus 3a OnMV3a 195 62.8 N AJ004930
Ophiostoma novo-ulmi mitovirus 3b OnMV3b 88 67.1 N AMO087550
Ophiostoma novo-ulmi mitovirus 4 OnuMV 4 46 73.3 N NC_004052
Ophiostoma novo-ulmi mitovirus 5 OnuMV 5 60 73.6 N NC_004053
Ophiostoma novo-ulmi mitovirus 6 OnuMV 6 117 70.7 N NC_004054
Tuber aestivum mitovirues TaMV 952 60.1 N HQ992989
Botrytis cinerea mitovirus 1 BcMV1 114 66.8 N EF580100
Thielaviopsis basicola mitovirus TbMV 351 67.4 N AY563138
Sclerotinia homoeocarpa mitovirus ShMV 201 61.0 N AY172454
Gremmeniella abietina mitochondrial RNA virus S1 GaMRV-S1 96 69.4 N AF534641
Cryphonectria cubensis mitovirus 1a CcMVia 186 50.5 Y AY328476
Cryphonectria cubensis mitovirus 2a CcMV2a 79 62.4 N AY328479
Cryphonectria parasitica mitovirus 1-NB631 CpMV1 225 63.5 N NC_004046
Helicobasidium mompa mitovirus 1-18 HmMV1-18 115 58.2 N AB110977
Gremmeniella abietina mitochondrial RNA virus S2 GaRV-MS2 93 69.0 N NC_006264
Thanatephorus cucumeris mitovirus TcMV 884 57.7 N U51331
Saccharomyces 20S RNA narnavirus ScNV-20S - 41.7 N AF039063
Saccharomyces 23S RNA narnavirus ScNV-23S - 41.0 N U90136

debilitation associated RNA virus (SsDRV; genus Sclerodarnavirus,
family Alphaflexiviridae) and the ssDNA Sclerotinia sclerotiorum
hypovirlence associated DNA virus 1 (SsHDV1; unclassified) (Xie
et al., 2006). The mycovirus SsRV-L, which co-infects strain Ep-1PN
with SsDRYV, is related to a human viral pathogen and has a slight
adverse effect on its host (Liu et al., 2009). The partitivirus
Sclerotinia sclerotiorum partitivirus S (SsPV-S) shares high
sequence identity with the ILR2 gene of Arabidopsis thaliana, thus
revealing horizontal gene transfer from double-stranded RNA
viruses to eukaryotic nuclear genomes (Liu et al., 2010).

In the present study, we determined the sequences of two novel
and distinct mitoviruses, Sclerotinia sclerotiorum mitovirus 1
(SsMV1/KL-1) and SsMV2/KL-1, isolated from S. sclerotiorum hypo-
virulent strain KL-1. Our results support a causal role of mitovirus
infection in reducing the growth and pathogenicity of strain KL-1.
Sequence comparisons and phylogenetic analysis of deduced amino
acid sequences of the putative RdRp revealed that SSMV1/KL-1 and
SsMV2/KL-1 are closely related to members of the genus Mitovirus.

Results
S. sclerotiorum strain KL-1 exhibits hypovirulence traits

The genome of the virulent strain 1980™2, selected for this
study, has been completely sequenced (Amselem et al., 2011). It is
vegetatively compatible with the hypovirulent strain KL-1 (see
Material and Methods). Compared to the virulent strain 19802,
strain KL-1 grew slowly (1.2 cm/d versus 2.5 cm/d for the virulent
strain), and produced less sclerotia on PDA medium (Fig. 1A and B).
The sclerotia of strain KL-1 can germinate in culture and produce a
small ascogonidium, but no apothecium is produced. When dsRNA
was isolated from mycelial extracts of strains KL-1 and 1980™# and
subjected to digestion with RNase-free DNase I and S1 followed by
agarose gel electrophoresis, one distinct dsRNA band could be
detected in strain KL-1 under UV light, but no bands were detected
in strain 1980™# (Fig. 1C; upper panel). The hypovirulence-asso-
ciated traits (slow growth and low production of sclerotia) and
dsRNA segments were co-transmitted from strain KL-1 to strain
1980™ when mycelia from these two strains were in contact using
the dual-culture method (Fig. 1A-C). These experiments were

repeated at least 6 times and the resultant hygromycin-resistant
19808 converted isolates exhibited the hypovirulence traits of
strain KL-1 and contained the two mitoviruses. The transfer of the
two mitoviruses from strain KL-1 to strain 1980™# was confirmed
by RT-PCR analysis in all 19802 converted isolates (Fig. 1C; lower
panel). Moreover, strain KL-1 and the 1980™% converted isolates
showed lower levels of virulence on detached soybean leaves and
lettuce seedlings than the virulent strain 1980™¢ (Fig. 2A and B).
These results suggest that strain KL-1 is a hypovirulent strain of S.
sclerotiorum and that the dsRNA segments are likely the causal
agents of hypovirulence in strain KL-1.

Molecular cloning and sequencing of dsRNA from S. sclerotiorum
strain KL-1

Fourteen cDNA clones derived from strain KL-1 dsRNA were
obtained using tagged random primers-generated cDNA library
and sequenced. A search of NCBI database with BLASTX program
using the sequences of the 14 cDNA clones revealed that all
sequences were related to mitoviral RdRp sequences. Full-length
cDNA sequence of dsRNA was obtained using sequence-specific
primers for RT-PCR and RACE protocols. Nucleotide sequence
analysis revealed the presence of two distinct dsRNA segments
(dsRNA1 and dsRNA2) in the mycelium of strain KL-1. The two
dsRNAs, which co-migrated on agarose gels, differed in length by
only 92 nts, excluding the poly(A) tail. Although the two dsRNAs
extracted from the mycelium of strain KL-1 were resolved only as
one band, as revealed by agarose gel electrophoresis (Fig. 1B), two
dsRNA segments could be separated clearly by electrophoresis on
a 15% nondenaturing polyacrylamide gel (Fig. 3A).

Molecular characterization of two mitoviruses

The complete nucleotide sequences of the two dsRNAs seg-
ments isolated from the mycelium of strain KL-1 were deter-
mined and the genetic organization of each was shown in Fig. 3B.
A blastp search of NCBI protein database was conducted using the
proteins encoded by dsRNA1 and dsRNA2. Each of these two
putative proteins contains the six conserved motifs (I-VI) includ-
ing the highly conserved GDD motif typical of RdRp. The RdRps
encoded by dsRNA1 and dsRNA2 showed significantly high
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Fig. 1. Colony morphology, growth rate and dsRNA content of S. sclerotiorum strains. (A) Colony morphology of strains 1980™2 and KL-1 (a and b, respectively). A dual
culture of strains 1980™¢ and KL-1 is shown at left in the lower panel. A mycelial agar plug (marked with a black arrow) was removed from the colony margin of strain
1980™ (black arrow) and transferred to a fresh PDA plate containing 25 pig/ml hygromycin to establish derivative isolate 1980™2-converted (c). All S. sclerotiorum strains
were grown on potato dextrose agar for 5 day at 20 °C prior to photography. (B) Comparative growth rate of S. sclerotiorum strains 1980™, KL-1 and 1980™2-converted
(a, b and c, respectively). The growth rate was calculated based on measurements made 24 and 48 h post-inoculation; values that are significantly different (P < 0.05) were
indicated by asterisks. (C) RT-PCR detection of mitoviruses in strains 1980™% (a), KL-1 (b) and two representative 1980"2-converted isolates (c). All dsRNA samples were
treated with DNase I and S1 nuclease prior to electrophoresis. The actin gene of S. sclerotiorum was used as an internal control. The predicted lengths of the RT-PCR

products for SSMV1/KL-1 and SsMV2/KL-1 are 587 and 321 nts, respectively.

1980Me 1980"e-converted

Fig. 2. Virulence assays of S. sclerotiorum strains. Assays were made on detached
soybean leaves (A) and lettuce seedlings (B). The abbreviation hpi=hours post-
inoculation.

sequence similarity to RdRps of viruses in the genus Mitovirus
(Fig. 4). The two dsRNAs are predicted to replicate independently
in their host strain KL-1 because each codes for its own RdRp.
Furthermore, the overall nt sequence identity between dsRNAs 1 and
2 is 47.9%. At the deduced amino acid level, the dsRNA1 and dsRNA2
are 33.3% identical. These results indicate that the dsRNAs 1 and 2,
isolated from the same S. sclerotiorum strain KL-1, represent replica-
tive forms/intermediates of two distinct new members of the genus
Mitovirus and are designated Sclerotinia sclerotiorum mitovirus 1
(SsMV1/KL-1) and SsMV2/KL-1, respectively. The full-length cDNA
sequences of SsMV1/KL-1 and SsMV2/KL-1 were deposited in

the Genbank database under accession numbers JQ013377 and
JQO013378, respectively.

SsMV1/KL-1

Sequence analysis of full-length SsSMV1/KL-1 cDNA indicated
that it is 2513 nts in length. The complete genome sequence had
a nucleotide composition of A (31.0%), C (18.0%), G (20.3%) and
U (30.7%) with an overall A+U-rich content (61.7%). Sequence
analysis using the DNAMAN and Genescan programs revealed the
presence of several short open reading frames (ORFs) on either
strand using the standard genetic code. However, a single large
putative AUG-initiated ORF from nt positions 419 to 2494 was
identified on the positive strand of cDNA of SsMV1/KL-1 when the
fungal mitochondrial codon usage in which UGA was used as a
tryptophan codon, not a stop codon, was applied (Osawa et al.,
1992; Paquin et al., 1997). There are 8 UGA codons within the ORF
region. The 5- untranslated region (UTR) of SsMV1/KL-1 was
determined to be 418 nts long. In contrast, the 3'-UTR, which is
only 16 nts long, is relatively short. The large ORF contains two
contiguous stop codons (>*®2UAGUAA) to terminate translation
and could encode a putative protein of 691 amino acid (aa)
residues with calculated molecular mass of 79.43 kDa.

SsMV2/KL-1

The full-length nucleotide sequence of SsSMV2/KL-1 cDNA was
found to be 2421 nts in length excluding the poly(A) tail and has
an A+U content of 53.1%. Similar to SSMV1/KL-1, a single large
putative ORF, starting at nt position 312 and terminating at nt
2342, was identified on the positive strand of SSMV2/KL-1 when
fungal mitochondrial codon usage was invoked. There are 6 UGA
codons within the ORF. The 5'- and 3’-UTRs are 311 and 82 nts in
length, respectively. The deduced amino acid sequence was found
to code for a protein of 676 aa residues with a calculated
molecular mass of 75.75 kDa.
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Fig. 3. Polyacrylamide gel electrophoresis of dsRNA on nondenaturing 15% polyacrylamide gel and genomic organization of SSMV1/KL-1 and SsMV2/KL-1. (A). Ethidium
bromide stained gel showing two dsRNA segments (upper: SSMV1/KL-1; lower: SSMV2/KL-1). All dsRNA samples were treated with both DNase I and S1 nuclease prior to
electrophoresis. (B) Schematic representation of the genomic organization of the mitoviruses SSMV1 (SsMV1/KL-1) and SsMV2 (SsMV2/KL-1).

Phylogenetic analysis of mitovirus RdRps

To define the relationship of SsMV1/KL-1 and SsMV2/KL-1
with the other mitoviruses listed in Table 1, we produced multi-
ple alignments of the putative RdRps. The six conserved motifs
characteristic of mitovirus RdRps (I to VI) were found in the
putative RdRps of SsMV1/KL-1 and SsMV2/KL-1 (Fig. 4). Align-
ment of the full-length amino acid sequence of the mitoviruses
listed in Tablel showed that SsMV1/KL-1 shared the highest
sequence identity with OnuMV5 (40%), whereas SsMV2/KL-1
RdRp was most closely related to CcMV1a (30%) among members
of the genus Mitovirus (Table 1). Phylogenetic analysis based on
multiple alignments of full length RdRp sequences further sup-
ported these results (Fig. 5). The neighbor-joining phylogenetic
tree also showed that members of the genus Mitovirus were
divided into two clusters I and II). SsSMV1/KL-1 and SsMV2/KL-1
were both placed in one clade (cluster I) with seven other
members including CcMV1a, HmMV1-18, OnuMV6, OnuMV4,
TbMV, GaMRV and OnuMV5 with 97% bootstrap support.
SsMV1/KL-1 and SsMV2/KL-1, however, were distantly related
to other mitoviruses belonging to cluster Il of the genus Mitovirus
as well as to members of the genus Narnavirus (Fig. 5).

Predicted secondary structures of the 5 and 3’ terminal regions

The potential secondary structures of the 5 and 3'-terminal
sequences of the positive-strand of SSMV1/KL-1 and SsMV2/KL-1
were predicted using the MFOLD software. The results showed that
the terminal sequences of the two mitoviruses could be folded into
potential stable stem-loop structures. The SsSMV1/KL-1 5'-terminal
sequence (nt positions 1-60) and the 3’-terminal sequence (nt posi-
tions 2470-2513) could be folded into a double stem-loop structure
with the AG value of —16.5 kcal/mol and — 16.80 kcal/mol, respec-
tively (Fig. 6A and B). The 5-terminal sequence of SsMV2/KL-1
(nt positions 1-27) could also be folded into a potential double
stem-loop structure with the AG value of —13.00 kcal/mol. The
3’-terminal sequence (nt positions 2361-2421) of SSMV2/KL-1 could
be folded into a potential stable stem-loop structure with the AG
value of —23.10 kcal/mol (Fig. 6C and D). However, since the
two terminal sequences lack inverted complementarity, the 5'- and
3’-terminal sequence of SSMV1/KL-1 and SsMV2/KL-1 could not be
folded into a potentially stable panhandle structure.

Stability of the two mitoviruses in strain KL-1

To eliminate one or both mitoviruses from strain KL-1, several
approaches were attempted including hyphal tipping, single
sclerotia isolation, thermotherapy (growth at the relatively high
temperature of 30 °C) and chemotherapy (incorporation of cyclo-
heximide or chloramphenicol in the culture medium). Regardless
of the treatment applied, the two mitoviruses (SsMV1/KL-1 and
SsMV2/KL-1) were retained in S. sclerotiorum strain KL-1 (Fig. 7).

Discussion

In the present study, we report the molecular characterization of
two novel mitoviruses, SSMV1/KL-1 and SsMV2/KL-1, and describe
the biological properties of their hypovirulent host, strain KL-1 of
S. sclerotiorum. The full-length nucleotide sequences of the two
mitoviruses were determined and their genome organizations were
characterized. Mitochondrial codon usage revealed that the genome
of each of the two mitoviruses comprises a single unique ORF. BLAST
searches with the deduced aa sequences showed that SsMV1/KL-1
and SsMV2/KL-1 each encodes a putative RARp with six conserved
RdRp motifs (I-VI) (Fig. 4). The RdRps of SsMV1/KL-1 and SsMV2/KL-1
are most closely related to those of OnMV5 and CcMV1a, respectively,
with amino acid sequence identity of 40% and 30%, respectively.
Based on these results as well as those of phylogenetic analysis and
genome organization, we propose that SSMV1/KL-1 and SsMV2/KL-1
represent two new members of the genus Mitovirus in the family
Narnaviridae.

Previous studies showed that mitoviruses are naked RNA
viruses with a positive single stranded RNA genome containing
a single ORF, as revealed by invoking fungal mitochondrial codon
usage (Hillman and Esteban, 2011; Ghabrial and Suzuki, 2009).
Moreover, mitoviruses infect solely fungi and have been found in
at least twelve independent species of filamentous fungi (Table 1).
This study represents the first report of mitoviruses in the plant
pathogenic fungus S. sclerotiorum.

Mitovirues are confined to their host’s mitochondria where
their genomes are translated. Mitovirues are co-purified with
mitochondria and RNA-dependent RNA polymerase (RdRp) activ-
ity has been detected in mitochondria from an isolate of Ophios-
toma novo-ulmi infected with OnuMV6 (Cole et al., 2000).
Furthermore, most of the genomes of viruses in the genus
Mitovirus, like fungal and plant mitochondrial genomes, have a
common property of being A-U rich (usually > 60%) (Paquin et al.,
1997; Hong et al., 1998; Table 1). Our results showed that the
genome of SsSMV1/KL-1 is indeed A-U rich (61.7%). Moreover, the
third position of each genetic codon in the ORF region of SsMV1/
KL-1 has a preference for either A or U and the frequency of
codons XYA+XYU is 66.3%, which is considered to be character-
istic of mitochondrial codons (Paquin et al., 1997). It is note-
worthy that SSMV2/KL-1 has a lower A-U content of 53.1% (and
its XYA+XYU content is 50%), which is lower than that of most of
other mitoviruses, but similar to the A-U content of CcMV1a
(50.5%) (Table 1).

The 3’- UTRs of mitoviruses so far reported are variable in length
(Stielow et al., 2011). Our present report indicated that the length of
the 3’-UTRs of SsMV1/KL-1 (16 nts) and SsMV2/KL-1 (82 nts) are
relatively short, compared with other mitoviruses (Table 1). More-
over, the length of the 3’-UTR of SsMV1/KL-1 was the shortest
among all known mitoviruses (Table 1). Another characteristic
feature of SsMV2/KL-1 was the presence of a poly(A) tail at its
3’-terminal sequence, while other mitoviruses (with the exception
CcMV1a) do not have this structure (Table 1).
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TaMV1 239 PG-KVRVFAMVDCITQWFLHPLHKYLFSVLR-TTKEDATFDQEK [17] FSFDLSAATDRLPMDIQMVILN [49]
OnMV1b 260 PG-KVRVFAMADCITQWVLHPLHQYLFSTLKQISIVDATFDQEE [16] FSLDLSAATDRLPLTIQAQILN [35]
OnMV1a 254 PG-KVRIFAMVDAVTQWLLKPLHEATFKLLN-TFAFDGTFDQIG [16] YSFDLSAATDRLPLSIQILILK [31]
BeMV1 292 AAGKVRVFAMVDIWTQSTLNPLHKKIFSTIR-ELPTDGTFDQLK [13] FSFDLSAATDRLPLTLQKDILT [31]
OnMV3b 292 AAGKVRVFAMVDIWTQSILNPLHKKIFSTIIR-ELPTDGTFDQLK [13] FSFDLSAATDRLPLTLQKDILT [31]
ShMV 270 AAGKARVFAMADSITQSVMAPLNSWVESKLK-GLPMDGTENQQA [19] YSYDLSSATDRLPMAFQKQIIS [27]
OnMV3a 269 AAGKARVFAMADSTTQSVMAPLNSWVESKLK-DLPMDGTENQQA [19] YSYDLSSATDRLPMAFQKQITS [28]
TeMV 344 AAGKIRLFALMDSITQSVMSPLHDYMFATLR-NIPNDGTFDQEA [15] FSYDLTAATDRLPVILTAFILS [39]
CcMV2a 92 QAGKARIVASTNSWIQCSLFGLHNKIFSILR-SIPQDGTFDQNK [15] YGFDLSAATDRLPIAFQKDILN [25]
CpMV1 336 QAGKARIVAITNSWIQTAFYSLHLHVFKLLK-NIDQDGTFDQER [16] YGFDLTAATDRLPIDLQVDILN [27]
OnuMV5 250 PELKMRVIAMVDYHSQFVLKKITHNSLENKLK-LIKSDRTETQ-D [12] WSMDLSAATDRFPIDLQERLLS [29]
SsMV1 208 PELKMRPMAMVDYYSQLVTKPMHDGITKKLR-TTPCDRTFTQ-D [13] WSTDTTSATDRFPMSTQERVIA [30]
OnuMv4 235 PELKERVIAMVDYTTQFALRPTHNILLNNLS-KLPCDRTFTQ-D [13] HSLDLSAATDRFPIFLQQKLIS [29]
ThMV 202 PEGKRRIIAMVDYHSQLVLRSIHDGLLNKLR-NLPQDRTYNQ-D [12] HSLDLSSATDRFPVKLQSRLLT [34]
GaMRV-S1 240 PECKVRIVAMLDYTTQLFLRPIHNDLFKLLK-KLPQDRTFTQ-N [12] WSIDLTAATDRFPISLQRRLLL [30]
GaRV-MS2 240 PECKVRIVAMLDYTTQLFLRPTHNDLFKLLK-KLPQDRTFTQ-N [12] WSIDLTAATDRFPISLQRRLLL [30]
OnuMv6 247 PECKERVIATFDYGSQMVLKPTADVLEDLLR-NIPSDRTETQSP [13] WSIDLSSATDRFPIVFQKRVLQ [29]
CcMV2a 292 REGKSRPFAIFDYWSQTVLSPLHDWAYATLR-SIPQDCTFNQAE [14] YSYDLEAATDRFPIQFQKKVLS [30]
SsMV2 243 KEYKSRPFAIVDYMTQSALTPTHDRLYRVLG-SMPQDCTEFDQNK [12] YSFDLTSATDRFPMFVQEMVLA [29]
HmMV1-18 263 PEGKSRIIGEMNFWAQCALKPLHDKEMKALR-STRQDLTFYQGI [12] YSFDLKSATDREPVELQEKVIQ [28]
k ok, : k : k ok ok Lok kekskek sk s

il I\ \Y VI
TaMV1 366 YAVGQPMGALSSWAMLALTHHMIVQFAA [11] YMVLGDDIVIYNSEVAKAYSTLM [8] TKSLTSKIG-VFEFAKRL
OnMV1b 376 YGAGQPMGAYSSWAMLALTHHFIVQYCA [12] YLILGDDLLLLDAKVAKQYLQVM [8] AKSLISVRG-YGEFAKQF
OnMVla 366 YQVGQPMGALSSWGMLALTHHLVVQYSA [12] YIVLGDDIVIGNHEVSIRYHYLM [9] TKGIMSPH--SLEFAKRF
BeMV1 402 YSVGQPMGALSSWGMLALTHHTIVQVAA [11] YALLGDDICIANKAVADNYLLIM [8] SKSLISSTG-VVEFAKRW
OnMV3b 402 YSVGQPMGALSSWGMLALTHHTIVQVAA [11] YALLGDDICIANKAVADNYLLIM [8] SKSLISSTG-VVEFAKRW
ShMv 382 YSVGQPMGALSSWAMLALSHHVIVQIAA [10] YALLGDDIVIADKAVATSYHMIM [9] SKSLVSSN——SFELAKRL
OnMV3a 381 YSVGQPMGALSSWAMLALSHHVIVQIAA [10] YALLGDDIVIADKAVATSYHMIM [9] SKSLVSNN--SFEFAKRL
TeMV 463 YEVGQPMGALSSWPGLALTHHWIVQVAA [12] YEILGDDIVIFNELIAQEYLNIM [8] NKSISSRCRPVFEFAKRT
CcMV2a 197 YAVGQPMGAYSSFAMLALTHHVLVQVAA [11] YCILGDDIVIANSLVAEAYKSLI [8] SKSVISGT-—FTEFAKKL
CpMV1 434 YAVGQPMGAYSSFAMLALTHHVIVQVAA [11] YCILGDDIVIAHDTVASEYLKLM [8] GKSVISSE-—FTEFAKKL
OnuMV5 355 YKVGQPMGAYSSWAAFTLTHHLVVFYSA [10] YILLGDDIVINNDKVAKYYIRTM [8] NKTHVSKN--TYEFAKRW
SsMV1 315 YSVGQPMGAYSSWTTFTTTHHTVVHYAA [10] YITTGDDIVINHDKVARRYISIM [8] AKTHVSKN--TYEFAKRW
OnuMV4 341 YSVGQPMGAYTSWAAFTLTHHLVVHWAA [10] YIILGDDIVIKNNKVAQIYINLM [8] SKTHVSYD--TYEFAKRW
ThMV 312 YAVGQPMGAYSSWAAFTLSHHLVVAWCT [11] YITLGDDIVIKDNDIARKYIGQM [8] QKTHVSKD-—TYEFAKRW
GaMRV-S1 346 YSVGQPMGAYSSWPAFTLSHHLVVHWCA [10] YIILGDDIVIHNDNIAKKYIEIM [8] SKTHVSKD--TYEFAKRW
GaRV-MS2 346 YSVGQPMGAYSSWPAFTLSHHLVVHWCA [10] YITLGDDIVIHNDKVAKKYIEIM [8] SKTHVSKD-—TYEFAKRW
OnuMV6 354 YNCGQPMGAQSSWPMFTLAHHVIVRVAA [10] YIILGDDIVINNDNVALKYMEIM [8] NKTHVSND--TYEFAKRW
CcMVla 401 WGAGQPLGAKSSWAIFTLCHHLVVHIAA [08] YVILGDDIVLRGSRLATVYKRIM [8] TKSHVSKD-—TEFEFAKMW
SsMV2 349 FKCGQPTGAKSSWAMFTTSHHFVVQYCA [09] YKILGDDMVMCDHATAAKYLEVM [8] VKTHVSEN--LFEFAKRF
HmMV1-18 369 YGCGQPIGAYSSWATFTLCHHMIVQMLC [09] YIILGDDIVIAHDKVAEGYCEIM [8] LKTHVSKD-—SYEIAKRW
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Fig. 4. Multiple alignment of conserved amino acid motifs in RNA-dependent RNA polymerase (RdRp) regions of SsSMV1 (SsMV1/KL-1), SSMV2 (SsMV2/KL-1) and
corresponding regions in other mitoviruses. The positions of motifs I-VI are indicated by lines above the sequences. Identical residues are shaded and indicated by
asterisks; conserved and semi-conserved amino acid residues are indicated by colons and dots, respectively. Numbers in square brackets correspond to the number of

amino acid residues separating the motifs.

The stem-loop structure at the termini may play an important
function in the replication and translation of single stranded RNA
viruses. These secondary structures may also have a function in
protecting the naked single stranded RNA from degradation

(Hong et al., 1999; 1998). In the present study, we demonstrated
that the terminal sequence of RNA from SsMV1/KL-1 and SsMV2/
KL-1, like other mitoviruses, could be folded into potentially
stable stem-loop structures (Fig. 6); this is another characteristic
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feature of mitovirus genomic RNA. In addition, the potential
stable panhandle structure predicted at the terminal sequences
of the positive strand of some mitoviruses, such as HmMV1-18
(Osaki et al., 2005), could not be predicted for SsSMV1/KL-1 or
SsMV2/KL-1 because of the lack of the inverted complementarity
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Fig. 5. An unrooted phylogenetic tree constructed based an alignment of the
respective RARp amino acid sequences of SsSMV1 (SsMV1/KL-1), SSMV2 (SsMV2/
KL-1) and other mitoviruses. A neighbor joining unrooted tree is shown. Bootstrap
values (%) obtained with 1000 replicates are indicated on branches and branch
lengths correspond to genetic distance; scale bar at lower left corresponds to a
genetic distance of 0.2. Abbreviations of virus names and sequence accession
numbers are as indicated in Table 1. The results of phylogenetic analysis indicate
that mitoviruses could be separated into two large clusters (I and II).
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that is required for formation of panhandle structures. This is
similar to some previously reported mitoviruses (Wu et al., 2010).
Mixed infections with two or more related or unrelated viruses
have been detected in some phytopathoogenic fungi, such as
Helmintbosporium victoriae (Ghabrial et al., 2002), R. necatrix
(Sasaki et al., 2005) and S. sclerotiorum (Xie et al., 2006; 2011).
Multiple mitochondrial viruses co-infecting the same fungal
strain was also reported. For example, at least seven independent
species of mitoviruses co-infect the hypovirulent strain Ld of
0. novo-ulmi (Cole et al., 1998; Doherty et al., 2006). Our results
showed that S. sclerotiorum strain KL-1 harbors two distinct
mitoviruses (SsMV1/KL-1 and SsMV2/KL-1) based on sequence
analysis. However, it is not known whether there is an interaction
between the co-infecting mitoviruses in the same fungal strain.
The biological effects of mitoviruses on their fungal hosts appear
to be variable. Mitovirus-associated hypovirulence has been described
in Botrytis cinerea (Wu et al., 2007), C. parasitica (Polashock and
Hillman, 1994), O. novo-ulmi (Hong et al., 1999), S. homoeocarpa
(Deng and Boland, 2006) and R. solani (Lakshman and Tavantzis,
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Fig. 7. RT-PCR analysis for detection of the mitoviruses SSMV1/KL-1 and SsMV2/
KL-1 in individual isolates of S. sclerotiorum subjected to different treatments
aimed to eliminate the mitoviruses. The actin gene of S. sclerotiorum was used as
an internal control. The predicted lengths of the RT-PCR products for SSMV1/KL-1
and SsMV2/KL-1 are 587 and 321 nts, respectively. The treatments applied
included: single sclerotia isolation (SS); High temperature (HT); cyclhoheximide
(Cyclo) and chloramphicol (Chl).
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SsMV2/KL-1, respectively, are shown. The MFOLD program was used for predicting the secondary structures of the terminal sequences and for calculating the free energy.
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1994). Furthermore, Wu et al. (2007, 2010) and Polashock et al.
(1997) demonstrated that hypovirulence traits and mitoviruses can
be co-transferred via hyphal anastomosis in B. cinerea and C. parasitic,
respectively. The present study also presented evidence that SSMV1/
KL-1 and SsMV2/KL-1 can be co-transferred to virus-free strain via
hyphal anastomosis. Polashock et al. (1997) reported that mitovirus
transmission via hyphal anastomosis was accompanied by mitochon-
drial movement and recombination. The authors proposed that
mitochondrial fusion is a possible mechanism for mitovirus transmis-
sion. The mitochondrial movement mechanism is predicted to be
important in the transmission of SsMV1/KL-land SSMV2/KL-1 in
S. sclerotiorum. The results of the pathogenicity assays in the present
study suggest that SSMV1/KL-1, SSMV2/KL-1 or a combination of the
two mitoviruses may play a significant role in reducing the patho-
genicity of S. sclerotiorum KL-1. Therefore SsMV1/KL-1 and/or SSMV2/
KL-1 could be exploited as biocontrol agents in the management of
Sclerotinia diseases. Furthermore, the completely sequenced strain
1980'¢ that exhibits the hypovirulence traits when infected with the
two mitoviruses might prove valuable in studying virus-host inter-
actions and the molecular basis of virulence in S. sclerotinia.

Materials and methods
Fungal isolates

S. sclerotiorum strain KL-1 was isolated from diseased lettuce in a
farm in Kentucky, USA. The identity of isolate KL-1 as a strain of
S. sclerotiorum was verified by amplifying and sequencing the
contiguous internal transcribed spacer (ITS) region, ITS 1-5.8S-ITS
2, and comparing the sequence (GenBank accession # JQ739461)
with those of other strains in the Genbank. Strain 1980, a virus-free
strain isolated from Phaseolus vulgaris in Nebraska, USA (Amselem
etal., 2011), was kindly supplied by Jeffrey A. Rollins (Department of
plant pathology, University of Florida, USA). Strains KL-1 and strain
1980 were determined to be vegetatively compatible since no
barrage formation was observed when mycelia from the two strains
were in contact with each other and examined with a microscope.
Strain 1980 was labeled with a hygromycin-resistance gene (hyg)
using the PEG-mediated transformation method (Zhao et al., 2006).
These two strains were cultured on potato dextrose agar (PDA; Difco
Laboratories, Detroit) at 20 °C and stored at 4 °C.

Comparison of biological characteristics

To compare growth rates, 5-mm-diameter mycelial agar plugs
from actively growing colony margins of KL-1 and 1980™¢ were
transferred onto PDA plates, and then incubated at 20 °C. The
diameter of colonies of each strain was measured at 24 and 48 h
post inoculation (hpi). Colony morphology of each strain was
examined daily until mature sclerotia were produced. Six repli-
cates were used for each strain.

To assess the difference in virulence between strain KL-1 and
strain 1980™¢, actively-growing mycelial agar plugs were inocu-
lated onto lettuce seedlings and detached leaves of soybean, and
then the inoculated hosts were placed in an incubator at 20 °C
and 100% relative humidity. The disease lesion development on
soybean leaves was examined and photographed at 48, 72 and
96 hpi. There were nine replicates for each treatment. The
virulence to the lettuce seedlings was examined at 8 day post
inoculation prior to photography.

Horizontal transmission of hypovirulence traits

The methods of Zhang et al. (2009) were followed to assess
potential horizontal transmission of hypovirulence traits of strain

KL-1. Dual culturing of strain 1980™¢ and strain KL-1 on a PDA
plate was used to allow the two colonies to contact each other.
Following contact, mycelial agar plugs from the colony margin of
strain 19802 were placed onto a fresh PDA plate containing
25 pg/mL hygromycin; this would only allow labeled strains to
grow. Mycelial plugs were taken from the new colony and
transferred into fresh PDA plates without hygromycin. The
characteristics of subcultures of 1980 after contacting strain
KL-1 were tested for hypovirulence traits, as described above.

DsRNA extraction and purification

For dsRNA extraction, all fungal isolates were grown on cello-
phane membranes that were overlaid on the surface of PDA plates
for 4-5 day. The mycelia were collected and ground to a fine powder
in liquid nitrogen with mortar and pestle, and dsRNA was subse-
quently isolated using CF-11 cellulose chromatography (Sigma-
Aldrich, Dorset, England), as previously described (Jiang and
Ghabrial, 2004). The dsRNA preparation was then treated with DNase
I and S1 nuclease (NEB) and electrophoresed on 1% agarose gel or on
nondenaturing 15% polyacrylamide gel, stained with ethidium bro-
mide, and observed under UV illumination. DsRNA was purified with
a gel extraction kit (QIAGEN, USA) and the purified dsRNA was kept
in DEPC-treated water and used for making the cDNA clones.

cDNA synthesis and molecular cloning

The cDNA sequence of genomic dsRNA was performed follow-
ing the method of Xie et al. (2011) using a cDNA synthesis kit
(Invitrogen) with tagged random primers-dN6 (5'-CGATCGAT-
CATGATGCAATGCNNNNNN-3'). Briefly, random cDNA products
were amplified using a single specific primer (5'-CGATCGATCAT-
GATGCAATGC-3’) based on tagged random primers-dN6. The
amplified PCR products were cloned into the pGEM-T Easy vector
(Promega) and transformed into competent cells of Escherichia
coli DH5a and sequenced. Based on the cDNA sequences obtained
from dsRNA, gene-specific primers were designed and used for
RT-PCR to amplify parts of the genome that were not cloned by
the initial random cDNA synthesis.

To determine the 5’ and 3’ terminal sequence of dsRNA, the 3’
terminus of each strand of dsRNA was ligated at 4-8 °C for 18 h
with the 5-end phosphorylated oligonucleotide 5'-GCATTGCAT-
CATGATCGATCGAATTCTTTAGTGAGGGTTAATTGCC-(NH2)-3" using
T4 RNA ligase I (New England Biolabs), as previously described
(Liu et al., 2009). The oligonucleotide-ligated dsRNA was denatured
and used for the reverse transcription reaction with Superscript II
reverse transcriptase and 3 pmol of a primer with sequence
complementary to the oligonucleotide used for the RNA ligation
(oligoREV, 5'-GGCAATTAACCCTCACTAAAG-3'). The reaction product
was treated with RNase H as described above and the cDNA was
amplified using another primer complementary to the RNA ligat-
ion oligonucleotide (5-TCACTAAAGAATTCGATCGATC-3’) and the
sequence-specific primer corresponding to the 5'- and 3’-terminal
sequences of the dsRNA, respectively.

Nucleotide sequencing and sequence analysis.

All PCR products were fractionated by agarose gel electrophor-
esis and purified using a gel extraction kit (QIAGEN, USA). The PCR
products were cloned into the pGEM-T Easy cloning vector and
sequenced at the University of Kentucky Advanced Genetic
Technologies Center (UK-AGTC). M13 universal primers or
sequence-specific primers were used for sequencing and every
base was determined by sequencing at least three independent
overlapping clones in both orientations.
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The deduced amino acid sequences of the two mitoviruses
included in this study and those of other selected viruses were
obtained from the NCBI database and aligned using Clustal W, and
further used for phylogenetic analyses and tree construction. On
the basis of the aligned sequences, phylogenetic trees were
generated from multiple-alignment by the neighbor-joining
method using the MEGA version 4.0 programs (Kumar et al.,
2008). The secondary structures of 5 and 3’-terminal sequence
were predicted using the MFOLD software (version 3.5) at the
MFOLD web site (http://mfold.rna.albany.edu/) (Matthews et al.,
1999; Zuker et al., 1999).

Attempts to cure strain KL-1 from mitoviruses

To eliminate mitoviruses from strain KL-1, several approaches
were applied. These include hyphal tipping, single sclerotia
isolation, thermotherapy and chemotherapy. For heat treatment,
mycelial plugs of strain KL-1 were cultured on PDA at 30 °C for
7-10 day. For chemotherapy, mycelial plugs of strain KL-1 were
inoculated on PDA containing either cycloheximide (2, 4 or 8 pg/
ml) or chloramphenicol (50, 100 pg/ml) and cultured for 3 day.
Then, hyphal tips were transferred to fresh PDA medium contain-
ing the same chemicals for a second cycle of chemotherapy.
Hyphal tip isolates of all cultures from the different treatments
were grown on PDA and generated mycelia were used for total
RNA isolation.

Detection of the mitoviruses in the different cultures was
made by RT-PCR using gene-specific primers (SSMV1F: 5'-ACCGTG-
CATTCCATATTGGT-3’ and SSMV1R:5-TGTCCACACCCAACTTGTTC-3/;
SSMV2F: 5-AAGAGTATAAGTCCCGAC-3 and SsMV2R: 5'-TGAAC-
TCTACCTCGGGACCA-3'). A pair of primers (actin-qF2: 5'-GAGCTGT-
TTTCCCTTCCATTGTC-3' and actin-qR4: 5'-GACGACACCGTGCTCGA-
TTGG-3') were used to amplify a fragment of the actin gene, which
was used as internal control (Sexton et al., 2009).
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