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Stem cell transplantation has been considered a possible therapeutic method for neuropathic pain. However,
no quantitative data synthesis of stem cell therapy for neuropathic pain exists. Therefore, the present sys-
tematic review and meta-analysis assessed the efficacy of bone marrow mesenchymal stem cell (BMMSC)
transplantation on alleviating pain symptoms in animal models of neuropathic pain. In the present meta-
analysis, controlled animal studies assessing the effect of administrating BMMSC on neuropathic pain were
included through an extensive literature search of online databases. After collecting data, effect sizes were
computed and the standardized mean difference (SMD) with 95% confidence interval (CI) was entered in all
analyses. Random-effects models were used for data analysis. Sensitivity and subgroup analyses were per-
formed to investigate expected or measured heterogeneity. Finally, 14 study were included. The analyses
showed that BMMSC transplantation lead to significant improvement on allodynia (SMD ¼ 2.06; 95% CI, 1.09
to 3.03; I2 ¼ 99.7%; P < .001). The type of neuropathy (P ¼ .036), time between injury and intervention (P ¼
.02), and the number of transplanted cells (P ¼ .023) influence the improvement of allodynia after BMMSC
transplantation. BMMSC transplantation has no effect on hyperalgesia (SMD ¼ .3; 95% CI, �1.09 to 1.68; I2 ¼
100%; P < .001) unless it occurs during the first 4 days after injury (P ¼ .02). The present systematic review
with meta-analysis suggests that BMMSC transplantation improves allodynia but does not have any signifi-
cant effect on hyperalgesia unless it is given during the first 4 days after injury.

� 2015 American Society for Blood and Marrow Transplantation.
INTRODUCTION
Neuropathic pain is defined as chronic pain resulting from

a lesion or disease affecting the somatosensory system [1]. It
can be triggered by central or peripheral nerve injury. The
predominant symptoms are acute or sharp pain, impulsive
pain, hyperalgesia, and allodynia. These symptoms may have
continuous or episodic (paroxysmal) components [2].

Epidemiological evidence shows that the prevalence of
neuropathic pain in general population is 3% to 17% [3].
Neuropathic pain leads to decreased quality of life, reduced
personal functions, and undermined mental health and so-
cial relations. It is 1 of the most complicated pain conditions
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to diagnosis and treat, and outcome is often poor [4,5].
Current treatment strategies only decrease 30% to 40% of the
pain in less than 50% of the patients. Medications are aligned
with some problems, such as side effects. New studies sug-
gest that regenerative approaches based on cell therapy may
be helpful in alleviating neuropathic pain symptoms [6-10].

In the last 2 decades, stem cell transplantation has been
considered a possible therapeutic method for the spinal
cord injury and neuropathic pain conditions [6,9-13].
Mesenchymal stem cells are the main source of cell
therapy because of their ability of differentiating into mul-
tiple cell types, including blood, adipose tissue, connective
tissues, osteocytes, chondrocytes, hepatocytes, myocytes,
neurons, and cardiomyocytes [14-16]. Bone marrow
mesenchymal stem cells (BMMSCs) can easily grow in vitro
and exhibit intriguing immunomodulatory properties,
nonteratogenicity, and multipotentiality with high genetic
stability. They can also improve synaptic transmission and
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promote neuronal networks [17-21]. These properties make
BMMSCs prime candidates for various therapeutic applica-
tions, especially for nervous system repair. In the context of
neuropathic pain, transplantation of BMMSCs into the
injured spinal cord reduced the progress of neuropathic
pain [6,22-24].

Few clinical studies have been published regarding the
use of BMMSCs for spinal cord injury. The findings of these
studies have substantial diversity, ranging from improve-
ment in symptoms to no significant improvement [25-32].
These studies have lacked a proper randomized control
group and have been underpowered. However, a substantial
number of controlled preclinical studies have investigated
the effect of BMMSCs on neuropathic pain [6,22-24,33-41].
These studies revealed various degrees of improvement of
neuropathic pain and symptoms, such as allodynia and
hyperalgesia. Yet there is not a general conclusion about the
effectiveness of stem cells in neuropathic pain. For this pur-
pose, a meta-analysis of controlled studies could help esti-
mate the effect of the intervention and, therefore, yield more
powerful decision making. However, to our knowledge, no
quantitative data synthesis of stem cell therapy for neuro-
pathic pain exists. Therefore, the present systematic review
and meta-analysis assessed the efficacy of BMMSCs trans-
plantation on alleviating pain, allodynia, and hyperalgesia in
animal models of peripheral or central neuropathic pain.
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METHODS
Search Strategy

The study was conducted according to Meta-analysis of Data from An-
imal Studies Guidelines [42,43], providing a detailed guideline of preferred
reporting for systematic reviews and meta-analyses. Relevant articles were
identified through a literature search of online databases (PubMed, SCOPUS,
Embase, Cochrane, and CINAHL) without publication date and language
limitations. The initial search was broad and included the following words:
(1) PubMed term: (“mesenchymal stem cells” OR “mesenchymal stromal
cells” OR “mesenchymal stem cell” OR “mesenchymal stromal cell” OR
“marrow stromal cell” OR “bone marrow stem cell” OR “bone marrow-
derived stromal cell” OR “mesenchymal precursor cell” OR “MSCs” OR
“MSC” OR “BMSCs” OR “BMSC”) AND (“spinal cord injuries” OR “spinal”
“spinal cord injury” OR “spinal cord contusion” OR “spinal cord transection”
OR “injured spinal cord” OR “pain” OR “pain” OR “neuropathic pain” OR
“allodynia” OR “hyperalgesia” OR “hypersensitivity”); and (2) In EMBASE:
(mesenchymal stem cells.mp. OR mesenchymal stem cell/OR mesenchymal
stromal cells.mp. or mesenchymal stroma cell/OR bone marrow stromal
cells.mp.) AND (spinal cord injury.mp. or spinal cord injury/OR pain.mp. or
pain.mp. or neuropathic pain.mp. OR allodynia.mp. OR hyperalgesia.mp. OR
hypersensitivity.mp.). In addition, we ran a hand search in the reference lists
of all relevant articles and previous review articles to find additional studies.
We also attempted to contact the authors of all the studies that met the
inclusion criteria and we requested unpublished data and abstracts.
Ta
b
le

1
C
h
ar
ac
te
ri
st
ic
s
of

St
u
d
ie
s
U
si
n
g
B
on

e
M
ar
ro
w

St
em

C
el
ls

in

A
u
th
or

an
d
Y
ea

r
Sa

m
p
le

Si
ze

M
et

Sp
e

N
eu

h
u
be

r
20

05
28

B
M
M
SC

/7
ve

h
ic
le

Fe
m

V
aq

u
er
o
20

06
20

B
M
M
SC

/1
0
ve

h
ic
le

Fe
m

U
rd
zi
ko

va
20

06
15

B
M
M
SC

/1
5
ve

h
ic
le

M
al

Le
e
20

07
8
B
M
M
SC

/8
ve

h
ic
le

M
al

K
la
ss

20
07

12
B
M
M
SC

/1
1
ve

h
ic
le

M
al

M
u
so
lin

o
20

07
8
B
M
M
SC

/8
ve

h
ic
le

M
al

A
m
em

or
i
20

10
23

B
M
M
SC

/2
3
SC

I
M
al

G
u
o
20

11
16

B
M
M
SC

/1
1
ve

h
ic
le

M
al

Si
n
is
ca
lc
o
20

11
18

B
M
M
SC

/1
8
ve

h
ic
le

M
al

K
u
m
ag

ai
20

13
12

B
M
M
SC

/1
2
ve

h
ic
le

fe
m

Sc
h
äf
er

20
14

11
B
M
M
SC

/9
ve

h
ic
le

Fe
m

To
rr
es
-E
sp

in
20

14
15

B
M
M
SC

/1
5
SC

I
Fe

m
Zh

an
g
20

14
10

B
M
M
SC

/1
0
ve

h
ic
le

M
al

Y
ou

se
fi
fa
rd

20
14

10
B
M
M
SC

/1
0
ve

h
ic
le

M
al

SC
I
in
d
ic
at
es

sp
in
al

co
rd

in
ju
ry
;
C
C
I,
ch

ro
n
ic

co
n
st
ri
ct
io
n
in
Study Selection and Definitions
In the present meta-analysis, the controlled studies assessing the

administration of BMMSCs to rat or mouse models of neuropathic painwere
included. Peripheral and central models of neuropathic pain induced by
contusion, compression, transection, and ligation were studied. Original
research studies about the influence of BMMSC transplantation, regardless
of donor species or tissue origin, were included. Outcomes measured were
the evaluation of allodynia [44] and hyperalgesia [45]. Control interventions
consisted of placebo (saline, culture medium, or similar vehicle) or no
treatment. Any manipulation of BMMSCs into neuron-like cells, coculture
concomitant injection with other cell types, or use of adjuvant products (eg,
matrices, scaffolding), and diabetic neuropathy lead to exclusion. In addi-
tion, review articles, commentaries, editorials, and letters were excluded.

Two authors (M.Y, H.A) independently appraised all potentially included
studies. Any disagreement was resolved using the viewpoint of a third
author (F.N). We included all the experimental studies regarding animals in
any age, gender, or strain exposed to neuropathic pain induced by contusion,
compression, transection, and ligation. Those that had poor quality were
excluded.
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Quality Assessment
Two reviewers (M.Y, H.A) independently evaluated each study and

allocated them a quality rating of “good,” “fair,” or “poor.” Quality assess-
ment was conducted to evaluate the impact of methodological quality on
the reported outcomes, accounting for study design and presence of bias,
including performance, recording, and reporting bias. In this regard, ade-
quacy of randomization and concealment of allocation, blinding of study
personnel and outcome assessors, and registered sample size estimations or
power calculations were assessed (inter-rater reliability was 91%). Dis-
agreements were discussed with a third reviewer (F.N).
Data Synthesis
The following data were collected and recorded: recipient animal

(species, strain, sex, weight), type of neuropathy (contusion, compression,
transection, and ligation), type of graft (autologous, syngeneic, allogeneic, or
xenogeneic), intervention regimen (time from inducing the neuropathic
pain to cell transplantation, delivery route, number of injections, and total
number of transplanted cells), immunosuppressive usage, methodological
quality, observation (follow-up) time, and main findings.
Statistical Analysis
Statistical analysis was performed using Stata software, version 12.0

(Stata Corp, College Station, TX). Effect sizes were computed and the stan-
dardized mean difference (SMD) with 95% confidence interval (CI) was
entered in all analyses using Hedges’ g. By calculating the effect size, pooling
the findings and modifying the bias caused by small sample size were
possible [43,46]. The authors were contacted if mean values and standard
deviations (SD) were not reported. In case of no response, an estimation
method was used for the calculation of mean values and SD [47,48]. If the
information was reported as graphs, data were extracted from the graphs
using the method recommended by Sistrom and Mergo [48]. If the thera-
peutic effect of different numbers of cells in therapy was reported, the
highest number was included in the analysis. In addition, the mean and SD
of the latest time of follow-up period of included studies were used.
Figure 1. Flow chart
Based on the experimental diversity between the studies, random-
effects models or fixed-effects models were used for data analysis.
Random-effects models were used in the presence of heterogeneity, and in
the absence of heterogeneity, fixed-effects models were used. Statistical
heterogeneity was measured using the I2 and chi-square tests. In this regard,
P < .10 was the representative of significant statistical heterogeneity [49].
Sensitivity and subgroup analyses were performed to investigate expected
or measured heterogeneity and applied based on a multivariate meta-
regression model. All possible causes of heterogeneity including the
animal gender (male/female), type of neuropathy (central or peripheral
nervous system), delivery route (spinal, intravenous, and dorsal root
ganglia), graft type (xenogeneic, allogeneic), time between injury and
intervention (equal and fewer than 4 days/more than 4 days), number of
transplanted cells (less than 3 � 106 cell dose/kg and more than or equal to
3� 106 cell dose/kg), and follow-up period (fewer than 8 weeks and equal to
or more than 8 weeks) were included as covariates in the meta-regression
model. Publication bias was assessed using funnel plots and formal
Egger’s and Begg’s tests [50]. A 2-sided P value < .05 was considered sta-
tistically significant.
RESULTS
We found 2158 nonduplicate articles using the search

strategies described earlier. Of these, 136 potentially relevant
papers were screened. Finally, 13 full-text articles were
included for the meta-analysis and were studied in detail
[6,22-24,33-41] (Table 1). In addition, 1 eligible unpublished
set of data, which were obtained from an experiment in our
lab, were included in the analysis (unpublished data, F.
Nasirinezhad, July 2015). In this study Mean (standard de-
viation) of heat hyperalgesia in BMMSCs treated and control
groups were 20.2 (6.8) seconds and 9.7 (3.1) seconds,
receptively (10 rats per each groups). In addition, these
of the study.
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values for mechanical allodynia were 13.2 (2.27) grams and
7.1 (2.7) grams, respectively. The flow of information from
identification to inclusion of studies is summarized in
Figure 1. These citations contained a total of 373 rats/mice
including 206 BMMSC-treated animals and 167 controls. Of
the 14 articles, 4 reported only the impact of BMMSCs
transplantation on hyperalgesia [22,35,39,40] and 4 assessed
its effect on allodynia [23,33,34,41]. Six articles evaluated the
effect on both [6,24,36-38].
Heterogeneity and Publication Bias
According to the result of subgroup analysis of the ther-

apeutic effect of BMMSCs, a significant statistical heteroge-
neity was found on neuropathic pain, except regarding
delivery route (I2 ¼ .0%; P ¼ .74). Therefore, in this case a
fixed-effects model was used, whereas other analyses were
performed using a random-effects model. No publication
bias was observed among the included studies (Tables 2 and
3). In addition, we were not able to calculate the pooled-
effect size in xenogeneic graft of BMMSCs because eligible
related studies were few (2 studies).
Table 2
Subgroup Analyses of the Effect of BMMSC on Mechanical Allodynia

Characteristic P for Bias* Mod

Gender
Male .34 REM
Female .19 REM
Overall significance test among subgroups

Type of neuropathy
Central .45 REM
Peripheral .73 REM
Overall significance test among subgroups

Randomization
No .33 REM
Yes .76 REM
Overall significance test among subgroups

Blinding the outcome assessment
No .49 REM
Yes .64 REM
Overall significance test among subgroups

Delivery route
Spinal .14 REM
Intravenous .23 REM
DRG .65 FEM
Overall significance test among subgroups

Graft type
Xenogeneic .32 REM
Allogeneic .61 REM
Overall significance test among subgroups

Use of immunosuppressive agents
No NA NA
Yes .73 REM
Overall significance test among subgroups

Time between injury and interventionx

Less than 4 d .28 REM
More than 4 d .13 REM
Overall significance test among subgroups

Number of transplanted cells
Less than 3 � 106 cell dose/kg .33 REM
More than or equal to 3 � 106 cell dose/kg .52 REM
Overall significance test among subgroups

Follow-up period
Less than 8 wk .19 REM
More than or equal to 8 wk .73 REM
Overall significance test among subgroups

REM indicates random-effect model; FEM, fixed-effect model; DRG, dorsal root ga
* Publication bias based on Begg’s and Egger’s test.
y Heterogeneity among studies.
z Standardized mean difference.
x Categorization was done based on median of time between injury and interve
Meta-Analysis
The main outcome measure was the assessment of

hyperalgesia and allodynia. According to our analysis, using
the random-effects model, BMMSC transplantation leads to a
statistically significant improvement on allodynia (SMD ¼
2.06; 95% CI, 1.09 to 3.03; I2 ¼ 99.7%; P < .001) but does not
have a significant effect on hyperalgesia (SMD ¼ .3; 95%
CI, �1.09 to 1.68; I2 ¼ 100%; P < .001) (Figures 2 and 3).
Subgroup Analyses
Subgroup analyses were performed based on animal

gender, type of neuropathy, randomization, blinding of
observer, stem cell delivery route, xenogeneic or allogeneic
transplantation, use of immunosuppressive agents, time
between injury and intervention, number of transplanted
cells, and follow-up periods.

Allodynia
Table 2 presents the subgroup analysis of allodynia.

Multivariate meta-regression showed that the type of neu-
ropathy (P ¼ .036), time between injury and intervention
el P (I2)y Effect Sizez (95% CI) P

<.001 (99.3%) 2.45 (1.69-3.2) <.001
<.001 (99.6%) 1.16 (e.58-2.90) .19

.49

<.001 (96.1%) 1.0 (.28-1.71) .006
<.001 (99.7%) 2.06 (1.09-3.03) <.001

.036

<.001 (99.8%) 2.05 (.74-3.35) .002
<.001 (89.7%) 2.36 (1.44-3.17) <.001

.17

<.001 (99.8%) 1.82 (e.10-3.73) .06
<.001 (99.4%) 2.26 (1.33-3.19) <.001

.37

<.001 (99.0%) 1.32 (.35-2.28) .007
<.001 (99.4%) 3.53 (2.59-4.47) <.001

.74 (.0%) 3.02 (2.92-3.12) <.001
.255

<.001 (99.9%) 2.33 (e.98-5.63) .17
<.001 (99.7%) 1.99 (.96-3.02) <.001

.99

NA NA NA
<.001 (99.7%) 2.23 (1.22-3.25) <.001

NA

<.001 (98.9%) 3.1 (2.53-3.68) <.001
<.001 (95.6%) 1.08 (.44-1.72) .001

.02

<.001 (86.9%) .81 (.35-1.26) <.001
<.001 (98.9%) 2.98 (2.43-3.54) <.001

.023

<.001 (99.7%) 1.6 (.14-3.06) <.001
<.001 (99.5%) 2.54 (1.41-3.66) <.001

.72

nglia; NA, not applicable.

ntion in included studies.



Table 3
Subgroup Analyses of the Effect BMMSC on Heat Hyperalgesia

Characteristic P for Bias* Model P (I2)y Effect Sizez (95% CI) P

Gender
Male .37 REM <.001 (99.8%) 1.24 (e.74-3.22) .22
Female .78 REM <.001 (99.9%) .64 (e2.87-1.60) .58
Overall significance test among subgroups .90

Randomization
No .29 REM <.001 (10.0%) e.005 (e2.12-1.10) .99
Yes .70 REM <.001 (97.9%) .78 (e1.27-2.82) .45
Overall significance test among subgroups .86

Blinding the outcome assessment
No .53 REM <.001 (100.0%) e.61 (e3.62-2.41) .69
Yes .80 REM <.001 (99.9%) 1.22 (e1.05-3.49) .29
Overall significance test among subgroups .37

Type of neuropathy
Central .44 REM <.001 (99.8%) e.72 (e2.78-1.35) .50
Peripheral .49 REM <.001 (99.7%) 2.65 (.68-4.61) .008
Overall significance test among subgroups .722

Delivery route
Spinal .20 REM <.001 (99.9%) e.4 (e2.23-1.42) .66
Intravenous .49 REM <.001 (99.8%) 1.96 (.04-3.95) .054
Overall significance test among subgroups .765

Graft typex

Xenogeneic NA NA NA NA NA
Allogeneic .79 REM <.001 (99.9%) e.22 (e1.63-1.20) .77
Overall significance test among subgroups NA

Use of immunosuppressive agents
No .69 REM .01 (83.0%) e.78 (e2.1-.56) .25
Yes .88 REM <.001 (99.9%) .57 (e.98-2.10) .47
Overall significance test among subgroups .79

Time between injury and interventiond

Less than 4 d .11 REM <.001 (99.9%) 2.65 (.68-4.61) .008
More than 4 d .13 REM <.001 (99.8%) e.72 (e2.78-1.35) .50
Overall significance test among subgroups .022

Number of transplanted cells
Less than 3 � 106 cell dose/kg .12 REM <.001 (98.2%) e.31 (e1.54-.91) .62
More than or equal to 3 �106 cell dose/kg .80 REM <.001 (100.0%) .69 (e1.28-2.66) .49
Overall significance test among subgroups .99

Follow-up period
Less than 8 wk .11 REM <.001 (98.2%) .16 (e4.56-4.88) .30
More than or equal to 8 wk .59 REM <.001 (99.8%) .50 (e.44-1.44) .95
Overall significance test among subgroups .99

* Publication bias based on Begg’s and Egger’s test.
y Heterogeneity among studies.
z Standardized mean difference.
x Categorization was done based on median of time between injury and intervention in included studies.
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(P ¼ .02), and the number of transplanted cells (P ¼ .023)
influence the improvement of allodynia after BMMSC
transplantation. The effect sizes of BMMSC transplantation
on central and peripheral neuropathy were 1.0 (95% CI, .28 to
1.71) and 1.16 (95% CI, 1.09 to 3.03), respectively. The analysis
showed that the effect of BMMSC transplantation on allo-
dynia was greater in the peripheral model (P ¼ .036). Time
between injury and intervention were categorized based on
4 days. Subgroup analysis showed that stem cell therapy
during first 4 days (effect size ¼ 3.1; 95% CI, 2.53 to 3.68) is
more effective than after 4 days (effect size¼ 1.08; 95% CI, .44
to 1.72) (P ¼ .02). In addition, multivariate meta-regression
depicts stem cell therapy with a dose of more than or equal
to 3�106 cell dose/kg (effect size¼ 2.98; 95% CI, 2.43 to 3.54)
is more effective than cell therapy with dose of less than 3 �
106 cell dose/kg (effect size ¼ 2.98; 95% CI, 2.43 to 3.54) (P ¼
.023).

Hyperalgesia
Multivariate meta-regression showed that cell therapy

correlated with more improvement in hyperalgesia if it
occurred during first 4 days after injury (P ¼ .02). Stem cell
therapy during first 4 days (effect size ¼ 2.65; 95% CI, .68 to
4.61) is more effective than after 4 days (effect size ¼ �.72;
95% CI, 2.78 to 1.35) (P ¼ .02). Table 3 presents the subgroup
analysis of the effect of stem cell therapy on hyperalgesia.

DISCUSSION
Meta-analyses of animal studies provide practical evi-

dence for researchers regarding advantages and side effects
of an intervention to help them decide to proceed with
clinical trials or not. Based on our knowledge, the present
study is the first quantitative meta-analytic approach to re-
view all of the available evidence regarding the efficacy of
BMMSCs in improving neuropathic pain. The analyses
showed that BMMSC transplantation leads to a statistically
significant improvement on allodynia but does not have a
significant effect on hyperalgesia. We found significant di-
versity between the studies. Therefore, subgroup analysis
was performed to assess possible sources of the heteroge-
neity. Based on this analysis, type of neuropathy (central or
peripheral), time from injury to intervention, and the num-
ber of transplanted cells were the most important causes of
the heterogeneity. In addition, among 14 included articles, 1
paper assessed the stem cell therapy in a mouse model [37].
Subgroup analysis was not performed based on animal spe-
cies because of the small number of included studies. How-
ever, in the mentioned study, there was the strongest effect



Figure 2. The effect of BMMSC transplantation on mechanical allodynia.
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seen on allodynia and hyperalgesia. Therefore, there may be
a species difference between rat and mouse. Further studies
are required to confirm this hypothesis.

Currently, there are 2 experimental animal models of
neuropathic pain, including peripheral and central
models [51-53]. Subgroup analysis showed that BMMSC
transplantation leads to more improvement in allodynia
induced in the peripheral model compared with in the
Figure 3. The effect of BMMSC transp
central model. This finding is partly due to the different
mechanism of neuropathic pain in the central and peripheral
models. In peripheral models, altered ion channel expression
triggers enhanced membrane resonance, rhythmogenesis,
and ectopic spiking with increased cellular excitability,
which are the most important mechanisms of inducing the
neuropathic pain. Sprouting of myelinated nerve fibers into
lamina II, increased glutamate release, evoking fast
lantation on heat hyperalgesia.



M. Hosseini et al. / Biol Blood Marrow Transplant 21 (2015) 1537e1544 1543
excitatory synaptic potentials, expression of brain-derived
neurotrophic factor and substance P, neuroplasticity
changes in central pain descending regulatory systems, and
astrocytes and glial cell activation are the most important
mechanisms in central models. BMMSC transplantation
provides a protective effect for the host cells. Efficacy of this
supportive role may be greater in reversing the pathophys-
iological changes in the peripheral model [54-56].

The development of secondary spinal cord damage sets in
the early minutes after injury and continues for weeks or
months. The mechanisms involved in secondary spinal cord
damage consist of apoptosis, astroglial scar launch, central
cavitation, central chromatolysis, compression and vertebral
column instability, deficient expression of myelin associated
genes after spinal cord injury, demyelination of residual
axons, derangements in ionic homeostasis, glutamatergic
excitotoxicity, immune cells invasion and release of cyto-
kines, inflammation, and ischemia/reperfusion-induced
endothelial damage, etc. [57]. BMMSCs have immunomod-
ulatory properties [18,58-60] and, when administered at the
right time, may help in minimizing neural inflammation and
immune-mediated injuries. Early cell therapy might
decrease proliferation or hypertrophy of glial cells (gliosis)
and enhance recovery by bioactive molecules, modulation of
cytokine production, and growth factors. Also, the angio-
genic effect of these cells may help the revascularization of
spinal cord [61,62]. In this regard, our findings also showed
that onset of stem cell therapy during the first days after
injury (fewer than 4 days) causes more improvement in
allodynia and hyperalgesia. Accordingly, it seems rational to
suggest that the optimal time point for transplantation is
fewer than 4 days after the lesion. A similar result was re-
ported in another systematic review, which stated that the
optimal time point for transplantation of stem cells in spinal
cord injury is 3 days after the lesion for intralesional site and
5 to 7 days for intrathecal injection [63].

Median stem cell transplantation dose in the eligible
studies was 2.25 � 106 cells/kg. We categorized the number
of transplanted cells into 2 groups (based on 3 � 106 cell
dose/kg). This cut point was selected because it is near the
typical number of transplanted cells currently administrated
in clinical trials (1 to 3 � 106 cell dose/kg) [29,64,65]. Our
result demonstrated that stem cell therapy in doses of 3 �
106 or higher is associated with greater improvement in
allodynia. The correlation between the number of trans-
planted cells and recovery after spinal cord injury was
reported in 2 studies. The studies demonstrated a dose-
dependent influence of BMMSCs on recovery after spinal
cord injury [66,67]. BMMSCs display immunosuppressive
properties in a dose-dependent manner [58,68]. Subse-
quently, the development of secondary damage was reduced
and survival rate of transplanted cells increased.

Strengths and Limitations
In the present study, 3 points have improved the quality

of our meta-analysis. First, we assessed both central and
peripheral models of neuropathic pain. Second, we calcu-
lated SMDs as the effect size estimate using Hedges’ g to
compare across articles and to correct for bias caused by
small sample size. Third, subgroup analysis was performed
stratified by animal gender, type of neuropathy, delivery
route, graft type, time between injury and intervention,
number of transplanted cells, and follow-up period, because
heterogeneity is expected in most meta-analyses. In addi-
tion, we conducted an extensive search and used a
comprehensive analytical approach that allowed the inclu-
sion of studies presenting not only means and SD, but also
other values, such as medians, thus improving the exhaus-
tiveness of the results.

Our review and meta-analysis have a number of limita-
tions. First, some of the original studies did not describe the
blinding status of the observer. Moreover, residual con-
founding (confounding from unknown variables), as inmeta-
analyses, may introduce considerable bias, and the direction
of this bias is unpredictable. Second, the possible source of
heterogeneity between the studies was not clear. Therefore,
it was decided to use a random-effects model, which gave
more conservative results. In addition, we ran a meta-
regression and stratified meta-analysis by partitioning of
heterogeneity.

CONCLUSION
The present systematic review with meta-analysis seem

to suggest that BMMSC transplantation improved allodynia
but had no significant effect on hyperalgesia. The effective-
ness of BMMSCs on neuropathic pain is higher if they are
transplanted for peripheral pain, in fewer than 4 days, and in
a dose of equal to or more than 3 � 106 cells per kg.
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