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Abstract-we introduce a stable numerical method for the identification of a transmiasivity 
coefficient in a onedimensional parabolic equation. It is a combination of the Mollification Method 
and a well-known spwe marching implementation of the Hyperbolic Ftegularization procedure. The 
new method succesfully restores a certain type of continuity with respect to the initial condition and 
the boundary data. The accurmy of the algorithm is demonstrated by means of several examples 
where exact and perturbed data are considered. 

1. INTRODUCTION 

Many physical models include undetermined coefficients in the equations and the solution of the 
inverse problems consisting of the identification of these coefficients has become a very active area 
of research in recent years. In particular, a variety of problems in reservoir simulation, flow in 
porous media, heat conduction, chemical kinetics, population dynamics, and other areas, propose 
the identification of coefficients in parabolic equations. For a detailed treatment of some of these 
problems, consult [1,2], and the references therein. 

In [3,4], Ewing and Lin consider a simplified model of single-phase flow and instead of following 
the commonly used least squares methods of “‘History Matching,” they developed an easy to 
implement algorithm based on a space marching scheme of finite difference equations. They 
proved a general error estimate that allows for perturbations in the boundary data, but clearly 
stated that the numerical method relies on exact initial data in order to be successful. 

In this paper, we enhance the method of Ewing and Lin with the desirable feature of allowing 
perturbations in the boundary data as well as in the initial conditions. Our approach is the use 
of a filtering procedure known as the Mollification Method. Roughly speaking, the mollification 
of a perturbed function restores stability by damping the high frequency Fourier components of 
the perturbation. A complete description of this method and several of its applications can be 
found in [5]. 

Section 2 introduces the regularization procedure used by Ewing and Lin to stabilize the 
identification problem. 

Section 3 presents the Mollification Method and explains the combination of the two regulariza- 
tion procedures. The main feature of this section is Proposition 3, which explains the automatic 
extension procedure that we developed in order to compute the convolution that defines the mol- 
lification throughout the entire domain of definition of the partial differential equation and not 
only on a compact subset, as is usually the case. 
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In Section 4, we describe the numerical scheme and present two stability estimates. The first one 

takes into account the presence of the two regularization procedures. The second one, developed 

by Ewing and Lin in [3], is included for completeness and to show the way the mollification 

reveals itself in its error bound. 

Several examples are presented in detail in Section 5, as well as a few considerations of practical 

importance. 

2. HYPERBOLIC REGULARIZATION 

Ewing and Lin [3] consider a single-phase flow in a radially homogeneous medium. The 

parameter identification problem is the following: 

Identify the coefficient a(z), 0 L z < 1, in 

Ut = (%)z + f(x,t), o<z<1,0<t, 

+, 0) = g(z), O<x<l, 

u(0, t) = @l(t), 0 < t, 
(1) 

%(O, t> = 4(t), 0 < t. 

Because of the ill-posedness of inverse problems in general and of parameter estimation prob- 

lems in particular, a regularization is necessary. Ewing and Lin modify system (1) as follows: 

y2wt + w = (au,), + f(x, t), O<x<l,O<t, 

4x, 0) = g(x), O<x<l, 

u(O, t) = g(t), 0 < t, 

G(O, t) = qqt), 0 < t, 

Ut(X, 0) = (a(x)%(x, O))z + f(xCI O), O<x<l, 

(2) 

where y, the parameter of regularization, is a positive constant. 

This stabilization is called Hyperbolic Regularization; it has been used for the solution of a 

variety of inverse problems. (See [4,6,7]). For the numerical solution of the new problem, Ewing 

and Lin developed an explicit finite difference space marching numerical scheme, and proved its 

stability with respect to the data on the boundary x = 0, assuming g is known exactly. 

We think that to restore stability with respect to the data for t = 0 would be a desirable 

feature for this method. The main difficulty is the division by an approximation of the derivative 

of the initial data. In order to address this difficulty, we modify problem (2) a little further by 

introducing the Mollification Method. 

3. MOLLIFICATION 

The Mollification Method is a regularization procedure for Ill-Posed problems; its description 

and several of its applications can be found in [5]. Reference [8] is a complete description of the 
use of the Mollification Method for the regularization of numerical differentiation. 

We use the Gaussian Kernel 

Pdt) = J-- -t2 
&l/2 exp 7 ( > 

as mollifier and define the &mollification of a function f(t) by 

&f(t) = (Pa * f)(t) = 7 iact - s)f(s) ds. 
--oo 
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Jaf(t), the one-dimensional convolution of pa and f, is a CO” function. The mollifier p6(t) 
is positive, falls to nearly zero outside (-34 361 and its total integral is 1. If f(t) is sufEciently 

smooth, IJaf(t) - j(t)1 - 0 and IJaY - f’(t)1 - 0 as 6 - 0. More precisely: 

PROPOSITION 1. (Consistency). If f(t) E C2(D), D C R, then there exists a constant C inde- 

pendent of 6 such that 

llJ6f -fll m,D 5 C6 ami ll Jaf’ - f’llm,D 5 ~‘6. (3) 

PROOF. See [5]. I 

If we only know a measured approximation fm(t) of f(t) and a tolerance e > 0 such that 

If - Mloo,D 5 E, then we have the following stability estimates. 

PROPOSITION 2. (St&&$ If fm(t) E C”(D) and Ilf - fmlloo,D 5 e, then 

II Jsf - Jafmll oo,D F E and II(Jsf>’ - (J&)‘IL,,D 5 14 

PROOF. See [5]. I 

If D is a bounded interval with end points a and b, the convolution P6 * f requires either the 
extension of f to a slightly bigger set D’ > D or the consideration of f restricted to a suitable 
compact set K c D. Both sets, D’ and K, depend on S. Our approach is the first one, and we 

restrict our attention to the end point b to present the details. 

Assume pa(t) = 0 if JtJ > 36. We seek extensions $ of f to the domain [a, b + 361, satisfying the 

condition 

I( J6@) - fl(L21b_36 bl is mininum. 

If we require j to be a constant on (b,b + 351, we obtain a unique solution to this problem by 
the following optimization procedure. 

PROPOSITION 3. Suppose f(t) E L2([a,b]). There exists a constant c such that iff(t) is extended 
by letting f(t) = c for (111 t E [b, b + 361, then IIJa(f) - fI]L2[b_36,b] is minirrmm. 

PROOF. The real function 

FCC) = 11 J6(f) - f/&[b-36,bj 
2 

Z 

) 1 - f(t) dt 

b-F36 

J 
&t - s) ds - f(t) 

b I 

2 

dt, 

achieves its minimum value at 

,i, f(t) - $ ps@ - s)fb> ds 
c= I[ 'T6ps(t - s> ds 1 dt 

‘rps(t - s) ds 2 dt . 1 
(5) m 
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REMARKS. 

l We omit the similar results for the other end of the interval. 
l Other extensions of the function f, for instance, polynomial extensions of higher degree, 

are also possible, but we do not consider them here. 
l In computations, we have only discrete functions. The actual value of the constant c is 

obtained from (5) by a Rectangle Rule or other simple Quadrature Formula. 

We assume that the boundary and the initial data for Problem (1) are obtained from mea- 
surements. That is, there are Co functions gm(z), $~~(t) and dim(t) and a positive tolerance e 
satisfying 

119 - Smll, 5 6, llti - timI, L E and II4 - bnll, 56. 03) 
The combination of the Hyperbolic Regularization and the Mollification Method for Prob 

lem (1) with measured data, leads us to the consideration of the following problem. 
Identify a(z), 0 < z < 1, in 

Y2% + % = (au,), + f(z, t), O<x<l,O<& 

G, 0) = JSan(~), O<x<l, 

u(O, r) = J6&Z(qt 0 < t, (7) 

%(O, q = JG&Z(% 0 < t, 

W(T 0) = (+)&(x7 O))z + f(? O), O<a:<l, 

where S is the radius of mollification, J6gm(z) is the mollification in 5 of gm(z), and J&m(t) 

and J&m(t) are the mollifications in t of +m(t) and $m( t), respectively. 

4. NUMERICAL SCHEME 

We apply the numerical scheme of Ewing and Lin to Problem (7). Here we restrict ourselves 
to present only a brief sketch of the marching scheme. For a detailed discussion, see [3]. 

4.1. Discretixation 

Let M and N be positive integers, h = &, k = &, x~j = jh, j = 0, 1, . . . ,M, t, = nk, n = 
0, 1, . . . . We denote ~(2, t) = u,(z, t) and w(x, t) = yut(z, t). For n > 0, let 

fj” = f(_& nk), j>O 

Cj = Jagm(jh), jr0 

gj = djh), j20 
ug = $(nk) 

$p = 4(nk) 

wg = y+b’(nk) 

$+1/z = v ((j + f) h,nk), j>l 

WY = w(jh,nk), j21 

aj+lp = a ((j + $) h) 1 j 2 0. 

Let the variables of the numerical method be UF, VJ?, WY and Aj . They are discrete functions 
defined on the grid with discretization steps h and k. Their starting values are given for all n in 
order to proceed with a space marching scheme. They are: 

UOn = &&(nk) 

I$ = Ai& 

WOn = y(J&J(nk.) 

Al/z = a (;h) 

U,” = U; + hV,y2. 
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We point out that, with the exception of the starting value Al/z which is exact, we use only 
measured data conveniently filtered by the Mollification procedure. However, stability estimates 
do not require Al,2 to be exact and calculations reveal that an educated guess for Al/z is also a 
feasible alternative. 

The space marching scheme of Ewing and Lin for the solution of Problem (1) is defined by the 
equations 

Aj+l+1/2 = Gj+2 

1 
Aj+l/2 (Gj+l- Gj) + h2 

‘;+I - Gj+i 
- Gj+l k - $+I , (8) 

(9) 

which in terms of the other variables are 

Aj+1+1/2(Gj+2 - Gj+l> - Aj+l/s(Gj+l- Gj) 
h2 = ;W;+l - fjqcl, (10) 

Aj+l+l12vjn+~+y2 -Aj+l/2 ‘jn+l/z 

h 
= $w;+l (11) 

The calculations are performed in a triangular region in the (z,t)-plane. A sufficient amount 
L + 1 of point values of the boundary data at x = 0 should be read in order to be able to recover 
not only the values of the coefficient a, but also the solution u and its first derivatives it and uz 
for 0 < z < 1 and 0 < t < T. We assume (L + 1)k = qT, where n is a constant. 

4.2. Analysis 

In this section, we prove a stability estimate for the recovery of the diffusivity coefficient that 
takes into consideration the presence of noise in the initial data. We base our proof on virtually 
the same assumptions Ewing and Lin require for their analysis. A summary of this analysis and 
their main result are also presented. 

We start with the definition of the error functions: 

Avjn,,,, =$+I,2 -vjn+l/29 

AW,n = wj” - Wj”, 

AAj+1/2 = aj+ll:! - Aj+1/2, 

and with the assumptions that are necessary in order to carry out the error analysis. 

ASSUMPTION 1. g(x) E C2([0, 11) and there exist positive constants MO and 2C.fl such that 

MO 5 s$&l Id(x)1 5 SUP lg’(+l I Ml, 
z.E[O,ll 

MO L ,$, lJag’(4l 5 SUP IJag’(x)1 I Ml, 
zE[O,ll 

MO 5 &fIl I(Jsgnd’W, I SUP I(J6gn)‘Wl < Ml. 
zE[O,ll 

ASSUMPTION 2. There are positive constants M2 and MS such that 

M2 I &Jlla(x) 5 SUP a(x) 5 MS, 
4OJl 

M2 IminAj+1/2 I mjqAj+l/2 I M3, 
j 

rnjgIWfl <MS, 
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ASSUMPTION 3. ~(z,t) E C2([0,1] x [O,T)). In particular, there exists a positive constant Al4 

such that 

bt(ct)l I M4. 

Now we present the error estimate for the diffusivity coefficient that uses equation (10) as the 

starting point, and therefore, depends heavily on the presence of noise in the initial data g(s). 

THEOREM 4. If Assumptions 1-3 are satisfied, then there exists a constant MC such that 

A-h,z[+Ms 6+;+h+ ( 
9 (g$z)‘)- (12) 

PROOF. By expanding ZI, w and a at the grid points, we have 

%+1+1/2(9j+z - 9j+1) - aj+l/&j+l - gj) = 1 
o 

h2 -wj+l - $+I + O(h*), 
7 

and (10) says 

Aj+1+1/2($+2 -'%+I) -Aj+1/2($+1- Gj) =A~,, 
h2 Y 

j+l - $+1. 

We subtract and obtain 

${‘j+l+l/?(g”2hg”1)-Aj+~+1,2(Gj’2~Gj+1)_aj+l,2(gj+l~91) 

+Aj+1/2 ( Gj+li “j)} = i (Wjo+l - Wjo+l) +O(h*). 

This implies 

W+l+r/2 
Gj+2 - Gj+l 

h ) 
= AAj+l/z 

CGjilh- G9 

+ uj+l+l/2 
( 

Gjt2 - Gj+l _ %+2- 9j+l 
h h ) 

+ aj+l/z 
Sj+l- gj Gj+l - Gj 

h - h ) 

+ O(h2). 

Now we use the Mean Value Theorem and Assumptions 1 and 2 to get 

( AAj+l+l/z 1 MO i lAAj+1/2 1 Ml + M3 I(Jagm)‘((j + l)h) - g’((j + l)h)I 

+ M3 Ig’W - (Jsgm)‘W)l + ; (wjo+l - Wjo+rl + O(h), 

which, by application of Propositions 1 and 2, and Assumptions 2 and 3, yields 

lAAj+l+l/2 1 MO I I&+1/2( M1+2M3(c6+-&$ +t(M3+M4)+O(h). 

This expression clearly indicates the existence of a constant MS such that 

IAAj+l+l/tI I 2 lAAj+1/21+ MS (6 + i + h + t) , 

and by iteration of this inequality we obtain the desired result. 
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The second error estimate, developed by Ewing and Lin in [3], uses the following norms: 

7 

L-j 

llAwjl12 = c lAJ,f’;j2, 
n=O 

and 

II AgIll = (lAQ+1/1211~ h + IlAwj112 k + 

The error bound in the next theorem, depends on h, k, 7 

lAAj+1/212 * (13) 

and IlA!lll,) which is the error at 
z = 0. Since Il~$ll, reflects the modifications introduced in this work, we consider it in detail. 

PROPOSITION 5. 

(14) 

where Ms is a constant independent of 6, C, and 7. 

PROOF. The proof is an estimate of the first two terms of the error and is based on the consistency 

and stability of the mollification of the boundary data. 

j1A14,21j2k+ ~~AVVO~~~I~ = 5 lAV,7,12k+ e,AW,nlzk 
n=l n=O 

L 

Propositions 1 snd 2 provide the following estimation for this sum: 

~~AV~,2112k+IlAw,l12k<k~(C~+.)2+7~~(ca+$~)2 
n=l n=O 

5 kL(CG + E)2 + yk(L + 1) ( 5s)” cs + 

5 MsT((6+r)2+y(6+;)2), 

and from here, estimate (14) follows. 

THEOREM 6. If Assumptions l-3 hdd, and h and k satis@ 

7h k < min {Mz, MT, 1) and h _ ‘c <iUs 

for some nonzero Me and MT, then there exist nonzero constants Ms and MS such that 

I 

lPg,& 5 (Il4l: + O(k) + 0th) + y2) (MB + Wh k 7) exp(C(h, k, y)), 
where C(h,k,7) = M&/7 + 1+ O(h) + O(k)). 

PROOF. % [3]. I 

REMARK. Our error estimate, Theorem 4, depends on the newly implemented feature, i.e., a 

noisy initial data at t = 0. Ewing and Lin use a well-crafted application of the Energy Method 

to prove their general estimate, Theorem 6, that reports errors in ut, u2 and a simultaneously. 

The error bound depends primarily on h, k,7 and IlAtll,, and through Il~{ll~, on 6,7, and 6 in 
the way Proposition 5 indicates. 
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5. NUMERICAL RESULTS 

In this section, we discuss the implementation of the numerical scheme developed in the last 
section and present the numerical results obtained from three examples. In all the examples, 
the discretization parameters are the following: M = N = 200, h = k = &, xj = jh, j = 

O,l,..., M, T = 1 = Mk, q = 3, L + 1 = 3M, t, = nk, n = 0, 1, . . . ,3M. 

For j = O,l,. . . , M, the discretization of the exact initial data is denoted gj = g(xj) and its 
measured approximation gm(zj) is simulated by adding random errors to g(sj). Specifically, 

iAn = S(Xj) + ejj, 

where the ej’s are Gaussian random variables with variance c2 = c2. 
The discretized measured boundary data gm(tn) and &(tn) are obtained in a similar way 

from the discrete versions of the exact functions $(t) and 4(t), respectively. 
To test the stability and accuracy of the numerical scheme, we use different average pertur- 

bations E and appropriate values for the regularization parameters y and 6. The errors in a(x) 
and ~(2, t) are measured by the weighted-Z2 norms 

1 
112 

IA-42 s & M$1 laj+l/z - Aj+l/212 
po 

and 

1 
l/2 

lAU12 c & MS1 5 )u(jh, nk) - UT]” 
3=0 n=l 

respectively. 

EXAMPLE 1. (Ewing and Lin, (31). Identify a(z) and ~(5, t) in 

ut = (au,), - (z2 + 2s) exp(s + t), 0 < x < l,o < t, 

46 0) = fw(x>, O<x<l, 

40, t) = exp(t), 0 < t, 

~(0, t) = exp(t>, 0 < t. 

(15) 

(16) 

(17) 

The exact solutions are 

a(z) = 1 + x2 and u(z) t) = exp(x + t). 

Table 1 shows the discrete error norms, computed according to (15)) as functions of the amount 
of noise in the data e. The qualitative behavior of the reconstructed functions are shown in 
Figures 1 and 2. 

Table 1. Error norms ss functions of c. 

Example 1 Error Norms 

c 7 6 If% 1 IA% 
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X - value 

Figure 1. Reconstructed coefficient a(z) in Example 1. 

y = 0.1, E = 0.005, 6 = 0.03. 

Exact solution: (o o 0); Computed solution: (-). 

Figure 2. Error IiW12 in the reconstruction of U(I, t) in Example 1 

-y = 0.1, c = 0.005, 5 = 0.03. 

EXAMPLE 2. In this example u(O,O) = 0 and g’(s) = 1 for all z. Recalling Assumption 1, we 

have A40 = MI. Hence Jsg’ and (Jsgm)’ cannot satisfy the conditions of Assumption 1, making 
this example an important challenge for the numerical method. The identification problem is: 
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Identify a(z) and u(z,t) in 

‘Ilt = (%>z + f(x + q, O<x<l,O<t, 

u(x,O) = x, O<x<l, 

~(0, t) = texp(t), 0 < t, 

~~(0, t) = exp(-t) + t exp(t), 0 < t, 

(18) 

where 

f(z, t) = -(z + O.Ol)exp(-t) + exp(t + t) - 0.01(x + l)texp(x + t). 

The exact solutions are 

u(x) = 1 +O.Olz and u(x, t) = zexp(-t) + texp(z + t). 

Table 2 illustrates the stability of the method by showing the errors as functions of the amount 

of noise E. The quality of the reconstructions can be observed in Figures 3 and 4. 

Table 2. Error norms as functions of -z. 

~ 

EXAMPLE 3. (EWING AND LIN, [3]). This example consists of the reconstruction of a coeffi- 

cient a(x) that is only piecewise differentiable. 

Identify a(x) in 

Ut = (c&)2 + f(z + t), O<x<l,O<t, 

U(G 0) = exp(x), O<x<I, 

~(0, t) = exp(t), 0 < t, 
(1% 

40, t) = exdt), 0 < t, 

where 

I 
$ exp(z f t), O<xI& 

f(x,t) = 
-(3+3x)exp(x+t), $<xIi, 

($ + 9) exP(X + t), ;<x<g, 

a exp(x + t), $IX<l. 

The exact coefficient is the non-smooth function 

Table 3 and Figure 5 illustrate the stability and accuracy of the reconstruction of this chal- 
lenging coefficient. 
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1.70 

w 1bbbb4bbOOb~bbObbOO bbObb bb 

0.70 

1 

Figure 3. Reconstructed coefficient a(r) in Example 2. 

y = 0.1, .z = 0.005, 6 = 0.03. 

Exact solution: (o o 0); Computed solution: (-). 

Figure 4. Error [AU/, in the reconstruction of U(I, t) in Example 2. 

7 = 0.1, e = 0.005, 6 = 0.03. 

Table 3. Error norms as functions of E. 

~~ 

11 



12 

1. 

2. 
3. 

4. 

5. 

6. 

7. 
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0.00 0.20 0.40 0.68 0.80 1.00 

X - value 
Figure 5. Reconstructed coefficient a(z) in Example 3. 

y = 0.12, E = 0.005, 5 = 0.03. 

Exact solution: (o o 0); Computed solution: (-). 
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