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Abstract

TheN = 1 super-sinh-Gordon model with spontaneously broken supersymmetry is considered. Explicit expressions
factors of the trace of the stress energy tensorΘ, the energy operatorε, as well as the order and disorder operatorsσ andµ are
proposed.
 2003 Elsevier B.V.

PACS: 11.25.Hf; 11.55.Ds

1. Introduction

The SShG model can be considered as a perturbed super Liouville field theory, which Lagrangian de
given by

L= 1

8π
(∂aφ)

2 − 1

2π
(ψ̄∂ψ̄ +ψ∂̄ψ)+ iµb2ψψ̄ebφ + πµ2b2

2
e2bφ

with the background chargeQ= b+ 1/b. This model is a CFT with central charge

cSL = 3

2

(
1+ 2Q2).

The super-sinh-Gordon model is(1+ 1)-dimensional integrable quantum field theory withN = 1 supersymmetry
We consider the Lagrangian

L= 1

8π
(∂aφ)

2 − 1

2π
(ψ̄∂ψ̄ +ψ∂̄ψ)+ 2iµb2ψψ̄ sinhbφ+ 2πµ2b2 cosh2bφ.

In this model the supersymmetry is spontaneously broken [1]: the bosonic field becomes massive, but the M
fermion stays massless and plays the role of goldstino. In the IR limit, the effective theory for the goldstin
the lowest order the Volkov–Akulov Lagrangian [2]

(1)LIR = (ψ̄∂ψ̄ +ψ∂̄ψ)− 4

M2
(ψ∂ψ)(ψ̄ ∂̄ψ̄)+ · · · ,
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where supersymmetry is realized nonlinearly. The irrelevant operator along which the super-Liouville theor
into Ising is the product of stress-energy tensorT �T = (ψ∂ψ)(ψ̄ ∂̄ψ̄), which is the lowest dimension nonderivati
operator allowed by the symmetries. The dots include higher-dimensional irrelevant operators.

The scattering in the left–left and right–right subchannels is trivial, but not in the right–left channe
following scattering matrices were proposed in [1]

SRR(θ)= SLL(θ ′)= −1, SRL(θ − θ ′)= −sinh(θ − θ ′)− i sinπν

sinh(θ − θ ′)+ i sinπν
, ν ≡ b/Q.

For the right and left movers, the energy momentum is parametrized in terms of the rapidity variablesθ andθ ′
by p0 = p1 = M

2 e
θ (andp0 = −p1 = M

2 e
−θ ′

). The mass scale of the theoryM−2 is equal to 2 sinπν. The form
factors1 Fr,l(θ1, θ2, . . . , θr ; θ ′

1, θ
′
2, . . . , θ

′
l ) are defined to be matrix elements of an operator between the vacuu

a set of asymptotics states. The form factor bootstrap approach [3–5] (developed originally for massive t
but that turned out to be also an effective tool for massless theories [6,7]) leads to a system of linear fu
relations for the matrix elementsFr,l ; let us introduce the minimal form factors which have neither poles nor z
in the strip 0< Im θ < π and which are solutions of the equationsfα1α2(θ)= fα1α2(θ + 2iπ)Sα1α2(θ),αi =R,L.

Then the general form factor is parametrized as follows:

Fαr,l(θ1, θ2, . . . , θr; θ ′
1, θ

′
2, . . . , θ

′
l )

=
∏

1�i<j�r
fRR(θi − θj )

r∏
i=1

l∏
j=1

fRL(θi − θ ′
j )

∏
1�i<j�l

fLL(θ
′
i − θ ′

j )Qr,l(θ1, θ2, . . . , θr; θ ′
1, θ

′
2, . . . , θ

′
l ),

and the functionQr,l depends on the operator considered. TheRR andLL scattering formally behave as in th
massive case, so annihilation poles occur in theRR andLL subchannel. This leads to the residue formula

Resθ12=iπ Fr,l(θ1, θ2, . . . , θr; θ ′
1, θ

′
2, . . . , θ

′
l )

(2)= 2Fr−2,l(θ3, . . . , θr ; θ ′
1, θ

′
2, . . . , θ

′
l )

(
1−

r∏
j=3

SRR(θ2i)

l∏
k=1

SRL(θ2 − θ ′
k)

)
,

and a similar expression in theLL subchannel. It is important to note that these equationsdo not refer to any
specific operator.

2. Expression for form factors

The minimal form factors read explicitly:

fRR(θ)= sinh
θ

2
, fLL(θ

′)= sinh
θ ′

2
,

and

fRL(θ)= 1

2 coshθ2
exp

∞∫
0

dt

t

cosh
(1

2 − ν)t − cosh1
2t

sinht cosht/2
cosht

(
1− θ

iπ

)
.

The latter form factor has asymptotic behaviour whenθ → −∞

(3)f (θ)∼ eθ/2
(

1+ (A+A′θ)eθ +
(
A2

2
+B +AA′θ + (A′)2θ2

2

)
e2θ
)
,

1 We refer the reader to [6] for a discussion on form factors in massless QFT.
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whereA= (1 − 2ν)cosπν − 1 + 2i sinπν,A′ = − 2
π

sinπν,B = 1
2(cos2πν − 1). The logarithmic contribution

come from resonances.
The residue condition (2) written in terms of the functionQr,l reads

Resθ12=iπ Qr,l(θ1, θ2, . . . , θr; θ ′
1, θ

′
2, . . . , θ

′
l )

=Qr−2,l(θ3, . . . , θr; θ ′
1, θ

′
2, . . . , θ

′
l )× (−)r−1(2i)l+r−1

(4)×
r∏
j=3

1

sinhθ2j

(
l∏
k=1

(
sinh(θ2 − θ ′

k)+ i sinπν
)− (−1)r+l

l∏
k=1

(
sinh(θ2 − θ ′

k)− i sinπν
))
.

Let us introduce now the functions

φ(θij )≡ SRR

fRR(θij )fRR(θij + iπ) = 2i

sinhθij
, φ(θ ′

ij )≡
SLL

fLL(θ
′
ij )fLL(θ

′
ij + iπ) = 2i

sinhθ ′
ij

as well as

Φ(θi − θ ′
j ) ≡ SRL(θi − θ ′

j )

fRL(θi − θ ′
j )fRL(θi − θ ′

j + iπ) = −2i
(
sinh(θi − θ ′

j )− i sinπν
)
,

and

Φ̃(θi − θ ′
j )≡Φ(θi − θ ′

j + iπ)= 2i
(
sinh(θi − θ ′

j )+ i sinπν
)
.

We assign oddZ2-parity to both right and left movers(ψR → −ψR,ψL → −ψL,φ→ φ) and even (odd) parity to
right (left) movers under duality transformations (ψR →ψR,ψL → −ψL,φ→ −φ).

2.1. Neveu–Schwarz sector: trace of the stress-energy tensor

The operatorΘ has nonzero matrix elements on (even, even) number of particles. The first form fa
determined by using the Lagrangian:Q2,2 = −4πM2. We introduce the setsS = (1, . . . ,2r) andS′ = (1, . . . ,2l),
and propose

Q2r,2l(θ1, θ2, . . . , θ2r; θ ′
1, θ

′
2, . . . , θ

′
2l)

= −4πM2
∑
T ∈S,

#T= r−1

∑
T ′∈S ′,

#T ′= l−1

∏
i∈T ,
k∈�T

φ(θik)
∏
i∈T ′,
k∈�T ′

φ(θ ′
ik)

∏
i∈T ,
k∈�T ′

Φ(θi − θ ′
k)
∏
i∈T ′,
k∈�T

Φ̃(θk − θ ′
i ),

whereT ,�T are respectively subsets ofS and�S, the notation ‘#’ stands for ‘number of elements’, and by definit
�T = S\T , �T ′ = S′\T ′.

Let us show that this representation does indeed satisfy the residue condition (4): only two cases will co
to this computation, namely when 1∈ T ,2 ∈ �T and 2∈ T ,1 ∈ �T . It amounts to evaluate the residue atθ12 = iπ of
the quantity:[

φ(θ12)
∏

k∈�T−{2}
φ(θ1k)

∏
i∈T−{1}

φ(θi2)
∏
k∈�T ′

Φ(θ1 − θ ′
k)
∏
i∈T ′

Φ̃(θ2 − θ ′
i )

+ φ(θ21)
∏

k∈�T−{1}
φ(θ2k)

∏
i∈T−{2}

φ(θi1)
∏
k∈�T ′

Φ(θ2 − θ ′
k)
∏
i∈T ′

Φ̃(θ1 − θ ′
i )

]
× −4πM2

∑
U∈S−{1,2},

#U= r−2

∑
T ′∈S ′,′= l−1

∏
i∈U,
k∈�U

φ(θik)
∏
i∈T ′,

�′

φ(θ ′
ik)

∏
i∈U,
k∈�T ′

Φ(θi − θ ′
k)
∏
i∈T ′,

�

Φ̃(θk − θ ′
i ).
#T k∈T k∈U
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The last line is nothing butQ2r−2,2l(θ3, θ4, . . . , θ2r; θ ′
1, θ

′
2, . . . , θ

′
2l); the evaluation of the residue atθ12 = iπ of the

term into brackets gives explicitly

(2i)2r+2l−1
2r∏
j=3

1

sinhθ2j

[
(−1)2r−2

2l∏
k=1

(
sinh(θ2 − θ ′

k)− i sinπν
)− (−1)2l

2l∏
k=1

(
sinh(θ2 − θ ′

k)+ i sinπν
)]
,

and Eq. (4) is satisfied.
As a remark, we would like to note that the leading infrared behaviour ofF2,2 is given byT �T , which defines

the direction of the flow in the IR region. To determine the subleading IR terms that appear in the expans
one uses the asymptotic development forfRL given by Eq. (3). For example (up to the logarithmic terms):

fRL(θ1 − θ ′
1)fRL(θ1 − θ ′

2)fRL(θ2 − θ ′
1)fRL(θ2 − θ ′

2)

∼ eθ1+θ2−θ ′
1−θ ′

2

[
1+Aeθ1−θ ′

1 +
(
A2

2
+B

)
e2θ1−2θ ′

1

][
1+Aeθ1−θ ′

2 +
(
A2

2
+B

)
e2θ1−2θ ′

2

]
×
[
1+Aeθ2−θ ′

1 +
(
A2

2
+B

)
e2θ2−2θ ′

1

][
1+Aeθ2−θ ′

2 +
(
A2

2
+B

)
e2θ2−2θ ′

2

]
.

The terms into brackets give

1+A(eθ1 + eθ2)(e−θ ′
1 + e−θ ′

2
)+

(
A2

2
+B

)(
e2θ1−2θ ′

1 + e2θ1−2θ ′
2 + e2θ2−2θ ′

1 + e2θ2−2θ ′
2
)

+A2(e2θ1−θ ′
1−θ ′

2 + eθ1+θ2−2θ ′
1 + eθ1+θ2−2θ ′

2 + e2θ2−θ ′
1−θ ′

2 + 2eθ1+θ2−θ ′
1−θ ′

2
)+ · · ·

= 1+ A

M2
L−1�L−1 + A2

2M4
L2−1

�L2−1 + B

M4
L−2�L−2 + · · · ,

whereL−1 = eθ1 + eθ2 andL−2 = e2θ1 + e2θ2. So the next irrelevant operator appearing in (1) isT 2�T 2 (up to
derivatives).

2.1.1. Form factors of the energy operator ε
The number of left movers and right movers is odd. LetS = (1, . . . ,2r + 1), S′ = (1, . . . ,2l + 1). The lowest

form factor isQ1,1 = 1. We propose

Q2r+1,2l+1(θ1, θ2, . . . , θ2r+1; θ ′
1, θ

′
2, . . . , θ

′
2l+1)

=
∑
T ∈S,
#T= r

∑
T ′∈S ′,
#T ′= l

∏
i∈T ,
k∈�T

φ(θik)
∏
i∈T ′,
k∈�T ′

φ(θ ′
ik)

∏
i∈T ,
k∈�T ′

Φ(θi − θ ′
k)
∏
i∈T ′,
k∈�T

Φ̃(θk − θ ′
i ).

The proof that this expression satisfies Eq. (4) is the same as above.

2.2. Ramond sector

2.2.1. Order operator σ
It has nonvanishing matrix elements when the sum of left movers and right movers is odd. LetS = (1, . . . ,

2r + 1), S′ = (1, . . . ,2l). The lowest form factors areQ1,0 =Q0,1 = 1. We propose:

Q2r+1,2l(θ1, θ2, . . . , θ2r+1; θ ′
1, θ

′
2, . . . , θ

′
2l)

=
∑
T ∈S,
#T= r

∑
T ′∈S ′,
#T ′= l

∏
i∈T ,
k∈�T

φ(θik)
∏
i∈T ′,
k∈�T ′

φ(θ ′
ik)

∏
i∈T ,
k∈�T ′

Φ(θi − θ ′
k)
∏
i∈T ′,
k∈�T

Φ̃(θk − θ ′
i ).
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2.2.2. Disorder operator µ
It has nonvanishing matrix elements when the sum of left and right movers is even. As it is explained

there is an additional minus sign in front of the product ofS matrices in the residue condition (2).

• The number of left and right movers are both even.
Let S = (1, . . . ,2r), S′ = (1, . . . ,2l) and the lowest form factorQ0,0 = 1. We propose:

Q2r,2l(θ1, θ2, . . . , θ2r; θ ′
1, θ

′
2, . . . , θ

′
2l)

= (−i)r+l
∑
T ∈S,
#T= r

∑
T ′∈S ′,
#T ′= l

∏
i∈T ,
k∈�T

φ(θik)e
1
2

∑
θki

∏
i∈T ′,
k∈�T ′

φ(θ ′
ik)e

1
2

∑
θ ′
ik

∏
i∈T ,
k∈�T ′

Φ(θi − θ ′
k)
∏
i∈T ′,
k∈�T

Φ̃(θk − θ ′
i );

• The number of left and right movers are both odd.
Let S = (1, . . . ,2r + 1), S′ = (1, . . . ,2l + 1). The lowest form factor isQ1,1 = e(θ ′

1−θ1)/2. We propose:

Q2r+1,2l+1(θ1, θ2, . . . , θ2r+1; θ ′
1, θ

′
2, . . . , θ

′
2l+1)

= (−i)r+l
∑
T ∈S,
#T= r

∑
T ′∈S ′,
#T ′= l

∏
i∈T ,
k∈�T

φ(θik)e
1
2
∑
θik

∏
i∈T ′,
k∈�T ′

φ(θ ′
ik)e

1
2
∑
θ ′
ki

∏
i∈T ,
k∈�T ′

Φ(θi − θ ′
k)
∏
i∈T ′,
k∈�T

Φ̃(θk − θ ′
i ).

Let us note that the exponentials will be responsible for the additional minus sign in the residue condition

2.2.3. Remarks
• One can check that in the IR, the form factors of the operatorO = σ + µ satisfy the cluster property like a

exponential of a Bose field [8], for example:

Or,l(θ1, θ2, . . . , θr; θ ′
1, θ

′
2, . . . , θ

′
l )∼O1,0(θ1)Or−1,l(θ2, . . . , θr; θ ′

1, θ
′
2, . . . , θ

′
l ) for θ1 → −∞.

• The expressions for the form factors ofσ and µ give the expected leading IR behaviour [4,9,1

F IR
r,l (θ1, θ2, . . . , θr ; θ ′

1, θ
′
2, . . . , θ

′
l )∼

∏
i<j tanh

θij
2 tanh

θ ′
ij

2 , wherer + l is odd forσ and even forµ.

3. Concluding remarks

We understand it is important to check the UV properties of the form factors proposed in this Letter; w
to present numerical checks in a future publication. As far as the operatorsΘ,σ,µ are concerned, we expect o
representation to be the correct answer to the problem: indeed, the form factors of the operatorsσ andµ have the
expected leading IR behaviour; moreover we recover immediately the form factors of the operatorsΘ,σ,µ in the
tricritical Ising model perturbed by the subenergy that defines a massless flow to the Ising model [12,13]
by replacing in our formulaeSRL andfRL by their corresponding values that can be found in [6,14]. We che
for a low number of particles that they correctly reproduce the results of [6] where the first form factors
operatorsΘ,σ,µ are computed in terms of symmetric polynomials.2 We also obtained agreement (again for a l
number of particles) with [7], where an expression quite similar to ours for the form factors of the operatoΘ is
proposed (with an arbitrary number of intermediate particles). The case of the energy operatorε could be slightly
more tricky: although it is evoked in [6], only its lowest form factor with one left mover and one right mov
explicitly given there.

2 The authors of [6] checked numerically the UV properties of their form factors, including the c-theorem.
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Finally, the representations we provide for the functionsQr,l are in principle general enough3 to provide results
for other massless models flowing to the Ising model, but where theS-matrix has a more complicated structure
resonance poles [14].
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