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Abstract

The Cayley Transform, F := (I + A)−1(I − A), with A ∈ Cn,n and −1 /∈ σ(A), where σ(·) denotes
spectrum, is of significant theoretical importance and interest and has many practical applications. E.g., in
the solution of the Linear Complementarity Problem (LCP), in the solution of linear systems arising from the
discretization of model problems elliptic PDEs by Alternating Direction Implicit (ADI) iterative methods, in
the solution of complex linear systems by ADI-type methods of Hermitian/Skew Hermitian or Normal/Skew
Hermitian Splittings, etc. In the present work we apply the principle of Extrapolation to generalize the
Cayley Transform and determine in an optimal sense the extrapolation parameter involved so that problems
in many practical applications are solved much more efficiently.
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1. Introduction and preliminaries

We begin our work with the definition of the Cayley Transform.

Definition 1.1. Given

A ∈ Cn,n, with − 1 /∈ σ(A), (1.1)

the Cayley Transform is defined to be the following matrix function of A

F :=F(A) = (I + A)−1(I − A). (1.2)

Note. For properties of the Cayley Transform, theoretical applications to various classes of matri-
ces, as e.g., M-matrices, inverses of M-matrices, and for other references, the reader is referred
to the work by Fallatt and Tsatsomeros [10].

We generalize Definition 1.1 by putting ωA instead of A in (1.2), where ω is a nonzero complex
number, as follows:

Definition 1.2. Under the assumptions of Definition 1.1, we call Extrapolated Cayley Transform,
with extrapolation parameter ω, the matrix function

Fω :=F(ωA) = (I + ωA)−1(I − ωA), ω ∈ C\{0}, −1 /∈ σ(ωA). (1.3)

From now on we restrict to the following class of matrices.
Main Assumption: Unless otherwise stated, it will be assumed from now on that the matrix A

in Definitions 1.1 and 1.2 has real elements and is positive stable, that is its eigenvalues a ∈ σ(A)

have positive real parts (Re a > 0).
The Cayley Transform, its Extrapolated counterpart as well as their scalar analogues (w = 1−a

1+a
,

w = 1−ωa
1+ωa

which are Möbius transformations) appear in many practical applications. For example:

(1) In the solution of the Linear Complementarity Problem (LCP) when the basic matrix A is, in
addition, real symmetric positive definite and the LCP is solved by the Modulus Algorithm
proposed by van Bokhoven [31].

(2) In the solution of the problem of the determination of optimal acceleration parameter in the
classical stationary Alternating Direction Implicit (ADI) iterative method for the solution
of the linear system arising from the discretization of model problems elliptic PDE’s (see,
e.g., [27] and also [32] or [33]).

(3) In a similar case as in the previous one for the solution of a complex linear system, with
positive stable coefficient matrix, by an ADI-type method using (a) the Hermitian/Skew
Hermitian Splitting introduced by Bai, Golub and Ng [1] or (b) the Normal/Skew Hermitian
Splitting introduced by the same authors (see [12]).

More on the above applications will be given in Sections 5 and 6.
Since the Cayley Transform plays the role of the iteration matrix in the aforementioned prob-

lems, then by considering the Extrapolated Cayley Transform it would be expected that with an
optimal choice of the extrapolation parameter we could achieve optimal convergence rates of the
iterative schemes involved. So, we state and try to solve the following problem which constitutes
the main objective of the present work.
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Problem I. For A ∈ Rn,n positive stable, determine the Extrapolation Parameter ω(> 0) that
minimizes the spectral radius of the Extrapolated Cayley Transform, i.e.

min
ω>0

ρ(Fω) = min
ω>0

max
a∈σ(A)

∣∣∣∣1 − ωa

1 + ωa

∣∣∣∣ (< 1). (1.4)

Note. The extrapolation parameter is considered to be real to simplify matters. Furthermore, since
Re a > 0, it is taken to be positive in order to always guarantee the validity of the strict inequality

max
a∈σ(A)

∣∣∣∣1 − ωa

1 + ωa

∣∣∣∣ < 1. (1.5)

2. The solution to the minimax Problem I

To go on with our analysis we introduce some further notation. For the positive stable matrix
A ∈ Rn,n let H be the convex hull of σ(A), that is the smallest convex polygon that contains
σ(A) in the closure of its interior. Note that since A is real positive stable, σ(A) will be symmetric
with respect to (wrt) the positive real semiaxis and so will be H.

To solve Problem I we seek first the solution to the more general optimization problem stated
below.

Problem II. Determine the extrapolation parameter ω that solves the minimax problem

min
ω>0

max
a∈H

∣∣∣∣1 − ωa

1 + ωa

∣∣∣∣ (< 1). (2.1)

For this we study the function in (2.1)

w :=w(a) = 1 − ωa

1 + ωa
, a ∈ H, ω > 0. (2.2)

This function is a Möbius transformation [16], has no poles, since Re(1 + ωa) > 0, and maps

the point a onto the point w. Since det
([

1 −ω

1 ω

])
= 2ω > 0, w is not the constant function. In

addition, it possesses an inverse transformation given by

w−1(w(a)) = a = 1 − w

ω(1 + w)
, w = w(a), a ∈ H, ω > 0. (2.3)

As is readily checked, the inverse function in (2.3) is also a Möbius transformation, has no poles,
is not the constant function and maps back w onto its pre-image a.

To realize how the two transformations (2.2) and (2.3) work and draw useful conclusions,
consider a certain ω > 0 and let Cω be the circle with center O(0, 0) and radius

ρ :=ρ(Cω) = max
a∈H |w(a)| (< 1). (2.4)

Note that due to the definition of ρ in (2.4), Cω will capture1 w(H) and will pass through a
boundary point of it. Therefore, in view of the nature of the two Möbius transformations (2.2)
and (2.3) (real coefficients, and no poles), Cω must be the image of a circle C. In other words

1 From now on the word “captures” will mean “contains in the closure of its interior”.
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Cω ≡ w(C). To see how these two circlesCω andC are related and draw some further conclusions
regarding C, we begin with the equation for Cω, namely

Cω :=|w| = ρ.

We square both members of it, use the expression for w, from the Möbius transformation in (2.2),
go through a series of successive equivalences

|w| = ρ ⇔ |w|2 = ρ2 ⇔ ww̄ = ρ2

⇔ 1 − ωa

1 + ωa
· 1 − ωā

1 + ωā
= ρ2 ⇔ ω2(1 − ρ2)aā − ω(1 + ρ2)(a + ā) + (1 − ρ2) = 0

⇔ aā − (1 + ρ2)

ω(1 − ρ2)
(a + ā) + 1

ω2
= 0

⇔ aā − (1 + ρ2)

ω(1 − ρ2)
(a + ā) +

(
(1 + ρ2)

ω(1 − ρ2)

)2

=
(

(1 + ρ2)

ω(1 − ρ2)

)2

− 1

ω2

⇔
∣∣∣∣a − (1 + ρ2)

ω(1 − ρ2)

∣∣∣∣
2

=
(

2ρ

ω(1 − ρ2)

)2

⇔
∣∣∣∣a − (1 + ρ2)

ω(1 − ρ2)

∣∣∣∣ = 2ρ

ω(1 − ρ2)
⇔ |a − c| = R

and end up with the equation of a circle C, where

C :=|a − c| = R, (2.5)

with c and R being given by

c := 1 + ρ2

ω(1 − ρ2)
, R := 2ρ

ω(1 − ρ2)
(c > R � 0). (2.6)

Consequently, because of the above equivalences, we have that

Cω = w(C) ⇔ C = w−1(Cω). (2.7)

It can be observed that the circle C possesses four basic properties: (1) It has its center on the
positive real semiaxis (c > 0 since 0 � ρ < 1). (2) It lies in the open right half complex plane
(c > R). (3) It captures H (H ⊂ C) since Cω captures w(H) (w(H) ⊂ Cω ≡ w(C)). (4) It
passes through a vertex of H; this is because Cω passes through a boundary point of w(H),
hence C must pass through a boundary point of H. But since C is a circle that captures H, with
the latter being a convex polygon, the boundary point in question must be a vertex of it.

Definition 2.1. A circle C satisfying the above four properties will be called a capturing circle
(cc) of H.

Theorem 2.1. Let A ∈ Rn,n be positive stable, σ (A) be its spectrum and H be the convex hull
of σ(A). Then, there are infinitely many capturing circles (cc) of H.

Proof. Let Pi, i = 1(1)k, be the vertices of H in the first quadrant of the complex plane in
increasing order of their abscissas and consider the perpendicular bisectors of OPi, i = 1(1)k.

Let Ki(ci, 0), i = 1(1)k, be their intersections with the positive real semiaxis. Then, the circle with
center the point K(c, 0), such that c ∈ (maxi=1(1)k ci, +∞), and radius R = maxi=1(1)k(KPi) is
a cc of H. Consequently, there are infinitely many cc’s of a given H. �
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Note. The notion of a cc of H constitutes a particular case of the one defined in [14] (see also
[15]).

One more consequence of the analysis so far is the validity of the following statement.

Theorem 2.2. The solutions to Problem II and Problem I are identical.

Proof. From the preceding analysis we have that the following series of relations hold

min
ω>0

max
a∈H

∣∣∣∣1 − ωa

1 + ωa

∣∣∣∣ = min
ω>0

max
a∈H |w(a)| = min

ω>0
ρ = min

ω>0
ρ(Cω)

= min
ω>0

ρ(w(C)) = min
ω>0

max
a∈σ(A)

|w(a)|

= min
ω>0

max
a∈σ(A)

∣∣∣∣1 − ωa

1 + ωa

∣∣∣∣ = min
ω>0

ρ(Fω). (2.8)

Specifically, the first expression is that of Problem II and is equal to the second one because of
the definition of w in (2.2). The second expression is equal to the following two by the definition
of ρ in (2.4). The fifth expression is equal to the previous one due to the fact that Cω ≡ w(C).
The sixth expression is equal to its preceding one because C captures H and passes through a
vertex of it and the latter is an element of σ(A). The last but one expression is obtained from its
previous one by (2.2) and the last expression is from equations (1.4) of Problem I. �

By virtue of the analysis so far and Theorems 2.1 and 2.2, in order to solve Problem II it
suffices to find out of the infinitely many cc’s of H the one that solves it. For this we have to find
first how ω and ρ = ρ(Cω) of Cω are obtained from elements of C. This is given in the following
statement.

Theorem 2.3. Let C be a cc of H, K(c, 0) and R be its center and radius and Cω be its image via
(2.2). Then, the extrapolation parameter ω and the radius ρ of Cω are given by the expressions

ω = 1√
c2 − R2

, ρ = ρ (Cω) =
√

c + R − √
c − R√

c + R + √
c − R

. (2.9)

Proof. From the expressions for c and R of C in (2.6), which give them in terms of ω and ρ, we
form the ratio R

c
to obtain R

c
= 2ρ

1+ρ2 . Solving for ρ ∈ (0, 1) we take

ρ = c − √
c2 − R2

R
,

the right side of which is readily proved to be an equivalent expression to the right side of the
second equation in (2.9). The expression for ω is easily obtained by solving either of the ones in
(2.6) and using the expression for ρ just found. �

A simple statement follows that will be very useful.

Lemma 2.1. Let the function

f (x) :=
√

1 + x − √
1 − x√

1 + x + √
1 − x

(2.10)
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be defined in the interval [0, 1). Then, f (x) is continuously increasing in [0, 1). Moreover, for
x ∈ [d, e) ⊆ [0, 1), f (x) attains its minimum value at the minimum value of x = d.

Proof. Differentiating f (x) wrt x it is readily obtained that �f
�x > 0 from which the conclusion

follows. The second part is a consequence of the first one. �

Now we can prove our key theorem.

Theorem 2.4. Under the notation and assumptions of Theorem 2.3, the solution to Problem II in
(2.1) is equivalent to the determination of the optimal capturing circle (cc) C∗ of H so that the
ratio R

c
is a minimum.

Proof. The rightmost expression for ρ in (2.9) is written as follows:

ρ =
√

1 + R
c

−
√

1 − R
c√

1 + R
c

+
√

1 − R
c

≡ f

(
R

c

)
. (2.11)

So, ρ is minimized whenever f (R
c
) is. By Lemma 2.1, f (R

c
) attains its minimum value at the

minimum of R
c

and the statement is proved. �

The problem of minimization of the ratio R
c

of Theorem 2.4 for all cc’s of H is identical to
the same problem in the classical extrapolation of a first order stationary iterative scheme solved
completely in [14] for the complex case (see also [15]), using Apollonius circles [8], where the
issues of existence and uniqueness are established. It is also identical to the analogous problem
of the classical extrapolation in [17,18,13] for the real case, solved earlier, where, however, the
issue of uniqueness is not quite clear.

We mention, in passing, that the problem in the classical extrapolation for A ∈ Cn,n and H
the convex hull of σ(A), with O /∈ H, may be stated as follows:

Problem III. Determine ω ∈ C that solves the minimax problem

min
ω∈C

max
a∈H |1 − ωa|, a ∈ σ(A) ⊂ H and O /∈ H. (2.12)

If A ∈ Rn,n and σ(A) is in the open right half complex plane, Problem III becomes:

Problem III′. Determine ω > 0 that solves the minimax problem

min
ω>0

max
a∈H |1 − ωa|, a ∈ σ(A) ⊂ H. (2.13)

Consequently, the following statement is valid.

Theorem 2.5. The optimal cc C∗ of H determined in the classical extrapolation of Problem III′
is identical to the one determined in the case of the extrapolation of Problem II.

Although C∗ for the classical extrapolation and the extrapolation in the present work are iden-
tically the same, the values for the optimal parameters ω∗ and ρ(Cω∗) are completely different.
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Having determined C∗ of H using the Algorithm in the next section, the values of ω∗ and ρ(Cω∗)
are determined by the theorem below which is obtained directly from Theorem 2.3.

Theorem 2.6. Let C∗ be the optimal cc of H obtained by using the Algorithm in the next sec-
tion and let K∗(c∗, 0) and R∗ be its center and radius, respectively. Then the solution to the
optimization Problem II in (2.1) is given by

min
ω>0

max
a∈H

∣∣∣∣1 − ωa

1 + ωa

∣∣∣∣ = ρ (Cω∗) =
√

c∗ + R∗ − √
c∗ − R∗

√
c∗ + R∗ + √

c∗ − R∗ , with ω∗ = 1√
c∗2 − R∗2

.

(2.14)

Since Problem II refers to a real case it will be much simpler if its solution is given directly by
an appropriate interpretation of the Algorithm in [14] as this is done in the next section.

3. The algorithm and the elements of C∗

Let A ∈ Rn,n be positive stable and H be the convex hull of its spectrum σ(A). Then, the
determination of the optimal cc C∗ of H, of Theorem 2.4, is achieved as follows:

3.1. The algorithm

Step 1. Let Pi(βi, γi), 0 < βi < βi+1, i = 1(1)k − 1, γi � 0, i = 1(1)k, be the k vertices of
H, in the first quadrant of the complex plane.

Step 2. If k � 1, find the point Pi which corresponds to the largest polar angle θi , that is

max
i=1(1)k

tan θi = max
i=1(1)k

γi

βi

. (3.1)

If there are two vertices sharing the same polar angle go to the next Step; otherwise,
let ī ∈ {1, 2, . . . , k} be the index for which this happens and let Cī be the circle that is
tangent to the line OPī at Pī . If Cī captures all the other vertices of H, then it is the
optimal cc Cω∗ of H (one-point optimal cc). If no such a cc Cω∗ exists go on to the next
Step.

Step 3. Determine the circles that pass through the pairs of vertices Pi, Pj , i = 1(1)k − 1, j =
i + 1(1)k, and have centers on the real axis. Let Ki,j (ci,j , 0) and Ri,j be their centers
and radii, respectively. Discard those that either capture O or do not capture all the other
vertices. From the rest the one that corresponds to the smallest ratio

Ri,j

(OKi,j )
is the optimal

cc Cω∗ of H (two-point optimal cc).

3.2. The elements of the optimal capturing circle

The following two points that refer mainly to the elements of the optimal ccC∗ ofH are made:

(a) Let ī ∈ {1, 2, . . . , k} be the index corresponding to the optimal one-point cc of H. Then,
its center and radius are readily found to be given by
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K ∗̄
i
(c∗̄

i
, 0), c∗̄

i
= β2

ī
+ γ 2

ī

βī

, R∗̄
i

=
γī

√
β2

ī
+ γ 2

ī

βī

. (3.2)

(b) To determine the optimal two-point cc of H from the centers Ki,j and radii Ri,j of the
(

k

2

)
possible candidates, we find the main elements of them, that is

ci,j = (β2
j + γ 2

j ) − (β2
i + γ 2

i )

2(βj − βi)
,

Ri,j =
√

[(β2
j + γ 2

j ) + (β2
i + γ 2

i ) − 2βiβj ]2 − 4γ 2
i γ 2

j

2(βj − βi)
. (3.3)

We discard the circles for which ci,j � 0 or 0 < ci,j � Ri,j . From the rest we find the
optimal cc as the one that captures the other k − 2 vertices of H and corresponds to the
smallest ratio

Ri,j

ci,j

=
√

[(β2
j + γ 2

j ) + (β2
i + γ 2

i ) − 2βiβj ]2 − 4γ 2
i γ 2

j

(β2
j + γ 2

j ) − (β2
i + γ 2

i )

(
= (Ki,jPi)

(OKi,j )
= (Ki,jPj )

(OKi,j )

)
.

(3.4)

Denoting by ī, j̄ the indices for the optimal cc, C∗̄
i,j̄

, its center K ∗̄
i,j̄

(c∗̄
i,j̄

, 0) and radius R∗̄
i,j̄

will be given by (3.3).

3.3. Numerical examples

In this section we give two examples that cover the two possible cases of the one-point and the
two-point optimal cc’s.

Example 1. Let

A =

⎡
⎢⎢⎣

10 1 3 −1
2 4 −2 −3

−3 5 6 2
3 3 1 11

⎤
⎥⎥⎦ . (3.5)

The given matrix A is positive stable since its spectrum is found to be

σ(A) = {5.30510873756331 ± ı4.04212646134389,

10.19489126243668 ± ı2.49823942823383},
with the spectral radius of the Cayley Transform being given by

ρ(F ) = ρ((I + A)−1(I − A)) = 0.83069047703163.

It is easily found that the hull H has two vertices in the first quadrant

P1(5.30510873756331, 4.04212646134389), P2(10.19489126243668, 2.49823942823383).

Of the two vertices P1 has the largest polar angle. It is found out that c1 = 8.38492993214283 and
R1 = 5.08174034363009. Observe that C1 captures P2 since (K1P2) = 3.08498950694183 <
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* *

*

* *

1

2

1 1 M

1

m

Fig. 1. Optimal elements of Example 1.

R1. Therefore the optimal cc is C∗
1 (see Fig. 1). The optimal value for the extrapolation parameter

is found to be ω∗ = 0.14993503870749 and then the spectral radius of the optimal Extrapolated
Cayley Transform is ρ(Fω∗) = ρ(Cω∗) = 0.33755657117885.

Example 2. Let

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3.2674 0.8314 0.8577 0.3411 0.5209 0.4043 1.1564 −0.7739
0.7801 2.9645 0.3279 0.3785 0.7860 0.2184 0.3424 −0.3047

−1.0629 −0.2065 2.3540 −0.7142 0.1065 −0.5306 0.1741 0.3752
0.1682 0.7375 0.6341 2.0460 0.7078 1.0257 0.6017 −0.9151
1.1390 −0.4606 0.2989 0.0356 2.1130 0.4592 0.4386 −0.1482

−0.4309 −0.1225 −0.0049 −0.0385 0.0966 2.0106 −1.3353 1.0215
−0.5356 −0.0203 −0.4978 0.5677 0.3314 0.1871 2.7104 0.4236
−0.3741 −0.2861 −0.9002 0.6656 −0.0451 −1.1603 −0.9873 4.8030

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

A is positive stable since its spectrum is

σ(A) = {1.86276001393587, 2.01179239038023 ± ı0.65104401096444,

2.74937366128964 ± ı0.97219263735250,

0 3.53286710719112 ± ı0.82489924737867, 3.81807366834215}

with the spectral radius of F = (I + A)−1(I − A) being ρ(F ) = 0.58489634288050. Hence the
vertices of H in the first quadrant are

P1(1.86276001393587, 0), P2(2.01179239038023, 0.65104401096444),

P3(2.74937366128964, 0.97219263735250),

P4(3.53286710719112, 0.82489924737867), P5(3.81807366834215, 0).

The vertex with the largest polar angle is P3. However, the circle that has center in the positive
real semiaxis and is tangent to OP3 at P3 does not capture P1 and P2. So, we are looking

for a two-point optimal cc. For this we consider all
(

5
2

)
= 10 circles which pass through pairs

of vertices Pi, Pj , i = 1(1)4, j = i + 1(1)5, and have centers on the real axis. Discarding the
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O

θ
Αm

R4,5
*

Fig. 2. Optimal elements of Example 2.

circles that either capture O or do not capture all the other vertices of H, we select from the
rest the unique one that corresponds to the smallest ratio R

c
. Thus, the optimal cc is found to

be C∗
4,5, with K∗

4,5(c
∗
4,5, 0), c∗

4,5 = 2.48254767662753, R∗
4,5 = 1.33552599171462 and ω∗ =

0.47785048804760, where ρ(Fω∗) = ρ(Cω∗) = 0.29190214193811 (see Fig. 2).

4. Special cases

In what follows we examine some special cases which may be of interest in applications. In
each case we will show how the optimal cc of H, C∗, will be determined. In most of them not
all the optimal values involved (K∗(c∗, 0), R∗, ω∗, ρ(Cω∗)) will be found explicitly.

(a) Let σ(A) ⊂ [β1 − ıγ1, β1 + ıγ1], γ1 > 0. Obviously, H has only one vertex P1(β1, γ1) in
the first quadrant and so c∗ and R∗ are given by (3.2) and then by (2.14) it is found that

ω∗ = 1√
β2

1 + γ 2
1

, ρ(Cω∗) = γ1

β1 +
√

β2
1 + γ 2

1

. (4.1)

(b) Let σ(A) ⊂ R, where R is the rectangle with vertices βi ± ıγ, i = 1, 2, and γ > 0. Of the
two vertices of R in the first quadrant P1 has the largest polar angle and so we check if

the circle with center K1

(
β2

1 +γ 2

β1
, 0

)
and radius R1 = γ

√
β2

1 +γ 2

β1
, from (3.2), captures P2.

For this to happen there must hold β1+β2
2 �

γ

√
β2

1 +γ 2

β1
, in which case ω∗ and ρ(Cω∗) are

given by the formulas in (4.1); otherwise K1,2

(
β1+β2

2 , 0
)

, R1,2 = 1
2

√
(β2 − β1)2 + 4γ 2,

from which
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ω∗ = 1√
β1β2 − γ 2

, ρ(Cω∗) = β1 + β2 + √
(β2 − β1)2 + 4γ 2 − 2

√
β1β2 − γ 2

β1 + β2 + √
(β2 − β1)2 + 4γ 2 + 2

√
β1β2 − γ 2

.

(4.2)

If γ = 0, then K1,2
(β1+β2

2 , 0
)
, R1,2 = β2−β1

2 , and

ω∗ = 1√
β1β2

, ρ(Cω∗) =
√

β2 − √
β1√

β2 + √
β1

. (4.3)

(c) Let σ(A) ⊂ T, where T is an isosceles trapezium, a case examined in [15] in general
terms. Let the vertices of T in the first quadrant be Pi(βi, γi), i = 1, 2, with γ1, γ2 > 0
and γ1 /= γ2. We distinguish two cases: (i) γi

βi
>

γj

βj
, i = 1, 2, j ∈ {1, 2}\{i} or

(ii) γ1
β1

= γ2
β2

.

(i) Let Pi be the vertex with the largest polar angle so we find Ci as in Step 3 of the
Algorithm. Formulas (3.2) will give the center K(ci, 0) and the radius Ri of Ci . If Ci

captures Pj , that is if and only if (iff) 2γi(γiβj − βiγj ) � βi[(βi − βj )
2 + (γi − γj )

2],
then Ci is the optimal cc of T. Otherwise, the optimal cc of T will be C∗

1,2 whose center
and radius will be given by formulas (3.3).

(ii) If γ1
β1

= γ2
β2

, P1, P2 have the same polar angle and according to point (a) made after the
Algorithm in Section 4, the optimal cc of T will be C∗

1,2 and its elements are found from
(3.3).

In applications we may have a convex region as the convex hull, instead of a polygon,
whose (part of its) boundary consists of arcs of circles or ellipses as, e.g., in [5,4]. Then, the
situation is tackled in a way analogous to that considered so far where a one- or two-point
optimal cc is sought (see [15]).

(d) Let σ(A) ⊂ S be the section of a circle symmetric wrt the positive real semiaxis.
(A special case was treated in [15] and also in [5,4].) We distinguish two cases depending
on whether the chord or the midpoint of the arc of S is closer to the midpoint.
(i) Let P1(β1, γ1) be the endpoint of the chord of S in the first quadrant of the complex

plane and P2(β2, 0) be the midpoint of its arc. Consider the cc C1 whose elements are
given by (3.2). For P1 to have the largest polar angle of S, C1 must capture P2. This

happens iff c1 + R1 � β2 or

√
β2

1 +γ 2
1

(√
β2

1 +γ 2
1 +γ1

)

β1
� β2, and then C∗

1 is the one-point
optimal cc. If the previous inequality is the other way then the optimal cc will be the
two-point cc C∗

1,2, the circle to which S belongs, whose elements are

K∗
1,2(c

∗
1,2, 0), c∗

1,2 = β2
2 − (β2

1 + γ 2
1 )

2(β2 − β1)
, R∗

1,2 = (β2 − β1)
2 + γ 2

1

2(β2 − β1)
.

(ii) This time the midpoint of the arc of S is P1(β1, 0) and the endpoint of the chord in the
first quadrant is P2(β2, γ2). Now, the point of S with the largest polar angle is P2 iff

c2 − R2 � β1 or

√
β2

2 +γ 2
2

(√
β2

2 +γ 2
2 −γ2

)

β2
� β1, the optimal cc will be the one-point cc C∗

2.
If the inequality above is the other way then, as in the previous case, C∗

1,2 is the circle to
which S belongs and its elements are

K∗
1,2(c

∗
1,2, 0), c∗

1,2 = (β2
2 + γ 2

2 ) − β2
1

2(β2 − β1)
, R∗

1,2 = (β2 − β1)
2 + γ 2

2

2(β2 − β1)
.
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(e) Let σ(A) ⊂ S, where S is a sector of a circle symmetric wrt to the positive real semiaxis.
Since S must be a convex region, the angle of S is considered to be strictly less than π

for otherwise we should consider a section of a circle examined in (d). We distinguish two
subcases.
(i) Let P1(β1, 0) be the center of the circle to which the sector belongs, P2(β2, γ2) be

the endpoint of its chord and P3(β3, 0) be the midpoint of its arc, where β3 = β1 +√
(β2 − β1)2 + γ 2

2 . P2 is the point with the largest polar angle and so if the cc through
P2, C2, captures P1 and P3 it is the optimal one. For this to happen there must hold
c2 − R2 � β1 and c2 + R2 � β3 or

√
β2

2 + γ 2
2

(√
β2

2 + γ 2
2 − γ2

)

β2
� β1 < β1 +

√
(β2 − β1)2 + γ 2

2

�

√
β2

2 + γ 2
2

(√
β2

2 + γ 2
2 + γ2

)

β2
.

If either of the two extreme inequalities does not hold then the optimal cc is a two-point
one. In such a case, observe that ∠P1P2P3 < π

2 , from the isosceles triangle P1P2P3.
This means that C1,3 cannot capture P2, since its diameter P1P3 is strictly less than
twice its median from P2. For the other two candidates we observe that C1,2 captures
P3 and C2,3 captures P1. The former because its center K1,2 is such that (K1,2P2) >

(K1,2P3) since ∠K1,2P3P2 = ∠P1P2P3 > ∠K1,2P2P3, and the latter because P1 is the
center of the sector and of C2,3. On the two candidates we observe the following: (�)
If β1 � 1

2β3 = 1
2 (β1 + √

(β2 − β1)2 + γ 2) or, equivalently, 2β1β2 � β2
2 + γ 2

2 , then the
circle C2,3 does capture the origin O. So it is not a cc; hence the optimal cc is C∗

1,2. (�)

If 2β1β2 > β2
2 + γ 2

2 , then C2,3 lies strictly in the open right half complex plane and is
a possible candidate for the optimal cc. However, the two circles C2,3 and C1,2, have
a common chord P2P

′
2, where P ′

2 is the symmetric of P2 wrt the real axis, and the arc
P2P1P

′
2 of the latter circle lies in the closure of the interior of the former. This means that

R1,2
c1,2

<
R2,3
c2,3

. Consequently, by Theorem 2.4, the optimal cc of the sectorS is alwaysC∗
1,2.

(ii) This time it is P3(β3, 0) the center of the sector, P2(β2, γ2), as before, the endpoint of

its chord and P3(β3, 0) its center, where 0 < β1 = β3 −
√

(β3 − β2)2 + γ 2
2 . This case

is examined in a similar way and so the determination of the optimal cc is omitted.
Note. In a similar way we can find the optimal elements of a circular zone that is a part of
a circle which is defined by two chords perpendicular to the positive real semiaxis and the
two arcs between them.

(f) Finally, we determine the optimal cc of an ellipseE symmetric wrt the positive real semiaxis,
with center Q(c, 0) and Er (< c), Ei its real and imaginary semiaxes, as a special case of
the one examined in [25]. Two cases are distinguished.
(i) Er < Ei : Let OP1 be the tangent to E with P1(β1, γ1) being the point of contact.

Obviously, P1 has the largest polar angle. The coordinates of P1 will satisfy the equations
of the ellipse E and of its tangent from O. Also, the coordinates of O(0, 0) will satisfy
the equation of OP1. So,
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(β1 − c)2

E2
r

+ γ 2
1

E2
i

= 1,
(0 − c)(β1 − c)

E2
r

+ 0.γ1

E2
i

= 1, (4.4)

from which β1 = c2−E2
r

c
, γ1 = Ei

c

√
c2 − E2

r are found. Therefore, for C∗
1, we have

c∗
1 = c2 + E2

i − E2
r

c
, R∗

1 = Ei

c

√
c2 − E2

r + E2
i . (4.5)

C∗
1 is indeed the optimal cc of E since R∗

1 > Er ⇔ (c + 1)(E2
i − E2

r )(> 0).
(ii) Er > Ei : The optimal cc is that which has center K∗(c∗, 0), c∗ = c, and radius R∗ = Er .
Note. The optimal parameters of a section, a sector or a zone of an ellipse E symmetric wrt
the positive real semiaxis are found in a similar way to that of the section, the sector and
the zone of a circle.

5. The Linear Complementarity Problem (LCP)

The Linear Complementarity Problem (LCP) is met in many practical applications. For exam-
ple, in linear and convex quadratic programming, in the problem of finding the Nash equilibrium
point in a bimatrix game (see, e.g., Lemke [21] and Cottle and Dantzig [6]), in a number of
problems in fluid mechanics (see, e.g., Cryer [9]), in problems in economics (see, e.g., Pan-
tazopoulos [26] and Koulisianis and Papatheodorou [20]), etc. For more applications see, e.g.,
[23,2,7,24,11,3] and [28].

The LCP is defined in the following way:

Problem IV. Determine x ∈ Rn,n, if it exists, satisfying the following conditions
r :=Ax − b � 0, x � 0, xTr = 0, with A ∈ Rn,n, b ∈ Rn (b�0) (5.1)

(see, e.g., [2] and also [23,7] or [24]).

Note. We set b�0 since otherwise (5.1) has the trivial solution x = 0, r = −b � 0.

A sufficient and necessary condition for LCP (5.1) to possess a unique solution, for all b ∈
Rn, is that A is a P -matrix, that is all its principal minors are positive. For the proof see, e.g.,
[23,2,7,24,11,3] or [28]. In this section we focus on real symmetric positive definite matrices,
which are both P -matrices, to guarantee uniqueness of the solution of (5.1), and positive stable
as the analysis of the present work requires.

The problem in (5.1) can be solved by a direct or an iterative method. In this work we consider
specifically the iterative method known as the Modulus Algorithm introduced by van Bokhoven
[31] (see also Kappel and Watson [19] and Schäfer [29]). In it a new “unknown” z is introduced
so that

x = |z| + z and r = |z| − z, (5.2)
see, e.g., [24], where | · | denotes the vector whose components are the moduli of the corresponding
components of the given one. Then, using (5.2) and replacing x and r in (5.1) it is readily obtained
that

z = f (z) :=F |z| + c, (5.3)

where

z ∈ Rn, F = (I + A)−1(I − A), c = (I + A)−1b, (5.4)
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and where, as is seen, the Cayley Transform appears and plays an important role.
For the iterative solution of (5.3) the simplest iterative scheme is the following

z(m+1) = F |z(m)| + c, with any z(0) � 0. (5.5)

Under the assumptions on A so far, the convergence of (5.5) to the (unique) solution z∗ of (5.3)
is guaranteed (see, also [19] and [29]).

To accelerate the convergence of (5.5) we apply extrapolation to Problem IV. So, we multiply
the first and the last relations in (5.1) by ω(> 0), the extrapolation parameter, and thus (5.1)
becomes

(ωr) := (ωA)x − (ωb) � 0, x � 0,

xT(ωr) = 0, with ωA ∈ Rn,n, ωb ∈ Rn\{0} (ωb�0). (5.6)

Due to the positivity ofω, relations in (5.1) imply (5.6) and vice versa; also, the matrix properties
of A are inherited by ωA.

The extrapolated iterative scheme based on (5.5) is constructed from (5.6) in the same way
(5.5) is obtained from (5.3). Hence

z(m+1) = Fω|z(m)| + cω, with any z(0) � 0, (5.7)

where

Fω = (I + ωA)−1(I − ωA), cω = (I + ωA)−1ωb. (5.8)

As is seen the Extrapolated Cayley Transform plays the role of the iteration matrix and it is
our task to find the best value for the extrapolation parameter ω.

The optimal extrapolation parameter ω∗ is found very easily since in this case H is a line
segment on the positive real semiaxis with endpoints the extreme eigenvalues of A (see Section 4,
Case (b)). If the extreme eigenvalues of A are not known one can take ‖A‖∞ as an upper bound of
σ(A). A positive lower bound can be found in many ways (see, e.g., [22] or [30]). Having found
the extreme eigenvalues the optimal parameters are obtained from (4.3).

We present a simple example in which z(0) in (5.5) and (5.7) was taken to be the vector with all
components equal to one, while the criterion for the iterations to stop was when two consecutive
x(m)’s (x(m) = z(m) + |z(m)|) agreed to all 14 decimal places Matlab 7.0 gives.

Example. Let

A = tridiag(−1, 2, −1) ∈ R9,9, b = [2 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1]T,

where A is symmetric positive definite and its extreme eigenvalues are β1 = 4 sin2 (
π
20

)
and β2 =

4 cos2
(

π
20

)
, with ρ(F ) = 0.82168115604716. The number of iterations required to obtain the

solution is 125 with z(0) = [1 1 . . . 1]T ∈ R9. On the other hand, it is found that 93 iterations suffice
to obtain the same solution when ω∗ = 1.61803398874989, with ρ(Fω∗) = 0.72654252800536.
In both cases it is obtained that

x = [1.00000000000000 0 0 0 0 0 0 0 0]T,

r = [0 0.00000000000000 1.00000000000000 1.00000000000000 1.00000000000000

1.00000000000000 1.00000000000000 1.00000000000000 1.00000000000000]T.

(5.9)
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6. Concluding remarks

Before we conclude our work we would like to make a number of points.

(1) In the case of the LCP when A is real symmetric positive definite and one uses the Stationary
Extrapolated Modulus Algorithm by van Bokhoven [31], or the generalized one by Kappel
and Watson [19], the way described in the Example of the previous Section, one can also use
a Nonstationary Extrapolated Modulus Algorithm. For the construction of a nonstationary
method, we can recalculate the extrapolation parameter based on the appropriate submatrix
of A as soon as one of the components, say the ith one, of either x(k) or r(k) is stabilized to
zero. Obviously then, the convergence will be accelerated.

(2) If A is also symmetric, then |w| of w in (2.2) is written as

|w| =
∣∣∣∣1 − ωa

1 + ωa

∣∣∣∣ =
∣∣∣∣∣

1
ω

− a

1
ω

+ a

∣∣∣∣∣ =
∣∣∣∣ r − a

r + a

∣∣∣∣ , r = 1

ω
. (6.1)

The solution to the minimax problem for the last expression in equalities (6.1) is associ-
ated with the determination of the optimal acceleration parameter r of the stationary ADI
Method of the discretized Poisson equation in the unit square subject to Dirichlet boundary
conditions using a 5-point discretization with equal mesh size in each co-ordinate direction.
The optimal r, r∗, can be found in many textbooks, e.g., [32,33]. Obviously, from (4.3) it
is obtained that

r∗ = 1

ω∗ = √
β1β2, min

r>0
max

a∈σ(A)

∣∣∣∣ r − a

r + a

∣∣∣∣ =
√

β2 − √
β1√

β2 + √
β1

. (6.2)

(3) For the solution of a Complex Linear System whose matrix coefficient is positive stable
by an ADI-type Method using the Hermitian/Skew Hermitian Splitting introduced in [1]
the acceleration parameter r involved appears as in (2) above and can be determined in the
same way as in the previous case.

(4) Finally, for the solution of the Linear System in (3) if one uses the Normal/Skew Hermitian
Splitting (see, e.g., [12]), where again the same expression to be optimized appears as before,
H is a rectangle. Therefore, the formulas for the optimal parameter and the spectral radii
found there are the ones of Case (b) in Section 4. However, if some additional information
on the spectrum is known the convergence can be improved further by using the Algorithm
described in Section 3.
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