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Abstract 

In the classical two-dimensional model the description of Helmholtz’s (Kirchhoff) flow is a problem of complex 
analysis which can be solved analytically only for a few simple bodies or polygonal contours, using the 
Schwarz-Christoffel map. This paper presents a practical method for computing flows over arbitrary obstacles whose 
boundaries may be piecewise smooth curves, while the impinging flow may be an unbounded flow, a jet, or a semi-infinite 
stream, i.e. the ocean. 

Keywords: Helmholtz (Kirchhoff ))s flow; Free-streamline; Conformal mapping; Jet; Ocean; Wake; Cavity; Curved 
obstacle; Schwarz-Villat 

AMS classz’fication: primary 76BlO; secondary 65EO5; 3OC30 

1. Introduction 

Usually, in books analyzing the classical theory of the two-dimensional irrotational flow of an 
ideal incompressible fluid , d’Alembert’s paradox is explained by the hypothesis of the ideal fluid. 
This explanation is not sufficient though, since drag will appear even in an ideal fluid, if the stream 
flows past an obstacle with a jet break-away, creating a discontinuity in the velocity field. 

Helmholtz noticed this in 1868 (and Kirchhoff in 1869), and this led him to the concept of the 
wake that bears his name: a “dead zone” extending indefinitely behind the obstacle with constant 
pressure. At the beginning of the century, Levi-Civita [12] and Villat [lS] developed the math- 
ematical foundations of the theory underlying this phenomenon. Unfortunately, the velocity field 
and the free streamlines could be determined only for extremely simple cases. However, it is 
possible to reverse the problem: given a certain wake, Villat’s function can be used to calculate the 
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obstacle that created it. Later, Leray [13] proved the existence of the solution for any kind of arc 
and showed the uniqueness for certain types of obstacles [7]. Then, other authors established 
proofs of uniqueness [2, 91 for further geometries. During this period, Brodetski and Schmieden 
studied the flow past a circular cylinder. Then many authors, including Riabouchinsky [14], 
Demtchenko [S], and Chaplygin, extended this theory and applied it to similar flows (with 
a mirror-plate, an additional wall, a free surface, or a dead zone in front of the obstacle). 

The theory then fell into disuse for some time, because the drag coefficients Cn as calculated this 
way were too small. Only symmetrical patterns and inclined plates could be treated. At the 
beginning of the 1950s Birkhoff and Zarantonello [Z] used computers to study cylinders; then Wu 
[16] obtained results for arcs and for a plate with a flap. The monographs of Birkhoff and 
Zarantonello [Z], Jacob [9], Gurevich [7], and Wu [16], give a complete account of various 
problems concerning jets, wakes and cavities. Lastly, Elcrat and Trefethen [6], using a numerical 
treatment of the modified SchwarzzChristoffel integral, studied polygonal bodies and other bodies 
with walls approximated by polygonal lines. To our knowledge, the problem of flows with 
Helmholtz wakes caused by an obstacle in an unbounded flow has never been solved as of today for 
any curved walls except circular and elliptic arcs. 

Following previous studies [S], this paper presents a method for solving this problem in the case 
of an unbounded stream (Helmholtz’s flow). The scheme will then be extended to determine the 
flow around any obstacle, first in a jet, and then in an ocean (the former being the more complex 
situation) (Fig. 1). For each type of flow, we shall test the accuracy of our results by comparison 
with those previously published [l, 2,4,6], and then compute the free streamlines and the values of 
CD and CL for various contours. 

2. Obstacle in an unbounded flow 

An obstacle of known geometry is placed in an infinite stream of velocity I/,, parallel to the 
x-axis, and of pressure P, . 9’ is the wetted wall, A is the upstream infinite located point, and D is 
the stagnation point. C and E are the points where the flow separates from 9, and 3,-B and 
_YEF are the free streamlines coming from C and E (Fig. 2(a)). 

Let f(z) be the complex potential and its derivative w(z) the complex velocity. 

Unbounded stream Ocean Jet 

Fig. 1. 
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The boundary conditions are: 

‘I’ 
A (f-l 

4x D E 4 
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(b) 

lim w(z) = I/,, (1) 
Z-J 

Im{w(z)dz} = 0 on 9, (2) 

I w(z)l = I/, on YcB and .YEF. (3) 

The locations of points C and E used to be obtained by Brillouin’s conditions [3]. The first of 
these conditions assumes that the pressure is minimum in the “dead zone”. Actually this is true only 
in cavitational flows. According to the second condition, the curvature of the free streamlines 
_YCB and _YEF at C and E is finite. These conditions were used to obtain equations to calculate the 
positions of points C and E. In fact, only by analyzing the boundary layer can we calculate the 
location of the current break-away points. We shall therefore assume that points C and E are 
always specified. 

2.1. Levi-Civita and Villat method 

Here, the problem is not solved by calculating f or w, but rather by determining the function 
fi defined by the following relations: 

w = V3ce-i”, (4) 

L?=O +iT, (5) 
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where 0 is the angle the fluid velocity makes with the x-axis, and T is given by 

This is a mixed problem for Q, because 0 is known on 9, and T = 0 on .P’cs and YEF. 
The Levi-Civita method consists in mapping the f-plane on the inside of the upper unit 

semi-circle, named d +, in such a way that the free streamlines map onto the diameter. Since T = 0 
on the diameter, the function can then, according to Schwarz’s principle of symmetry, be continued 
inside the circle, named d. The mixed problem then becomes a Dirichlet problem and we use the 
Schwarz-Villat formula to determine Q and, consequently, Z(G) = T(e’“), if we know Q(o) = O(eiO) 
on the circular boundary of d. 

The diagrams in the different planes used are shown in Fig. 2. 
In thef-plane let 9 be the domain corresponding to the flow domain in the z-plane. 
The following classical transformations are used to map $B on d + in the c-plane: 

f = a2(Z + cos(y)i2, 

z= -3 r+; ( > )  

(6) 

(7) 

with 

a = & + & 
2 

and cos(y) = & - & 

&G&G’ 

where cpc and (PE are the velocity potential values at C and E, and the value [ = eiy corresponds to 
point D. 

From (6) and (7) we obtain 

(8) 

Since qc and (PE are unknown, a and y are constants to be determined. 
Eq. (3) implies T = 0 for [E [ - 1, 11. Sz can consequently be extended to an analytic function, 

regular inside the unit circle I[ I( 1. From (l), Q(O) = 0, so the constant of the Schwarz-Villat 
formula is null and the function Q is easily calculated knowing Q(c) (Villat’s function): 

a(() = A s n l-12 

rt () 1 - 2[cos(a) + c2 Q(o) do, 

dz = df/w used with (4) and (8) gives 

(9) 

where K = 2a2/V,. 
The parametric equations of the free streamlines .Z,-n and YnF are obtained by integrating (10) 

from [ = k 1 to [‘, where c’ is a point on AC or EA. On the boundary of d, [ = ei” and (10) 
becomes 

dz = Ke”e-‘(cos (y) - cos (a)) sin (a) do. (11) 
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Let s be the arc length of z onto 9 starting from C, SE [O,L] (L is the length of 9). 

ds = Ke-‘(cos (y) - cos (6)) sin (a) do. (12) 

This looks easy to solve, but the fact that the Q(o) function used in (9) is unknown must be 
emphasized. This is why the first problems treated had very simple 19(a) functions, such as two-value 
function for a flat plate or a wedge. Later, we were able to treat cylinders by introducing the 
curvature of 9 in a formula replacing (12) but other kinds of obstacles cannot be studied directly: 
Curved walls must be approximated by a polygonal line [6], or the problem must be reversed, by 
prescribing e(o) so that the corresponding obstacle can be determined. 

2.2. The functional system 

The singularity of Q at the stagnation point is isolated by expressing: 

fi = szs + 8, 

where 0s is a particular solution having the same singularity of Q. 

zs = In 

(13) 

Let /? be the angle between the tangent at a point on 9 and the x-axis, and E the one-to-one 
boundary correspondence function: 

E: crE[O,rr] + SE[O,L]. (14) 

Eq. (12) can then be written as 

E(0) = K s d 2 sin(o’) sin2 ((0’ + y)/2) do, 
e i(0’) 

0 
(15) 

Then, from the geometry of the contour, let us write: 

(16) 
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Z is calculated using Schwarz-Villat’s formula: 

z”(0) = 1 lim Im 
JC 1 -r2 

7c < ‘CL” 0 1 - 21 cos (0’) + 12 

s n 

a(O) = 0 means B(o’)do’ = 0, hence, 
0 

rt 1” 
y =? +; 

s 
o&rY)ds’, 

E(E) = L allows us to determine K, and we write [15] in the form 

’ 
where E(o, y) = s d 2 sin (0’) sin2 ((0’ + y)/2) do, 

e i(U’) 
0 

(17) 

(18) 

(19) 

The unknowns are the functions cr + e”, z”, E and the angle y. 
Relations (16)-(19) supply a functional system of four equations written as 

B = ;O(E), 

f = T(4), 

y = ace>, 

& = &(?,,). 

(16’) 

(17’) 

(18’) 

(19’) 

2.3. Numerical procedure 

Let us define four weighting factor re, r?, Y,, ye belonging to [0, 11. From any initial correspond- 
ence function so, we build a series e”,, Y,,, Z,,, E,, using the following recursive algorithm: 

c7, = (1 - rfj)-e(&l) + i”J-1, 

Yn = (1 - rJS&1) + ryyn-i, 

?, = (1 - rr)Z(&-l) + Tr?,-i, 

E, = (1 - Te)&(?n-l,&i) + TsE,-i. 

The integrals of (17) and (18) are approximated by a quadrature method based on a regular 
subdivision of [0, TC]. The existence and uniqueness of the solution has been proved. If the process 
converges, the solution is reached, then the process is stopped by a test on the relative error 
associated with some unknown (usually e). 

After convergence, it is easy to calculate w and thus find the pressure distribution, the drag, and 
the lift. These values will be compared to those obtained using Blasius’s theorem: 

R =mc 
x 8 P2 (O), 

R = PKV2, 
4’ * [4cos(y) Q(O) - Q”(O)]. 
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In most cases, the number of iterations varies from 10 to 50, corresponding to a few minutes’ 
calculations on a PC 486-DX 50-type computer. The accuracy can be improved by increasing the 
number of iterations and quadrature points (usually 500 points). 

The weighting factors may be zero. To study obstacles with high curvature, we will use 
rt: = r0 = rr = 0.5 and r7 = 0 to obtain convergence. For polygonal obstacles, the weighting factors 
must be greater. 

3. Extension of the method 

Since we have studied an obstacle in an infinite stream. Extending the method means considering 
an obstacle in a jet, and then in an ocean (semi-infinite stream). 

3.1. Jet impinging an obstacle 

Let a jet of finite width h,, of velocity I/, parallel to the x-axis, and of pressure P, , be divided by 
a body of given geometry. The pressure of the motionless fluid is also P, . A is the point at infinity 
on the impinging jet, D is the stagnation point, 9 is the wetted wall, and E and C are the separation 
points. On the obstacle, the impinging jet divides into two jets bounded by the free streamlines 
YAB, FCB and TEF, di4AF. At infinity, they make angles xB and s(r with the x-axis, and their widths 
are hB and hF. The position of the contour in the z-plane and the H level of the upstream jet axis are 
known (Fig. 3(a)). 

The diagrams in the different planes used are shown in Fig. 3. 
In thef-plane let GZ be the domain corresponding to the flow domain in the z-plane. 
The boundary conditions are: 

lim w(z) = I/,, (20) 
2-A 

Im(w(z)dz} = 0 on 9, (21) 

(22) 

Now there are two additional conditions: 

lim w(z) = I/, e - lyp, 
2+F 

(23) 

lim w(z) = I/, e - “8, 
2-B 

(24) 

As in Section 2 we solve by determining 52 = 0 + iT. 0 is known on 9, and T is zero on the free 
streamlines 9AB, YcB, YrF and _4aAF. Levi-Civita’s method reduces the mixed problem to 
a Dirichlet problem. Hence, we must map thef-plane on the c-plane. 
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The successive conformal maps are: 

(b) 

f=_!$ log(Z - Z,) - V,hF -log(Z - Z,) + Const., 
x (25) 

where 

hF ZF + cos(Y) 
hB=- ZB + cos(y)’ 

The function mapping 9ontod’is 

(26) 

(27) 

ZB, ZF, hB and hF being unknown. 
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From (20), Q(O) = 0, so Schwarz-Villat’s formula gives function Q knowing Q(o) (Villat’s func- 
tion), and dz = df/w used with (27) gives 

dz =f +~+;+2zB+(:+~+2zF]“)d~~ 
Now the parametric equations of the free streamlines can be calculated with [E [ - 1, 11. 
On the circle c = eiu and (28) becomes 

dz =“” hs 
rce’ cos (0) + ZB 

+ hF 
cos (C) + ZF 1 sin (a) da, 

hence, the arc length s is given by 

ds =’ hri 
rce’ cos (Q) + ZB 

+ hF 
cos (g) + ZF 1 sin (a) da, 

(28) 

(29) 

(30) 

The singularity of Q at the stagnation point is the same as in Section 2, so zs and 8s remain 
unchanged and we have d = 8 + iz” to analyze. 

We use S&, hF/hB (as described above), (25), and the conservation of mass to define the one-to-one 
boundary correspondence function E(G) by writing (30) as 

2h, 
&(cr) = -y 

s 

d 1 sin(o’) sin2 ((a’ + y)/2) 
0 ei (cos(fY) + Z,) (cos(0’) + Z,) 

do, 
. 

(31) 

The geometry of the obstacle leads to 

B(o) = (b o E) (0) - 5 v’o E [O, 7L], (32) 

z” is calculated by means of Schwarz-Villat’s formula: 

f(0) = L lim Im 
(I 

‘I[ 1 - [’ 

n ( + e’” () 1 - 21 cos (g’) + 12 

s x 

G?(O) = 0 means &o’) do’ = 0. Hence, 
0 

7r 1” 
y = 5 +; 

s 
o &‘)dg’. 

There are two unknowns in (31): ZB and ZF related to aB and aF. 
Two additional relations must be written to determine ZB and ZF: 

??The length of the wetted wall is L, so z(n) = L which leads to 

(33) 

(34) 

(35) 
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where 

c(g, Y) = 
f 

“1 sin(o’) sin2 ((0’ + y)/2) 

0 2 (cos(0’) + 2,) (cos(0’) + 2,) 

da, 

’ 

??From the position of the obstacle with respect to the jet axis, it is possible to write: 

(36) 

where Zn is the affix of D and _YAD is the stagnation streamline. 
The unknowns are the functions g + g, ?, E, and the angle y. 
Relations (31)-(34) supply a functional system of four equations similar to the system expressed 

in Section 2. The solution is found in the same way by building a series e”,, y,,, ?,,,, E, using 
a recursive-type algorithm and an arbitrary initial correspondence function co. 

3.2. Planing on the surface of a stream 

Let us consider the two-dimensional problem of planing on the surface of a fluid occupying the 
entire lower half plane. After a change of axis, we consider a stationary obstacle impinged by 
a stream of infinite depth and velocity I/, parallel to the x-axis and pressure P,. The pressure of 
the motionless fluid is also P,. A is the upstream infinite located point, D the stagnation point, 
E and C the separation points, and 9’ the wetted wall. Now a jet bounded by the free streamlines 
_Yrr and TAF is formed at the leading edge of the obstacle. At infinity it makes an angle + with the 
x-axis and its thickness is hF. Downstream, the surface of the fluid is the free streamline _YcB 
(Fig. 4(a)). 

This configuration could represent the movement of a finite body along the surface of very deep 
water, but Birkhoff and Zarantonello [2] and Gurevich [7] showed that, for a weightless and 
infinitely deep fluid, the obstacle rises infinitely high above the level of the fluid at infinity. 
Consequently, the obstacle position is known in the z-plane, but the H level of the free surface 
streamline at infinity upstream of the planing body is not. In order to represent the true motion, the 
effect of gravity or a finite depth must be taken into account. So the problem of a planing surface is 
not a special case of the preceding one, but the way we set about solving it is the same. 

The diagrams used in the different planes are shown in Fig. 4. 
Note that a planing contour can be considered as a submerged hydrofoil whose cavitation 

number Q = 0 and whose wetted wall is of finite length. We will not consider this as a special case 
of an infinite submerged hydrofoil in which point E coincides with point F. 

In thef-plane, z-plane and c-plane, points A and B are the same, so the boundary conditions are 
quite similar: 

lim w(z) = V%, 
z+AorB 

Im(w(z)dz} = 0 on 9, 

(37) 

(38) 

I w(z)l = I/cc on ~CBU~EFV~AF, (39) 
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(9 

E, 

lim w(z) = T/, e ~ irF. 
2-F 

As a matter of fact, 9 in the f-plane has been modified so, 

.f= n,z:!FzF, (log@ - 2,) (Z, - Zn) + (Z - Z,)) + Const. 

(40) 

(41) 

By using the same Z(i) transformation as in Section 3.1, the function that maps 9 onto d + is 

f= n(~~>Fj(log( -;([++)-Z,)(Z,-z,,)f( -;((+;)-zF))fConst. (42) 

ZF and hF being unknown. 
Schwarz-Villat’s formula and (42) lead to 

hFeie -6 - ZF 1 
dz = 

ne’(Z, - Z,) ([ + l/i) + 2Zr + Z 

which enables us to write on the circle: 

dz = 
hFeiH cos (0) - cos (y) . 

rce’(Zn - Z,) (cos(0) + Zr) 
sm (CT) do. 

(43) 

(44) 
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and the arc length s is calculated with 

ds = hF cos (0) - cos (y) 

7ceT (Z, - Z,) (cos (6) + Z,) 
sin (0) do. (45) 

As the stagnation point’s singularity is the same as that of the previous section, everything we 
have said about d and 0 remains unchanged, which leads to the expressions 

B(0) = (/I o E) (G) - ; V’o E [O, rc], (46) 

1 -c’ 

1 - 21 cos (0’) + 12 
&(a’) do’ > (47) 

7l 1” 
y = z + i 

s 
o &‘)da’ 

and the one-to-one boundary correspondence function E(O) is defined by 

g(g) =$ s “1 sin(o’) sin2 ((0’ + y)/2) 

0 e’ (cos(0’) + Zr) (cos(y) + Z,) 

do, 

’ 
(49) 

There are still two unknowns in e(o): hF, the width of the jet, and Zr, which is related to c(r. 
Now, conservation of mass cannot be used; and, as was said at the beginning of this section, we 

can express only one additional formula to define E(G): 

?? s(rc) = L, which leads to 

’ (50) 

where 

E(o,y) = s “1 sin(o’) sin2 ((0’ + y)/2) 

0 e’ (cos(0’) + ZF) (cos(y) + Zr) 

do, 

’ 

The unknowns are the functions cr + g, Z; E, the angle y, and ZF (or hF). 

Relations (46)-(48) and (50) supply a functional system of four equations similar to the one 
expressed in Section 2. A Zr value must be chosen to solve by building a series &‘,, yn, ?,,,, E, using an 
algorithm of the recursive type, and any initial correspondence function so. So we compute the 
velocity distribution and the free streamlines, + and hF for a given geometry of the planing surface. 
This way, it is quite easy to describe the flow for a given geometry and hF, by prescribing hF instead 
of ZF. 

4. Dealing with boundary singularities 

The presence of corners on 9 upsets the preceding formulation. Moreover, the positions of 
corners on the circle are unknown since they depend on the unknown function E. 
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Fig. 5 

Now consider the wetted wall with N corners (Fig. 5). Let zk (1 < k < IV) be the affix of one 
vertex, and ck = eiyk its image in the i-plane. It is clear that the velocity is discontinuous at this 
point: 
??its argument 8 jumps by &rc, 
??its norm is either zero or infinite. 
Therefore, Q has the following singularities: 
0 its real part jumps by &r& 
0 its imaginary part is infinite. 

In A we express Q by means of Schwarz-Villat’s formula. Hence, Q(G) would be continuous. 
It is necessary to isolate the singularity by writing 

Q=&+!!& with Q,=Q,+Q,. 

a, comes from the stagnation point singularity whereas fir, comes from the corner singularities. 
To continue fi into the lower semicircle by the principle of reflexion, Levi-Civita’s method 

requires that 0(g) = 8(27c - (T). This means that the singular part of 52 must be isolated at point ck, 
and its conjugate rk = e Pi;‘X. A simple function satisfying these conditions is i& log(([ - elYk)/ 
([ _ e -iYh)). 

Hence, the solution for an obstacle having N corners is 

k=N 

C& = i C [log(< - ei7k)‘k + log([ - e P1’ik)-dk]. 
k=l 

This leads us to: k& = 0; + &‘., where 

k=N 

zp(fl) = c 6kh 
sin ((fl - Yk)/2) on [0, rc]. 

k=l sin ((g + yk)P) 
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In every case we have treated, if the wetted wall of the obstacle has one or several corners, then 
the 0s function which was reduced to Qn has to be replaced by Szs = .G?n + stP. 

Remembering that relations (18), (34) and (48) are obtained from Q(0) = 0, it is obvious that if 
function Sz is modified, these expressions must be substituted by 

k=N 

g(D) do - 2 c &Yk. 
k=l 

5. Computed results 

5.1. Obstacle in an unbounded jlow 

To test the capacity of our program we compared the CD and CL that it computed with the exact 
values, or values given in the literature. The classical results are those of the inclined flat plate and 
the circular cylinder. First we consider three obstacles with straight boundaries, then obstacles with 
curved boundaries. 

5.1. I. Inclined plate 
This is a geometry whose exact solution is well-known. The classical values of CD, CL, and y are: 

y=s+F c = ~COS2@) 
D 4 + Tccos(6) 

and c 

L 
= n: ~0s (OW) 

2’ 4 + ?Tcos(S) ’ 

where 6 is the angle between the perpendicular to the wall and the x-axis. 
In Table 1 we give, for different values of 6, the values of CD, CL, and y as obtained from these 

formulas and the values of Cuueim, CLHelm, and Y&i,,, we computed. Our program reproduces the 
exact values of CD, CL and y. 

5.1.2. Inclined plate with separation on the backface 
Let us consider a plate inclined at an angle of 30” with the separation point prescribed in the 

middle of the back face. This was studied by Chaplygin and Laurentiev in 1933, and recently by 
Elcrat and Trefethen [6]. Their computed values of CD and CL are: 

C,, = 0.000575, CL = 2.26628. 

Table 1 

0 0.879802 0.879801 0.000000 0.000000 90 90.0 

15 0.833358 0.833357 0.223297 0.223297 105 105.0 

30 0.701175 0.701175 0.404824 0.404823 120 120.0 

1 45 1 0.504962 1 0.504962 1 0.504962 1 0.504962 I 135 1 135.0 1 
1 60 I 0.281970 I 0.281970 I 0.488386 I 0.488386 1 150 I 150.0 1 

75 1 0.087447 1 0.087447 1 0.326358 1 0.326357 1 165 1 165.0 
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Table 2 

,a) 15 o 30" 45 o 60' 120" -22.5 o -45 o 
C, B-Z 0.81912 0.76288 0.67766 0.57024 0.00766 0.93330 0.96694 
C, Helm 0.82910 0.76284 0.67764 0.57024 0.00765 0.93327 0.96697 

We find 

CD = 0.0005740, CL = 2.26652 (using 500 quadrature points), 

cn = 0.0005744, CL = 2.26634 ( using 1100 quadrature points). 

The more we increase the number of quadrature points, the more precisely 
Elcrat and Trefethen. 

5. I. 3. Asymmetrical wedge 

we get the values of 

The upper face of the wedge is inclined at an angle of 30”, the lower face at 45”, and both faces are 
the same length. This case was studied by Elcrat and Trefethen [6], who computed 

cn = 0.33703, CL = 0.07397. 

We find: 

cn = 0.337078, CL = 0.07400 (using 500 quadrature points), 

C,, = 0.337064, CL = 0.07398 (using 1100 quadrature points). 

The precision depends on the number of quadrature points as it is the case for the inclined plate. 

5.1.4. Circular cylinder 
We compare our results to those calculated by Birkhoff and Zarantonello, Brodetski, and 

Schmieden/ 
4 = 55.04” (angle of separation) 
Brodetski cn = 
Brodetski cn = 
Birkhoff and Zarantonello Cn = 
We find cn = 

0.493, 
0.500 in second approximation, 
0.499, 
0.4986. 

b = 124.21”: we find Cn = 0 like Birkhoff and Zarantonello. 

5.1.5. Convex and concave circular arcs 
In Table 2 we have tabulated the angle of separation, 4; the value of Cn given by Birkhoff and 

Zarantonello, C,, B-Z; and our results, Cn Helm. Our program reproduces all the published values 
except the first one. We cannot explain this difference except by a misprint in [2]. 

5.1.6. Comparison with experiments 
To show that the method described in this paper works for an arbitrary obstacle, we will now 

present two new Helmholtz flow calculations and compare them with experimental results. 
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Fig. 6. 

Fig. I. 

The first is a NACA 0012 wing section with a 0.2 chord simulated split flap deflected at 60”. The 
section lift coefficient is given by Abbott and Von Doenhoff [l], while we calculate CL when the 
separation points are placed at the flap extremity and trailing edge. Fig. 6 shows as good an 
agreement with experimental results as Joukowsky’s method in the classical theory of wing 
sections. 

The second calculation is of a thick wing section with boundary layer suction as is used in the 
Cousteau-Malavard sail of windsail ships. Its surface section consists of a half ellipse upstream and 
a semi-circle with a flap downstream (Fig. 7). As the boundary layer suction prevents us from 
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knowing 4, we give it a value such that, when a is zero, the CL we calculate is equal to the 
experimental one. Then we assume that the separation point is specified. The results are presented 
in Fig. 8. When a is 20”, CL is computed as 4 decreases Y, because prescribing the separation point 
is not realistic as the angle 01 increases. This agrees better with experimental results [4]. 

The results shown in Figs. 6 and 8 allow us to say that Helmholtz’s wake model, in spite of its 
simplicity, can predict CL accurately. 
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Fig. 10. Continued 

4- 

3- 

4 2- 
% 

l- 

0 
30 6(r 90 120 150 180 

aF+ 90 + 6 (degrees) 

Fig. 11. 

5.2. Jet impinging an obstacle 

As we do not know of any results for a jet flowing over a curved wall, we tested our method with 
the case of a jet divided by a flat plate, because Birkhoff and Zarantonello (see [2]) published some 
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results for such a plate inclined at an angle 60”. They present values c(B and c(r, given the plate 
length L and the position of the obstacle with respect to the jet axis. To test our jet program with 
the flat plate inclined at different angles, we wrote another program that solves this problem using 
the log-hodograph domain (Kirchhoff’s method) instead of the Schwarz-Villat’s formula. The 
values aB and ar that our two programs compute are exactly the same, and they agree with the 
published values of Fig. 9. The only limitation of this procedure is a sort of crowding which occurs 
when hB (or hF) becomes small compared with L, so that B (or F) approaches - 1 (or + 1) in the 
c-plane. 

We will now present some new flow calculations of our own. Fig. 10 shows the flow over an arc of 
ellipse with a system of streamlines for different widths. 

5.3. Planing on a free surface 

To solve the problem of a curved planing surface, Weinig and Franke (see [7]) used a method 
that was interesting, but yielded only approximate results, since the shape of the plate is 
characterized by the two angles that the contour makes with the chord at the leading and trailing 
edges, and by the angle that the chord makes with the x-axis. The only published results (see [2]) 
are for a flat plate inclined at various angles. So to test our third program, we compare its results to 
the published ones. Fig. 11 shows good agreement between these. As in the preceding section, we 
wrote a secondary program which treats the case of straight obstacles using the log-hodograph 
domain, and we see that it gives exactly the same results. 

As in the jet, a crowding appears as F approaches + 1 in the i-plane. 
To show the ability of our program, consider a geometry resembling the bow of a ship (two parts 

of an ellipse). Fig. 12 represents the obstacle and the free streamlines. 
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6. Conclusion 

We think that our first program, on the basis of its tests, can reliably compute infinite flow over 
an arbitrary obstacle. When the obstacle divides a jet, or when the obstacle is a planing surface, we 
have presented only a few comparisons because few are available in the literature. But from the 
agreements we obtain, we believe that our jet program and planing surface program can also 
compute these flows for any wetted wall geometry. In this manner, we demonstrate that our 
method can calculate velocity and pressure fields, Cn and CL values, streamlines and free stream- 
lines for unbounded flows, ocean and jet flows past any given obstacle. The only limitation is 
classical crowding, well-known in conformal mapping. 

Now one may think that this is an old problem, and that Computational Fluid Dynamics is the 
only way to solve it nowadays. The panel method has two major advantages over classical 
two-dimensional flow theory: (i) it is easier to consider several bodies and, of course, (ii) it is the only 
way to deal with a three-dimensional pattern. However, the singularity method cannot integrate an 
infinite wake behind an arc. In order to know how far behind the obstacle the wake singularity line 
should be extended, a comparison with our model has been performed for the simple case of an arc. 
To obtain the same pressure distribution as computed by our method, we need to take into account 
more than 100000 chord lengths with a singularity model, plus an asymptotic behavior of the 
streamlines [2, 111. This shows that for multi-elements the panel method should be used, but for 
a 2D single element survey our method is easier and faster. 

This method has also been applied to jets issuing from nozzles of arbitrary shape, yielding good 
results which will be published later. 

Note that Cn can be predicted by a similar method using a different pressure in the wake. The 
Riemann-Hilbert problem then has to be solved. This is presented in Legallais’s thesis [lo] and in 
papers to be published. 
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