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a b s t r a c t

In this paper, we provide a new insight to the previous work of Briys and de Varenne
[E. Briys, F. de Varenne, Life insurance in a contingent claim framework: Pricing and
regulatory implications, Geneva Papers on Risk and Insurance Theory 19 (1) (1994)
53–72], Grosen and Jørgensen [A. Grosen, P.L. Jørgensen, Life insurance liabilities at market
value: An analysis of insolvency risk, bonus policy, and regulatory intervention rules
in a barrier option framework, Journal of Risk and Insurance 69 (1) (2002) 63–91] and
Chen and Suchanecki [A. Chen, M. Suchanecki, Default risk, bankruptcy procedures and
the market value of life insurance liabilities, Insurance: Mathematics and Economics 40
(2007) 231–255]. We show that the particular risk management strategy followed by
the insurance company can significantly change the risk exposure of the company, and
that it should thus be taken into account by regulators. We first study how the regulator
establishes regulation intervention levels in order to control for instance the default
probability of the insurance company. This part of the analysis is based on a constant
volatility. Given that the insurance company is informed of regulatory rules, we study
how results can be significantly different when the insurance company follows a risk
management strategy with non-constant volatilities. We thus highlight some limits of the
prior literature and believe that the risk management strategy of the company should be
taken into account in the estimation of the risk exposure as well as in that of the market
value of liabilities.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The IASB (International Accounting Standards Board) in Europe and the FASB (Financial Accounting Standards Board) in
the United States have been working on new accounting standards. They have followed a “risk-oriented approach” according
to which assets and liabilities should be evaluated at their market value. This risk-based marketing of products has to include
credit risk, market risk and operational risk. There is no market for companies’ liabilities and thus an important need for
financial models. An important issue is to address the default risk since a long list of insolvent life insurance companies has
been reported since the 1980s in Australia, Europe, Japan and USA.2 A recent strand of the literature has been developed to

∗ Corresponding author at: Department of Quantitative Economics, Faculty of Economics and Business, University of Amsterdam, Roetersstraat 11, 1018
WB Amsterdam, The Netherlands. Tel.: +31 20 5254125; fax: +31 20 5254349.

E-mail addresses: c3bernar@uwaterloo.ca (C. Bernard), A.Chen@uva.nl (A. Chen).
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2 Some exemplary insolvent life insurers are: HIH Insurance in Australian in 2001, Garantie Mutuelle des Fonctionnaires in France in 1993, the world’s

oldest life insurer Equitable Life in the United Kingdom in 2000, Mannheimer Leben in Germany in 2003, Nissan Mutual Life in 1997, Chiyoda Mutual Life
Insurance Co. and Kyoei Life Insurance Co. in 2000, Tokyo Mutual Life Insurance in 2001, First Executive Life Insurance Co. in 1991 and Conceso Inc. in 2002.
It is worth mentioning that First Executive Life Insurance Co. constituted the 12th largest bankruptcy in US during the time period 1980–2005, and Conseco
Inc. was the 3rd largest bankruptcy in US for the same period. More details can be found in the recent works of Jørgensen [16] or Chen and Suchanecki [12].
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model default and market risk, among others Briys and de Varenne [9,11], Grosen and Jørgensen [14,15], Ballotta [1] and
Ballotta, Haberman and Wang [2].

In fact, the insurance literature on this topic has recently followed step by step the finance works. In the fundamental
work of Merton [20], risky debt is modeled as riskless debt with a short position in a put option and equity as a call option
on the firm’s assets. His closed-form formulae are directly obtained from the well known framework developed in [19].
Following Merton [20], Briys and de Varenne [9,11] model default at maturity in an insurance context. Merton’s approach
has been then widely extended in finance by Black and Cox [7] who consider that ruin is possible at any instant. Stochastic
interest rates have been then introduced in the previous models in [10,18]. Modeling the default of insurance companies in
a Black and Cox framework has been first developed by Grosen and Jørgensen [15], and then extended in [4,5]. Finally, the
recent work of Chen and Suchanecki [12] shows how to apply the realistic procedure Chapter 11 of the US Bankruptcy code
in the insurance field.3

In all the above literature, the emphasis has been laid on the fair valuation of life insurance liabilities under different
approaches to modeling default events consistent with the new international accounting standards. Recently, regulatory
authorities want to implement a new project in Europe, Solvency II. It has to be compatible with accounting valuation
standards and is likely to use measures such as the probability of economic ruin, Value-at-Risk or Tail Value-at-Risk.
Insurance companies will be allowed to use internal models to measure their risks. An important issue is thus the robustness
of the prior models in the estimation of the risks of the company.

In this paper, we are interested in estimating the solvency risks in standard models, for instance with what probability
(under the real world probability measure) the insurance company will become bankrupt and which amount they can expect
to obtain after taking account of the insurer’s default risk. Whilst the insurance company tries to maximize returns for its
equity holders, the regulatory authorities are responsible for protecting the policyholders and the stability of the market.
Furthermore, in most of the literature, the regulator acts very passively and the role of regulators is not highly emphasized.
However, in reality the collapse of many insurance companies is closely related to the insufficient regulation. For instance,
the fall of First Executive Life Insurance Co. provides important lessons in regulation of life insurance companies.4 Hence, we
investigate in particular how the regulator can establish regulatory rules in order to meet some regulatory objectives, like
how to control the default probability below a constraint or to keep the expected payoff given liquidation above a certain
level. Value-at-risk-based analysis is carried out. Furthermore, Solvency II emphasizes the importance of how to develop
new regulatory methods and tools in order to reduce the threat of an insolvency and to better protect the policy holders.

A (hidden) important assumption in the first part of our analysis and in the previous literature is that the insurance
company follows a risk management strategy with a constant volatility. In this framework, we observe a one-to-one
relation between the optimal regulation level and the volatility. However, for long-term contracts like life insurance
liabilities, this is in fact not realistic to assume that the insurance company follows a risk management strategy with
a constant volatility throughout the entire contract period. It indicates that an ex-ante optimal regulation level ceases
to be optimal in a realistic model setup where the insurance company follows a risk management strategy with
another volatility. A“fixed volatility rule” becomes useless whenever the insurance company follows a strategy with a
non-constant volatility. We highlight the limitations of this “fixed volatility” assumption common to all the above references.
In the second part of our analysis, we release this assumption and investigate how the results from the first part are
influenced when the insurance company is informed of regulators’ rules and reacts to the rule according to a certain discrete
risk management strategy with non-constant volatilities. By introducing this simple strategy with a non-constant volatility,
noticeable effects are observed. A distinguishable difference of our analysis in comparison with the existing literature is that
the role of the regulator is strengthened and the interaction between the regulator who determines the regulation rule and
the insurance company’s risk management is highlighted.

The remainder of the paper is structured as follows. Section 2 is devoted to the formulation of the problem in the context
of solvency requirements. Section 3 demonstrates two different ways to model default risk and calculate default probability
in each case in a static framework. Due to the constraints of the static framework, in Section 4 we extend it to a dynamic
framework in which the company is allowed to have a strategy with a non-constant volatility. We highlight the problem of
the robustness of the previous results from a regulatory perspective. The last section concludes.

2. Problem

We study the regulation of a company that would sell only one type of contract. Given no early default of the insurance
company, these products ensure their holders a minimum guaranteed amount at maturity and a participation in the
surpluses of the company, if any. Whereas if default arises at a premature time, a rebate payment which is a function of
the regulation level is offered to the policyholders.

3 The US bankruptcy code distinguishes between Chapter 7 and Chapter 11 bankruptcy procedures. According to Chapter 7 bankruptcy procedure, the
default and the liquidation dates coincide. In contrast, Chapter 11 bankruptcy procedure describes a more realistic procedure, in the sense that default and
liquidation are distinguishable events. Similar bankruptcy procedures can be found also in France, Germany and Japan etc.

4 Schulte [22] provides an insider’s view on the fall of First Executive Life Insurance Co.
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We consider two issues in the following of this paper.

• The first part of our analysis (Section 3) is done from the regulators’ viewpoint. The regulators want to determine the
optimal level of intervention (i.e. optimal barrier level) in order to protect the policyholders. They will choose the default
level in order to keep some fixed limit, e.g. to have a probability of default less than 0.5%. This part of the analysis is said
to be a “static” framework.
• A main result from the static analysis is that the optimal regulation (or barrier) level is linked to a “fixed-volatility” rule.

However, in a more realistic framework, the “fixed-volatility” rule is not satisfied, when the insurance company adjusts
its risk management strategy (in the sense of adjusting the volatility of the strategy) during the entire contract period.
The ex-ante optimal barrier ceases to be optimal. Therefore, we show the limitations of the existing literature where
a fixed volatility is applied. In the second part of our analysis (Section 4), we move to a “dynamic” framework, where
the insurance company trades in a risk management strategy with a non-constant volatility. Through some comparative
statistics between the static and dynamic framework, we observe significant differences between these two approaches.

2.1. Adopted framework

A “structural model” for the default means that the default is directly triggered by the observation of the firm’s assets
(for instance Merton [20] and Black and Cox [7]). These models were first applied to insurance in [9,11] (no early default
possible) and in [15] (premature default possible). In these models, a representative liability holder pays an upfront premium
which corresponds to an α-fraction of the entire company’s initial assets. Accordingly, the equity holder’s contribution
corresponds to (1 − α)-fraction of the initial assets’ amount. The policyholders all invest in the same contract maturing
at time T, guaranteeing a minimum interest rate g and a participation rate δ.

We make the standard assumptions of the Black and Scholes framework. First there exists a risk-free asset with a
continuous constant interest rate r. Trading takes place continuously. There are no tax, no transaction costs and no agency
costs. Moreover there are no dividends. More importantly, the analysis of Sections 2 and 3 is based on the assumption of
a fixed volatility level and for convenience we would use “static” framework to describe this assumption. Throughout this
paper, we use the following notations:

r : constant risk-free interest rate
σ : constant assets’ volatility
T : the contract’s maturity date
LT = L0egT : the guaranteed payment to the policy holder at maturity, where g could be interpreted as the minimum

guaranteed interest rate
Lt : the minimum guarantee of the insured’s investment at time t ∈ [0, T]
At : the value of the firm’s assets at time t ∈ [0, T]
Bt : ηLt , the barrier level, where η is the regulation parameter.

As compensations to their initial investments in the company, equity holders and policyholders both acquire a claim on
the firm’s assets for a payoff at maturity if no premature default occurs. The total payoff to the holder of such an insurance
contract at maturity, ψL(AT), is given by:

ψL(AT) = LT + δ[αAT − LT]
+
− [LT − AT]

+. (1)

This payment consists of three parts: the guaranteed amount at maturity (a guaranteed fixed payment which is the initial
premium payment compounded by the interest rate guarantee), a bonus (call option) paying to the policy holder a fraction
δ of the positive difference of the actual performance of his share in the insurance company’s assets, and a short put option
resulting from the fact that the equity holder has limited liabilities.

It is noticed that the incentives for customers to buy this kind of contracts are not very high for two reasons: first, the
guaranteed interest rate is usually smaller than the market interest rate; and second, it is possible that the customers cannot
obtain the guaranteed amount which is against the nature of an insurance contract. Therefore, it seems more interesting to
analyze the risk management of these contracts than to price them. We thus analyze different risk measures under the real
world probability measure instead of under the equivalent martingale measure.

2.2. Default modeling

For the default modeling, we examine two different scenarios: Grosen and Jorgensen [15] and Chen and Suchanecki [12].
In both works, the default barrier is monitored continuously. The continuous surveillance makes sense because a company
has to be solvent at any time. It would not be interesting to consider only Merton’s case where solvency is required at
maturity only. One reason could also be that most of the time such policies include some surrender options, meaning that
the policyholder can claim at any time for his investment. The company should then be able to give back the promised
amount. In the case of Grosen and Jørgensen, as soon as the level of the assets is not sufficient to fulfill its commitments,
the regulator liquidates the company immediately. Whereas in [12], the company is not immediately liquidated when
its assets hit the fixed level, but it is given a period of time to recover before its liquidation by the regulators. If the US
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Bankruptcy Code is taken as an example, Grosen and Jørgensen [15] corresponds to a Chapter 7 bankruptcy procedure while
in [12], a Chapter 11 bankruptcy procedure is analyzed where default and liquidation are considered to be distinguishable
events.

Grosen and Jørgensen [15] model their regulatory intervention rule in the form of a boundary, i.e., an exponential barrier
Bt = ηL0egt is imposed on the underlying assets value process, where η is a regulation parameter. When the asset price
reaches this boundary, namely, Aτ = Bτ with τ = inf{t ∈ [0, T]|Aτ = Bτ} denoting the first passage time, the company defaults
and is liquidated immediately, i.e., default and liquidation coincide. The default time τ coincides with the liquidation date
and upon liquidation a rebate payment,

min{L0egτ, Bτ} = min{1,η}L0egτ, (2)

is offered to the liability holder.
Chen and Suchanecki [12] model a Chapter 11 bankruptcy procedure by using both standard and cumulative Parisian

down-and-out frameworks. The standard Parisian barrier feature corresponds to a procedure where the liquidation of the
firm is declared when the financial distress has lasted successively at least a period of length d. The cumulative Parisian
barrier feature corresponds to a procedure where the liquidation is declared when the financial distress has lasted in total
at least a period of length d (not necessarily consecutive) during the life of the contract. The economic idea behind these two
extremes is the importance of the past of the company’s assets. Indeed in the standard Parisian case regulators completely
forget the past. On the contrary the cumulative procedure corresponds to the extreme case when the regulators never forget
the past. In the standard case, an early liquidation occurs when the following technical condition is satisfied:

T−B = inf
{
t > 0|

(
t − gAB,t

)
1{At<Bt} > d

}
≤ T

with

gAB,t = sup{s ≤ t|As = Bs},

where gAB,t denotes the last time before t at which the value of the assets A hits the barrier B. T−B gives the first time at which
an excursion below B lasts more than d units of time. In fact, T−B is the early liquidation date of the company if < T.

In case of the cumulative Parisian framework, the options are lost by their owners when the underlying asset has stayed
below the barrier for at least a predetermined d units of time during the entire duration of the contract. Therefore, there is
an early liquidation when the following condition holds:

Γ
−,B
T =

∫ T

0
1{At≤Bt}dt ≥ d,

where Γ
−,B
T denotes the occupation time of the process describing the value of the assets {At}t∈[0,T] below the barrier B during

[0, T]. Again, we denote τ as the premature liquidation date and it implies:

Γ−,b
τ :=

∫ τ

0
1{τ≤T}1{At≤Bt}dt = d.

3. Optimal barrier under continuous surveillance

In this section, instead of emphasizing the fair valuation of life insurance liabilities under different default triggers as
most of the existing literature does, we study risk measures and therefore adopt the regulators’ viewpoint. In addition, in the
formulation of Section 2.1, the regulator does not play a very important role. As a starting point, we set ourselves in Grosen
and Jørgensen’s framework and assume that the regulator plays a multiple role, i.e., he strives not only for a low default
probability of the company but also aims at providing the policyholder a certain amount in case of default. Mathematically,
the two goals of the regulator are given by:

max {η > 0 / P(τ ≤ T) ≤ ε} (3)

min
{
η > 0 / E

[
min{η, 1}Lτ er(T−τ)

|τ ≤ T
]
≥ γLT

}
. (4)

The goal of the regulator is to find a regulation parameter which first gives an acceptable level of default and second
protects the policyholders by containing their expected loss. In the first aim, the regulator aims at finding the maximum
allowed regulation (barrier) level which leads to a default probability smaller than a certain constraint ε. Some comments
should be made concerning the second aim: (a) Given default, the policyholder obtains the rebate term, which corresponds
to the term min{η, 1}Lτ; (b) In order to make it comparable with the final payment, the rebate payment is accumulated to
the maturity date with the risk-free interest rate r; (c) γ ∈ [0, 1] implies that the regulator sets the regulation rule to provide
in expectation γ percents of the final guaranteed payment to the policyholder by setting the minimum allowed regulation
level.
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Table 1
Cumulative default probabilities with parameters: A0 = 100; L0 = 80; T = 20; η = 0.5; µ = 0.04; r = 0.03; g = 0.01

σ 10% 15% 20%

P(τ 6 T) 0.00257 0.0727 0.2398

Fig. 1. Trade-off between ηε and σ when parameters are set to: A0 = 100; L0 = 80; T = 20; µ = 0.04; r = 0.03; g = 0.01.

3.1. Aim 1: Controlling the default probability

In order to compute the default probability and the expected value of the rebate payment, the firm’s assets value is
assumed to follow a geometric Brownian motion under the real world measure P

dAt = At (µ dt + σ dWt),

where µ and σ > 0 are respectively the instantaneous rate of return and the volatility of the assets. Wt is assumed to be a
standard Brownian motion under the real world measure P.

We begin with the first goal given in Eq. (3), i.e. to compute the probability that an early default occurs: P(τ ≤ T).
According to the derivation of Appendix A,

P (τ 6 T) = N

 ln( ηL0
A0

)− µ̂T

σ
√
T

+ ( A0

ηL0

)−2µ̂
σ2

N

 ln( ηL0
A0

)+ µ̂T

σ
√
T


with µ̂ = µ− g − σ2

2 .
Table 1 demonstrates several cumulative default probabilities for a time horizon of 20 years. According to e.g. Moody’s

credit rating, a small volatility of 10% leads to a very small default probability and this leads to an Aaa rating of the company,
a volatility value of 15% results in Baa.5

Thanks to its definition, one can easily see that the probability of default is a increasing function with respect to the
variable η. The higher the η, the higher the default probability. Therefore ηε is the unique solution satisfying the equation:

N

 ln( η
εL0
A0

)− µ̂T

σ
√
T

+ ( A0

ηεL0

)−2µ̂
σ2

N

 ln( η
εL0
A0

)+ µ̂T

σ
√
T

 = ε.
When the regulator sets a regulation parameter smaller than this critical value, i.e.,

η ≤ ηε, (5)

a default probability smaller than ε can be achieved. Fig. 1 demonstrates how the optimal regulation parameter depends on
the constrained default probability ε for different volatility values. The higher the ε-value, the higher the resulting optimal
regulation parameter. Furthermore, the higher the volatility, for a given ε-value, the lower the optimal regulation parameter.
In addition, it is observed that a quite low regulation parameter ηwhich results in a quite low barrier level should be chosen
in order to keep the insurance company to at (or below) a reasonable default probability.

5 According to Moody’s rating, for a 20-year horizon, the ratings and the respective default probabilities are given as follows: Aaa, 1.55%; Aa, 2.70%, A,
5.24% and Baa, 12.59%.
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Table 2
Optimal regulation parameters ηε for given default probability constraint ε for diverse σ-values with parameters: A0 = 100; L0 = 80; T = 20; µ =
0.04; r = 0.03; g = 0.01

ε ηε; σ = 0.10 ηε; σ = 0.15 ηε; σ = 0.20

0 0 0 0
0.01 0.595660 0.306855 0.148879
0.02 0.655581 0.359548 0.185358
0.04 0.725144 0.426470 0.235245

0.06 0.77114 0.474452 0.273434
0.08 0.806489 0.513537 0.306044
0.10 0.835603 0.547280 0.335295

Table 3
Optimal regulation parameters ηγ for diverse γ and σ-values with parameters: A0 = 100; L0 = 80; T = 20; µ = 0.04; r = 0.03; g = 0.01

γ ηγ ; σ = 0.10 ηγ ; σ = 0.15 ηγ ; σ = 0.20

0.70 0.607954 0.584077 0.566748
0.75 0.643793 0.619084 0.60125
0.80 0.678647 0.653348 0.635153

0.85 0.712546 0.686897 0.668484
0.90 0.745526 0.719758 0.701264
0.95 0.777624 0.751958 0.733516

1.00 0.808877 0.783522 0.765261

3.2. Aim 2: Controlling the expected payout of the contract given liquidation

We proceed with the second goal. The regulator wants to control the expected conditional cash flows of the insured
with respect to η. In [15], the rebate payment is paid out immediately at the premature liquidation time. For compatibility
reasons, it is assumed now that the rebate payment will be accumulated with a risk-free market interest rate and paid out
at the maturity. According to the derivation in Appendix B, the expected payoff given liquidation is described by

E
[
(η ∧ 1) L0egτer(T−τ)1{τ<T}

]
P{τ ≤ T}

= (η ∧ 1) L0erT


(
ηL0

A0

) µ̂

σ2 −

√
(µ̂)2+2(r−g)σ2

σ2
N

 ln( ηL0
A0

)−
√

(µ̂)2 + 2(r − g)σ2T

σ
√
T



+

(
ηL0

A0

) µ̂+

√
µ̂2+2(r−g)σ2

σ2
N

 ln( ηL0
A0

)+
√

(µ̂)2 + 2(r − g)σ2T

σ
√
T



/

P(τ ≤ T)

with the denominator corresponding to the result in the first aim.
The goal of the regulator here is to provide the policyholder in expectation with a certain γ-fraction of the guaranteed

amount given liquidation. Hence, we use ηγ to denote the critical η-value which makes the above expected value equal to
γ LT = γ L0egT , then

η ≥ ηγ (6)

provides in expectation that the payoff given liquidation is not smaller than a γ percentage of the guaranteed payment. This
is due to the fact that the expected rebate payment goes up with the regulation parameter η. This positive relation between
γ and ηγ is observed in Fig. 2.

Obviously, there is a trade-off between these two goals. A small default probability requires a lower value of η, but at the
same time leads to a lower expected rebate payment which is probably even lower than the γ-fraction of the final guaranteed
payment. Therefore, a regulator has to set a regulation level in the area of

ηγ ≤ η ≤ ηε (7)

in order to achieve a plausible default probability and to ensure a reasonable expected payoff to the policyholder given
default. However, comparing the optimal values of ηε and ηγ given in Tables 2 and 3, seldom non-empty intersection areas
of η as in Eq. (7) can be found, i.e., usually the regulator cannot aim at both of the goals. This is why in practice most of the
regulators stick to the first objective, i.e. to control the default probability under a certain constraint. In the rest of this paper,
we follow this convention and focus on the first goal. In what follows, we examine whether the result changes a lot when a
more realistic bankruptcy procedure, i.e. Chapter 11 comes into consideration.
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Fig. 2. Expected conditional payment given liquidation with parameters A0 = 100; L0 = 80; T = 20; r = 0.03; µ = 0.04; g = 0.01.

Table 4
Optimal regulation parameters ηε in case of standard Parisian option for given default probability constraint ε for diverse σ-values with parameters:
A0 = 100; L0 = 80; T = 20; µ = 0.04; r = 0.03; g = 0.01; d = 0.5

ε ηε; σ = 0.10 ηε; σ = 0.15 ηε; σ = 0.20

0.01 0.6536 0.35281 0.17954
0.02 0.7178 0.413186 0.223563
0.04 0.7922 0.48964 0.28365

0.06 0.8443 0.54312 0.32928
0.08 0.8827 0.58754 0.36734
0.10 0.9156 0.62735 0.401856

Table 5
Optimal regulation parameters ηε in case of cumulative Parisian option for given default probability constraint ε for diverse σ-values with parameters:
A0 = 100; L0 = 80; T = 20; µ = 0.04; r = 0.03; g = 0.01; d = 0.5

ε ηε; σ = 0.10 ηε; σ = 0.15 ηε; σ = 0.20

0.01 0.6332 0.33756 0.16965
0.02 0.69658 0.39485 0.210678
0.04 0.77004 0.46778 0.266954

0.06 0.81878 0.520094 0.30984
0.08 0.855952 0.56254 0.34637
0.10 0.88692 0.59997 0.3791764

3.3. Under chapter 11

The purpose of this subsection is to examine whether the realistic bankruptcy procedure Chapter 11 brings some new
aspects to our analysis, therefore, we jump to the numerical results immediately. Those who are interested in the derivation
of the default probability can have a look at Appendix C.

Tables 4 and 5 demonstrate several optimal values of the regulation parameters for both the standard and cumulative
Parisian option case. Above all, it is observed that the resulting optimal ηε-values are higher than the results in Section 3.1.
This is quite obvious, because default does not result in liquidation immediately by taking account of a Chapter 11 bankruptcy
procedure. Furthermore, the resulting optimal regulation parameters in the standard Parisian framework are higher than
those in the cumulative case. This is due to the fact that the knock-out condition in the standard case occurs with a lower
probability than in the cumulative case if the same parameters are assumed. The knock-out condition for standard Parisian
barrier options is that the underlying asset stays consecutively below the barrier for a time longer than d before the maturity
date, while the knock-out condition for cumulative Parisian barrier options is that the underlying asset value spends until
the maturity in total d units of time below the barrier.

However, the negative relation between the volatility andηε is still observed. Consequently, introducing the more realistic
bankruptcy modeling does not lead to much more different results.

3.4. Critiques of the static approach

Whether we are in [15] or in [12] framework, the optimal regulation rule depends on the level of the volatility of the
assets, i.e., there exists an interplay between the insurer and the regulator. If the insurer switches his risk management
portfolio to another one with a different volatility, the originally optimal regulation parameter loses its optimality. This
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Table 6
Volatility Level A0 = 100; L0 = 80; T = 20; µ = 0.04; r = 0.03; g = 0.01; d = 0.5

Grosen and Jørgensen Standard parisian Cumulative parisian

Volatility Level 0.0752 0.0817 0.07945

Table 7
A0 = 100; T = 20; µ = 0.04; r = 0.03; g = 0.01; d = 0.5; L0 = αA0

Grosen and Jørgensen Standard parisian Cumulative parisian

Debt ratio α (σ = 0.10) 0.596 0.653 0.633
Debt ratio α (σ = 0.15) 0.307 0.355 0.337

implies that the insurer can readjust its portfolio to avoid the intervention of the regulator, given that he is fully informed
about the regulatory objectives.

Now let us assume that the regulation parameter η is given: η = 0.8. The company is assumed to be perfectly aware of
this coefficient, then it has an optimal volatility level or debt ratio level in order to avoid an intervention of the regulators
with probability 99%. All parameters being fixed except the assets’ volatility.

Table 6 shows the maximal volatility level the insurer can choose in order to avoid the regulator’s intervention. In addition,
the company may choose a riskier portfolio in the case of a Parisian surveillance for a given level of bankruptcy risk. The
probability to have an intervention is indeed lower in the Parisian setting than in a Grosen and Jørgensen setting.

Table 7 gives results when all parameters are fixed except the debt ratio α, meaning that the company will ask for more
capital to decrease its risk. The listed α value in this table is the maximal debt ratio the insurer is allowed to own such that no
regulatory intervention is going to take place. For a given bankruptcy risk level, Table 7 illustrates the fact that the company
needs more own capital in a Grosen and Jørgensen setting than in a Parisian setting. For example when the volatility is set
at 15%, the shareholders part should represent 69.3% in a Grosen and Jørgensen setting instead of 64.5% in a Parisian setting
to avoid a regulatory intervention with probability 99%.

However, we can see in Tables 6 and 7 that in the three cases, the results do not differ much. This shows that the model
is robust with respect to the choice of the default procedure. In the next section, instead we will see that it is not robust to
the assumption made on the dynamic of the assets (which is a stationary model).

4. Moving to a dynamic approach

We keep assuming a constant interest rate and the firm’s asset follows a geometric Brownian motion. In the previous
section, we assumed that the volatility is constant and this means implicitly that the company follows a risk management
strategy with a fixed volatility. This might be reasonable for short-term contracts, but the life insurance contracts considered
here are often long-term contracts with a maturity T equal to e.g. 20 years. During such a long-term contract period, it is very
likely that the insurance company readjusts its risk management to another volatility. In addition, the analysis in Section 3.4
implies that the insurance company might do this on purpose in order to avoid the regulator’s intervention. Therefore, in this
section, we release the assumption of a constant volatility, i.e. the insurer does not stay passive until the maturity any more.
He does react to the regulator’s regulation rule and adjusts his risk management strategy (especially allowed to change its
volatility). We know from the above study that the optimal regulation rule cannot remain optimal when the insurer changes
the volatility, and the resulting default probability might not be promising to the regulator any more. Hence, the regulator
is forced to adjust the regulation level, the insurer will then react to that again and so forth. In the following, we call this
approach where the insurer follows a risk-switching strategy “a dynamic approach”. In this approach, both the insurer and
the regulator become more active. We mainly study the impacts of the dynamic approach and accordingly highlight the
importance of the interaction between the regulator and the insurer.

In the following, we introduce a very simple model where the insurance company can choose among risk management
strategies with different volatilities and change them over time, and examine what an impact this simple dynamic model has
on the expected return and on the default probability. Henceforth, due to the similar results obtained in the last section, the
analysis here is conducted in the Grosen and Jorgensen setting only (i.e. under Chapter 7 bankruptcy procedure). In addition,
we bring the expected return into play to gain more insights from the dynamic approach and it is defined specifically later.
That means, in addition to the default probability, the expected rate of return is used as a criterion to compare the static and
dynamic approach. As proposed in [13] for a bank, we assume there are two different portfolios with two levels of asset risk.
At the end of each year before the maturity of the contract, four different events might occur:

• The regulators look at the value of the assets of the company and declare bankruptcy because it is too low.
• The company is solvent but too risky: regulators switch the level of asset risk to a lower level to satisfy the regulatory

constraints.
• Given the regulatory requirements, it is optimal for the managers to stick to the current risk level.
• Given the regulatory constraints, it is optimal to switch the level of asset risk. In this case either company performs well

and can take more risk or the company wants to avoid a future regulatory intervention.



C. Bernard, A. Chen / Journal of Computational and Applied Mathematics 233 (2009) 3–15 11

Table 8
Default probability and expected return in a static setting

σ0 = σL = 10%, µL = 4% σ0 = σH = 20%,µH = 5%

Default probability 3.8× 10−4% 10.8%
Policyholders Expected Return 1.06 1.25
Shareholders Expected Return 1.34 2.00

4.1. Risk and returns in the static framework

We assume that the parameters are set to µL = 4%, r = 3% and σL = 10% in the lower asset risk case. In the higher
asset risk case, we assume σH = 20% and µH = 5%.6 At time 0, the volatility is set at σ = σ0 and the ratio α = α0 = 0.8,
A0 = 100, L0 = 80, T = 20, r = 0.03, g = 0.01, δ = 90% δ̂. Some comments shall be made concerning the participation rate
δwith which the liability holder is allowed to participate in the surpluses of the insurance company. First, δ is not important
in the previous analysis and becomes relevant in the analysis of the expected return. Second, δ̂ denotes the participation rate
which makes the considered contract fair.7 Following the ideas of Boyle and Tian [8], we use a δ-value lower than the fair
value to take account of the safety loading in the pricing of equity-linked life insurance. As an example, we choose δ = 90% δ̂.

We have closed-form expression of the probability of a regulators’ closure decision before the maturity T in case of
continuous monitoring if the initial assets risk is set at σ0 (c.f. Section 3). We assume the level of bankruptcy at time t is
given by ηLt where η = 0.4. We define the expected return of the policyholders as:

Expected Payoff at time T − L0

L0
,

where the expected payoff of policyholders is given by

E[
(
δ[αAT − LT]

+
+ LT − [LT − AT]

+
)
1{τ≥T}] + E[er(T−τ) min{Aτ, Lτ}1{τ<T}].

The rebate payment is again accumulated with the risk free interest rate to maturity date T. In the case of prior bankruptcy,
we assume shareholders receive nothing and the assets are used to pay the bankruptcy costs and to reimburse the
policyholders. The expected return of the shareholders is given by:

Expected Payoff at time T − (1− α)A0

(1− α)A0
.

We fix a maximum level of risk (through a given default probability) and use the volatility parameter to adjust the
portfolio in order to maximize the expected payments to shareholders and policyholders keeping a default probability prior
to maturity below a maximum level.

4.2. Risk and returns in the volatility switching model

Given a maximum probability of bankruptcy before maturity T, denoted by p0 = P0(T) (for example 4%) then the company
wants to maximize the shareholders’ value keeping the probability of an early closure below p0. The insurance company
switches the portfolio at the end of each year as long as no early default occurs. At the end of each year t = ti(i = 1, . . . , T),
managers face three different situations:
-Case 1: At < Bt Bankruptcy is declared, shareholders receive nothing and policyholders receive At .
-Case 2: At ≥ Bt and σ = σH . We then compute at time t, the probability of bankruptcy before T when there is no switching
until T (we use closed-form formulae provided in Section 3). If this default probability is above p0, then regulators reduce
the level of the volatility, otherwise they do not intervene.
-Case 3: At ≥ Bt and σ = σL. The managers decide to switch to a higher risk level in order to increase their expected payment.
Their decision should keep on satisfying that bankruptcy probability before maturity is below p0.

We proceed by Monte Carlo methods assuming the initial volatility is either σ0 = 10% or σ0 = 20%.
Through results displayed in Table 8, we identify two different situations whether the company bears initially a high

asset risk or a low asset risk. First if it has a low investment risk (initial volatility is set to 10%) then in the static framework,
returns are rather small (1.06 for policyholders and 1.34 for shareholders). If it follows the above simple strategy, then the
default probability is higher but remains acceptable and expected returns are more interesting and realistic. Secondly, if the

6 The choice of µL, σL and that of µH, σH lead to the same Sharpe ratio ((µ− r)/σ).
7 The fair participation rate δ̂ results from the fair valuation principle, i.e.

E∗[e−rT
(
δ̂[αAT − LT ]

+
+ LT − [LT − AT ]

+
)
1{τ≥T}] = L0,

where E∗ represents the expectation taken under the equivalent martingale measure.
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Table 9
Default probability and expected payments in case of dynamic approach

σ0 = σL = 10%, µL = 4% σ0 = σH = 20%,µH = 5%

Default probability 0.62% 0.64%
Policyholders expected payment 1.40 (+32%) 1.15 (−8%)

Shareholders expected payment 1.69 (+26%) 1.86 (−7%)

In parenthesis, we give the percentage of increase or decrease compared to the situation with static case.

company is initially very risky, then the simple switching strategy strongly reduces the risk. Indeed in the static approach
the default probability is 10.8% which is not realistic. This simple strategy decreases its default probability to 0.64% (see
Table 9). The expected returns are a bit lower but not significantly lower. Therefore, our dynamic approach can then have
two interesting effects, i.e. either it increases the expected payments and keep a very low probability of default or it decreases
significantly the default probability keeping rather interesting expected returns.8

This strategy is an over-simplified example but it already shows the possible impact of a dynamic approach. Indeed, a
simple strategy which allows for a non-constant volatility, even through a very simple example, changes the results strongly.

5. Conclusion

Instead of making fair valuation analysis of equity-linked life insurance contracts under consideration of default risk, we
mainly look at risk measures under the real world measure. More precisely, we explain how the optimal level of intervention
(i.e. optimal barrier level) can be determined in order to reach some regulation rules and finally to protect the policyholders.
We consider a “fixed-volatility” rule in determining the optimal regulation level and observe that there exists an interaction
between the regulator and the insurer. The second part of our analysis focuses on how the results are influenced when the
“fixed-volatility” assumption is lifted, i.e. when the insurance company has a strategy with a non-constant volatility and
when the interaction between the regulator and the insurer is taken into consideration.

The fact that the insurance company has a strategy, even a very simple strategy can significantly change the results.
Regulators and insurers who implement internal models to value liabilities and to measure risks should be aware that a
“static” model ignores the strategy of the managers and will significantly underprice the contracts and overestimate the
risks. In this study, we look at risks estimators (under the historic measure) but a straightforward numerical example can
show that the market value of the contracts (and the fair values of the parameters) highly depend on the insurer’s strategy.
We thus show some limitations of most of the existing literature in this field which assume a given dynamics with a fixed
volatility for the whole life of the contract, even if it is a long-term contract.

As starting point for further research, we note that surveillance has a cost. The above study describes continuous
monitoring of the assets’ process. Following Merton [21] who extended his previous work by introducing random and costly
audits, or the recent works of Battachaya et al. [6] or Dangl and Lehar [13] one may extend our framework to the case of
random audits. The default barrier would not be continuous any more and the company has to be solvent at any time an audit
takes place. Furthermore, in this analysis, “non-market risks” are completely ignored in the geometric Brownian motion
setting. Therefore, taking into account the non-hedgeable non-market risk like insurance risk is an important extension to
the problem.
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Appendix A. Derivation of the default probability

It is observed that

Au ≥ Bu ⇔

(
µ−

1
2
σ2
− g

)
u+ σWu + ln

(
A0

B0

)
≥ 0.

8 Concerning the dynamic approach, a more practical insight in terms of regulation costs is provided in Bernard et al. [3].
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Hence, under the real world probability measure P, passage of A(.) through B() is equivalent to the passage of the Brownian
motion Zu =

(
µ− 1

2σ
2
− g

)
u+ σWu + ln

(
A0
B0

)
through zero. Now we define

µ̂ = µ− g −
1
2
σ2,

consequently

AT = A0e(µ− 1
2 σ

2)T+σWT = B0eZT+gT

AT > BT ⇔ ZT > 0.

Furthermore, it is known (see e.g. in [17]) that the density of the first passage time is g(τ, Z0, 0) = Z0
στ3/2 n

(
Z0+µ̂τ
σ
√
τ

)
, with

n(x) = 1
√

2π
e−

x2
2 . And the distribution function of τ is

G(τ, Zt, t) = N

(
−Zt − µ̂(τ − t)

σ
√
τ − t

)
+ e−

2Zt µ̂
σ2 N

(
−Zt + µ̂(τ − t)

σ
√
τ − t

)
,

where N(x) =
∫ x
−∞

n(u)du is the cumulative standard normal distribution function. Hence, the default probability we look
for is given by:

P(τ ≤ T) = N

(
−Z0 − µ̂T

σ
√
T

)
+ e−

2Z0µ̂
σ2 N

(
−Z0 + µ̂T

σ
√
T

)

= N

 ln
(

B0
A0

)
− (µ− g − 1

2σ
2)T

σ
√
T

+ (A0

B0

)− 2(µ−g− 1
2 σ

2)

σ2
N

 ln
(

B0
A0

)
+ (µ− g − 1

2σ
2)T

σ
√
T

 .

Appendix B. Derivation of the expected payoff given default

The expected payoff given default is given by

E
[
(η ∧ 1) L0egτer(T−τ)1{τ≤T}

]
P{τ ≤ T}

.

The denominator is already calculated in Appendix A, we just need to calculate the numerator. The numerator is given as
follows:

E
[
(η ∧ 1) L0egτer(T−τ)1{τ≤T}

]
= (η ∧ 1) L0er T

∫ T

0

1
√

2π
Z0

στ3/2 exp {−(r − g)τ} exp

−1
2

(
Z0 + µ̂τ

σ
√
τ

)2
 dτ

= (η ∧ 1) L0er T
∫ T

0

Z0

στ3/2 exp {−(r − g)τ} n

(
Z0

σ
√
τ
+
µ̂

σ

√
τ

)
dτ

= (η ∧ 1) L0er T
∫ T

0

Z0

στ3/2 exp

−Z0

σ

µ̂

σ
+

Z0

σ

√
µ̂2

σ2 + 2(r − g)

 n

 Z0

σ
√
τ
+

√
µ̂2

σ2 + 2(r − g)
√
τ

 dτ

= (η ∧ 1) L0er T
(

A0

ηL0

)− µ̂

σ2 +
1
σ

√
µ̂2

σ2 +2(r−g) ∫ T

0

1
√

2π
Z0

στ3/2 exp
(
−

(Z0 +
√
µ̂2 + 2(r − g)σ2τ)2

2σ2 τ

)
dτ︸ ︷︷ ︸

density of the first passage time at
√
µ̂2+2(r−g)σ2

= (η ∧ 1) L0er T
(

A0

ηL0

)− µ̂

σ2 +
1
σ

√
µ̂2

σ2 +2(r−g)
N

 ln( ηL0
A0

)−
√
µ̂2 + 2(r − g)σ2T

σ
√
T


+

(
A0

ηL0

)−2
σ2

√
µ̂2+2(r−g)σ2

N

 ln( ηL0
A0

)+
√
µ̂2 + 2(r − g)σ2T

σ
√
T


= (η ∧ 1) L0er T


(
ηL0

A0

) µ̂

σ2
(

A0

ηL0

)√(µ̂)2+2(r−g)σ2

σ2
N

 ln( ηL0
A0

)−
√
µ̂2 + 2(r − g)σ2T

σ
√
T



+

(
ηL0

A0

) µ̂+

√
µ̂2+2(r−g)σ2

σ2
N

 ln( ηL0
A0

)+
√
µ̂2 + 2(r − g)σ2T

σ
√
T


 .
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Appendix C. Derivation of default probability in Parisian framework

The default probability in the case of standard Parisian option is given by

P
(
T−B ≤ T

)
= e−

1
2 m2T

(∫ b

−∞

h2(T, y)emy d y+
∫
∞

b
h1(T, y)emy d y

)

with m = 1
σ

(
µ− g − 1

2σ
2
)

. h1(T, y) and h2(T, y) are uniquely determined by inverting the corresponding Laplace transforms
which are given by

ĥ1(λ, y) =
e(2b−y)

√
2λψ

(
−
√

2λd
)

√
2λψ

(√
2λd

)
ĥ2(λ, y) =

ey
√

2λ

√
2λψ

(√
2λd

) + √2λdeλd

ψ
(√

2λd
) (ey

√
2λ
(
N
(
−
√

2λd−
y− b
√
d

)
− N

(
−
√

2λd
))

− e(2b−y)
√

2λN
(
−
√

2λd+
y− b
√
d

))
with

b =
1
σ

ln
(
B0

A0

)
=

1
σ

ln
(
ηL0

A0

)
=

1
σ

ln (ηα) < 0

ψ(z) =
∫
∞

0
x exp

{
−

x2

2
+ zx

}
dx = 1+ z

√
2πe

z2
2 N(z),

and λ the parameter of Laplace transform. The default probability in the case of cumulative Parisian option is determined by

P(Γ−,B
T ≥ d) = P

(1
T

∫ T

0
1{Wu+mu≤b}du ≥

d

T

)
= P

(1
T

∫ T

0
1{Wu−mu≤−b}du ≤ 1−

d

T

)

= 2
∫ 1− d

T

0


N

(
−m
√
T
√

1− u
)

√
1− u

− m
√
TN

(
−m
√
T
√

1− u
)

×

[
1
√
u
N

(
(−b)/

√
T + m

√
Tu

√
u

)
+ m
√
Te2mbN

(
b/
√
T + m

√
Tu

√
u

)] du,

In the above derivation, Eq. (12) of Takács [23] is applied.
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