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The Keap1-Nrf2 pathway is the major regulator of cytoprotective responses to oxidative and

electrophilic stress. Although cell signaling pathways triggered by the transcription factor Nrf2 prevent

cancer initiation and progression in normal and premalignant tissues, in fully malignant cells Nrf2

activity provides growth advantage by increasing cancer chemoresistance and enhancing tumor cell

growth. In this graphical review, we provide an overview of the Keap1-Nrf2 pathway and its

dysregulation in cancer cells. We also briefly summarize the consequences of constitutive Nrf2

activation in cancer cells and how this can be exploited in cancer gene therapy.

& 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license. 
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Introduction

The Keap1-Nrf2 pathway is the major regulator of cytoprotec-
tive responses to endogenous and exogenous stresses caused by
reactive oxygen species (ROS) and electrophiles [1]. The key
signaling proteins within the pathway are the transcription factor
Nrf2 (nuclear factor erythroid 2-related factor 2) that binds
together with small Maf proteins to the antioxidant response
element (ARE) in the regulatory regions of target genes, and
Keap1 (Kelch ECH associating protein 1), a repressor protein that
binds to Nrf2 and promotes its degradation by the ubiquitin
proteasome pathway (Fig. 1). Keap1 is a very cysteine-rich
protein, mouse Keap1 having a total of 25 and human 27 cysteine
residues, most of which can be modified in vitro by different
oxidants and electrophiles [2]. Three of these residues, C151, C273
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and C288, have been shown to play a functional role by altering
the conformation of Keap1 leading to nuclear translocation of
Nrf2 and subsequent target gene expression [3] (Fig. 1). The exact
mechanism whereby cysteine modifications in Keap1 lead to Nrf2
activation is not known, but the two prevailing but not mutually
exclusive models are (1) the ‘‘hinge and latch’’ model, in which
Keap1 modifications in thiol residues residing in the IVR of Keap1
disrupt the interaction with Nrf2 causing a misalignment of the
lysine residues within Nrf2 that can no longer be polyubiquiti-
nylated and (2) the model in which thiol modification causes
dissociation of Cul3 from Keap1 [3]. In both models, the inducer-
modified and Nrf2-bound Keap1 is inactivated and, consequently,
newly synthesized Nrf2 proteins bypass Keap1 and translocate
into the nucleus, bind to the ARE and drive the expression of Nrf2
target genes such as NAD(P)H quinone oxidoreductase 1 (NQO1),
heme oxygenase 1 (HMOX1), glutamate-cysteine ligase (GCL)
and glutathione S transferases (GSTs) (Fig. 2). In addition to
modifications of Keap1 thiols resulting in Nrf2 target gene
induction, proteins such as p21 and p62 can bind to Nrf2 or
Keap1 thereby disrupting the interaction between Nrf2 and Keap1
[1,3] (Fig. 3).
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Although cytoprotection provided by Nrf2 activation is impor-
tant for cancer chemoprevention in normal and premalignant
tissues, in fully malignant cells Nrf2 activity provides growth
advantage by increasing cancer chemoresistance and enhancing
tumor cell growth [4]. Several mechanisms by which Nrf2
signaling pathway is constitutively activated in various cancers
have been described: (1) somatic mutations in Keap1 or the
Keap1 binding domain of Nrf2 disrupting their interaction; (2)
epigenetic silencing of Keap1 expression leading to defective
repression of Nrf2; (3) accumulation of disruptor proteins such
as p62 leading to dissociation of the Keap1-Nrf2 complex;
(4) transcriptional induction of Nrf2 by oncogenic K-Ras, B-Raf
and c-Myc; and (5) post-translational modification of Keap1
cysteines by succinylation that occurs in familial papillary renal
carcinoma due to the loss of fumarate hydratase enzyme activity
[3–10] (Fig. 3). Constitutively abundant Nrf2 protein causes
increased expression of genes involved in drug metabolism
thereby increasing the resistance to chemotherapeutic drugs
and radiotherapy. In addition, high Nrf2 protein level is asso-
ciated with poor prognosis in cancer [4]. Overactive Nrf2 also
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affects cell proliferation by directing glucose and glutamine
towards anabolic pathways augmenting purine synthesis and
influencing the pentose phosphate pathway to promote cell
proliferation [11] (Fig. 4).

Given that high Nrf2 activity commonly occurs in cancer cells
with adverse outcomes, there is a need for therapies to inhibit Nrf2.
Unfortunately, due to structural similarity with some other bZip
family members, the development of specific Nrf2 inhibitors is a
challenging task and only a few studies of Nrf2 inhibition have been
published to date. By screening natural products, Ren et al. [12]
identified an antineoplastic compound brusatol as an Nrf2 inhibitor
that enhances the chemotherapeutic efficacy of cisplatin. In addition,
PI3K inhibitors [11,13] and Nrf2 siRNA [14] have been used to
inhibit Nrf2 in cancer cells. Recently, we have utilized an alternative
approach, known as cancer suicide gene therapy, to target cancer
cells with high Nrf2 levels. Nrf2-driven lentiviral vectors [15]
containing thymidine kinase (TK) are transferred into cancer cells
with high ARE activity and the cells are treated with a pro-drug,
ganciclovir (GCV). GCV is metabolized to GCV-monophosphate,
which is further phosphorylated by cellular kinases into a toxic
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Fig. 2. The Nrf2-Keap1 signaling pathway. (A and B) in basal conditions, two Keap1 molecules bind to Nrf2 and Nrf2 is polyubiquitylated by the Cul3-based E3

ligase complex. This polyubiquitilation results in rapid Nrf2 degradation by the proteasome. A small proportion of Nrf2 escapes the inhibitory complex and

accumulates in the nucleus to mediate basal ARE-dependent gene expression, thereby maintaining the cellular homeostasis. (C) Under stress conditions, inducers

modify the Keap1 cysteines leading to the inhibition of Nrf2 ubiquitylation via dissociation of the inhibitory complex. (D) According to the hinge and latch model,

modification of specific Keap1 cysteine residues leads to conformational changes in Keap1 resulting in the detachment of the Nrf2 DLG motif from Keap1.

Ubiquitination of Nrf2 is disrupted but the binding with the ETGE motif remains. (E) In the Keap1-Cul3 dissociation model, the binding of Keap1 and Cul3 is

disrupted in response to electrophiles, leading to the escape of Nrf2 from the ubiquitination system. In both of the suggested models, the inducer-modified and

Nrf2-bound Keap1 is inactivated and, consequently, newly synthesized Nrf2 proteins bypass Keap1 and translocate into the nucleus, bind to the Antioxidant

Response Element (ARE) and drive the expression of Nrf2 target genes such as NQO1, HMOX1, GCL and GSTs [1,3].

Fig. 3. Mechanisms for constitutive nuclear accumulation of Nrf2 in cancer. (A) Somatic mutations in Nrf2 or Keap1 disrupt the interaction of these two proteins. In Nrf2,

mutations affect ETGE and DLG motifs, but in Keap1 mutations are more evenly distributed. Furthermore, oncogene activation, such as KrasG12D [5], or disruption of tumor

suppressors, such as PTEN [11] can lead to transcriptional induction of Nrf2 and an increase in nuclear Nrf2. (B) Hypermethylation of the Keap1 promoter in lung and

prostate cancer leads to reduction of Keap1 mRNA expression, which increases the nuclear accumulation of Nrf2 [6,7]. (C) In familial papillary renal carcinoma, the loss of

fumarate hydratase enzyme activity leads to the accumulation of fumarate and further to succination of Keap1 cysteine residues (2SC). This post-translational modification

leads to the disruption of Keap1-Nrf2 interaction and nuclear accumulation of Nrf2 [8,9]. (D) Accumulation of disruptor proteins such as p62 and p21 can disturb Nrf2-

Keap1 binding and results in an increase in nuclear Nrf2. p62 binds to Keap1 overlapping the binding pocket for Nrf2 and p21 directly interacts with the DLG and ETGE

motifs of Nrf2, thereby competing with Keap1 [10].
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triphosphate form [16] (Fig. 5). This leads to effective killing of not
only TK containing tumor cells, but also the neighboring cells due to
the bystander effect [17]. ARE-regulated TK/GCV gene therapy can
be further enhanced via combining a cancer chemotherapeutic agent
doxorubicin to the treatment [16], supporting the notion that this
approach could be useful in conjuction with traditional therapies.
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Fig. 4. The dual role of Nrf2 in tumorigenesis. Under physiological conditions, low levels of nuclear Nrf2 are sufficient for the maintenance of cellular homeostasis. Nrf2

inhibits tumor initiation and cancer metastasis by eliminating carcinogens, ROS and other DNA-damaging agents. During tumorigenesis, accumulating DNA damage leads

to constitutive hyperactivity of Nrf2 which helps the autonomous malignant cells to endure high levels of endogenous ROS and to avoid apoptosis. Persistently elevated

nuclear Nrf2 levels activate metabolic genes in addition to the cytoprotective genes contributing to metabolic reprogramming and enhanced cell proliferation. Cancers

with high Nrf2 levels are associated with poor prognosis because of radio and chemoresistance and aggressive cancer cell proliferation. Thus, Nrf2 pathway activity is

protective in the early stages of tumorigenesis, but detrimental in the later stages. Therefore, for the prevention of cancer, enhancing Nrf2 activity remains an important

approach whereas for the treatment of cancer, Nrf2 inhibition is desirable [4,11].
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therapy [16]. In this approach, lentiviral vector (LV) expressing thymidine kinase (TK) under minimal SV40 promoter with four AREs is transduced to lung adenocarcinoma

cells. High nuclear Nrf2 levels lead to robust expression of TK through Nrf2 binding. Cells are then treated with a pro-drug, ganciclovir (GCV), which is phosphorylated by

TK. Triphosphorylated GCV disrupts DNA synthesis and leads to effective killing of not only TK containing tumor cells, but also the neighboring cells due to the bystander

effect.
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S.M. Kuosmanen, E. Kansanen, J.T. Pikkarainen, J.P. Lappalainen,

H. Samaranayake, H.P. Lesch, M.U. Kaikkonen, S. Ylä-Herttuala, A.-
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