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Abstract

The solution of boundary value problems (BVP) for fourth order differential equations by their reduction to BVP for second order
equations, with the aim to use the achievements for the latter ones attracts attention from many researchers. In this paper, using
the technique developed by ourselves in recent works, we construct iterative method for the Neumann BVP for biharmonic type
equation. The convergence rate of the method is proved and some numerical experiments are performed for testing it in dependence
on the choice of an iterative parameter.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The solution of fourth order differential equations by their reduction to boundary value problems (BVP) for the
second order equations, with the aim of using efficient algorithms for these, attracts attention from many researchers.
Namely, for the biharmonic equation with the Dirichlet boundary condition, there is intensively developed the iterative
method, which leads the problem to two problems for the Poisson equation at each iteration (see e.g. [4,8,9,11]).
Recently, Abramov and Ulijanova [1] proposed an iterative method for the Dirichlet problem for the biharmonic type
equation, but the convergence of the method is not proved. In our previous works [6,7], with the help of boundary
or mixed boundary-domain operators appropriately introduced, we constructed iterative methods for biharmonic and
biharmonic type equations associated with the Dirichlet boundary condition. It is proved that the methods are convergent
with the rate of geometric progression. In this paper, we develop our technique in [4–7] for the Neumann BVP for the
biharmonic type equation. Namely, we consider the following problem:

Lu ≡ �2u − a�u + bu = f in �, (1)

�u

��
= g0,

��u

��
= g1 on �, (2)
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where � is the Laplace operator, � is a bounded domain in Rn (n�2), � is the sufficiently smooth boundary of �, � is
the outward normal to � and a, b are positive constants. Eq. (1) with other boundary conditions are met, for example,
in [2,3]. An iterative method reducing the problem to a sequence of Neumann problems for Poisson equation will be
proposed and investigated. Two different cases will be treated in dependence on the sign of a2 − 4b.

2. Case a2 − 4b�0

In this case, we always can lead the original problem (1)–(2) to two Neumann problems for second order equation.
To do this, let � and � be the roots of the quadratic equation

�2 − a� + b = 0,

namely,

� = a − √
a2 − 4b

2
, � = a + √

a2 − 4b

2
. (3)

Clearly, � and � > 0. Put

L1 = � − �, L2 = � − �. (4)

Then we have L = L1L2 and the problem (1)–(2) is decomposed to the following problems:

L1v ≡ �v − �v = f (x) in �,

�v

��
= g1 − �g0 on �, (5)

L2u ≡ �u − �u = v(x) in �,

�u

��
= g0 on �. (6)

These Neumann problems can be solved by known methods such as finite element method, boundary element method
or finite difference method.

3. Case a2 − 4b < 0

3.1. Construction of iterative method

Suppose � and � are positive numbers such that

���, � + � = a, b1 = �� < b. (7)

Using the notations L1 and L2 given by (4) we set

v = L2u = �u − �u.

Then we get

L1v = �v − �v = �2u − a�u + b1u.

Now, putting

� = −	u, (8)
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where

	 = b − b1 (9)

we can reduce the original problem (1), (2) to the problems

L1v = f + � in �,
�v

��
= g1 − �g0 on �, (10)

L2u = v(x) in �,
�u

��
= g0 on �, (11)

where � as u is an unknown function but it is related with u by (8). Now consider the following iterative process for
finding � and simultaneously for finding u.

1. Given �(0) ∈ L2(�), for example, �(0) = 0 in �.
2. Knowing �(k)(x) in � (k = 0, 1, . . .) solve consecutively two problems

L1v
(k) = f + �(k) in �,

�v(k)

��
= g1 − �g0 on �, (12)

L2u
(k) = v(k) in �,

�u(k)

��
= g0 on �. (13)

3. Compute the new approximation

�(k+1) = (1 − 
k+1)�
(k) − 	
k+1u

(k), (14)

where 
k+1 is an iterative parameter to be chosen later.

3.2. Investigation of convergence

In order to investigate the convergence of the iterative process (12)–(14), firstly we rewrite (14) in the canonical form
of two-layer iterative scheme [12]

�(k+1) − �(k)


k+1
+ (�(k) + 	u(k)) = 0. (15)

Now, we introduce the operator A defined by the formula

A� = u, (16)

where u is the function determined from the problems

L1v = � in �,
�v

��
= 0 on �, (17)

L2u = v in �,
�u

��
= 0 on �. (18)

The properties of the operator A will be investigated in the sequel. Now, let us return to the problems (10), (11). We
represent their solutions in the form

u = u1 + u2, v = v1 + v2, (19)



Q.A. Dang / Journal of Computational and Applied Mathematics 196 (2006) 634–643 637

where u1, u2, v1, v2 are the solutions of the problems

L1v1 = � in �,
�v1

��
= 0 on �, (20)

L2u1 = v1 in �,
�u1

��
= 0 on �. (21)

L1v2 = f in �,
�v2

��
= g1 − �g0 on �, (22)

L2u2 = v2 in �,
�u2

��
= g0 on �. (23)

According to the definition of A we have

A� = u1. (24)

Since � should satisfy the relation (8), taking into account the representation (19) we obtain the equation

(I + 	A)� = −	u2, (25)

where I is the identity operator.
Thus, we have reduced the original problem (1), (2) to the operator (25), whose right-hand side is completely defined

by the data f, g0 and g1.

Proposition 3.1. The iterative process (12)–(14) is a realization of the two-layer iterative scheme

�(k+1) − �(k)


k+1
+ (I + 	A)�(k) = −	u2, k = 0, 1, 2, . . . (26)

for the operator equation (25).

Proof. Indeed, if in (12), (13) we put

u(k) = u
(k)
1 + u2, v(k) = v

(k)
1 + v2, (27)

where u2, v2 are the solutions of Problems (22), (23), then we get

L1v
(k)
1 = �(k) in �,

�v
(k)
1

��
= 0 on �, (28)

L2u
(k)
1 = v

(k)
1 in �,

�u
(k)
1

��
= 0 on �. (29)

From here it is easy to see that

A�(k) = u
(k)
1 .

Therefore, taking into account the first relation of (27) and the above equality, from (15) we obtain (26). Thus, the
proposition is proved. �

Proposition 1 enables us to lead the investigation of convergence of process (12)–(14) to the study of the scheme
(26). For this reason we need some properties of the operator A.

Proposition 3.2. If the numbers � and � satisfy the condition (7) then the operator A defined by (16)–(18) is linear,
symmetric, positive and compact operator in the space L2(�).
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Proof. The linearity of A is obvious. To establish the other properties of A let us consider the inner product (A�, �̄)

for two arbitrary functions � and �̄ in L2(�). Recall that the operator A is defined by (16)–(18). We denote by ū and v̄

the solutions of (17) and (18), where instead of � there stands �̄. We have

(A�, �̄) =
∫
�

u.�̄ dx =
∫
�

u(�v̄ − �v̄) dx

=
∫
�

u�v̄ dx − �
∫
�

uv̄ dx = −
∫
�

∇u∇v̄ dx − �
∫
�

uv̄ dx.

Noting that∫
�

v̄�u dx = −
∫
�

∇v̄∇u dx

from the latter equality we get

(A�, �̄) =
∫
�

v̄�u dx − �
∫
�

uv̄ dx.

In the above relation replacing �u = v + �u we obtain

(A�, �̄) =
∫
�

vv̄ dx + (� − �)

∫
�

uv̄ dx.

Further, since v̄ = �ū − �ū we have∫
�

uv̄ dx =
∫
�

u(�ū − �ū) dx = −
∫
�

u∇u∇ū dx − �
∫
�

uū dx.

Hence,

(A�, �̄) =
∫
�

vv̄ dx + (� − �)

(∫
�

∇u∇ū dx + �
∫
�

uū dx

)
.

Clearly,

(A�, �̄) = (A�̄, �)

and

(A�, �) =
∫
�

v2 dx + (� − �)

(∫
�

|∇u|2 dx + �
∫
�

u2 dx

)
�0

due to ���. Moreover, it is easy seen that (A�, �) = 0 if and only if � = 0. So, we have shown that the operator A is
symmetric and positive in L2(�).

It remains to show the compactness of A. As is well known that if � ∈ L2(�) then the problem (17) has a unique
solution v ∈ H 2(�), therefore, the problem (18) has a unique solution v ∈ H 4(�). Consequently, the operator A maps
L2(�) into H 4(�). In view of the compact imbedding H 4(�) into L2(�) it follows that A is compact operator in
L2(�).

Thus, the proof of Proposition 3.2 is complete. �

Due to the above proposition the operator

B = I + 	A (30)

is linear, symmetric, positive definite and bounded operator in the space L2(�). More precisely, we have

�1I < B ��2I , (31)
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where

�1 = 1, �2 = 1 + 	‖A‖. (32)

In the future, we need the following estimate for the function u given by (17) and (18)

‖u‖H 4(�) �C‖�‖L2(�) (33)

which follows from the general theory of BVP [10].
Before stating the result of convergence of the iterative process (12)–(14) we assume the following regularity of the

data of the original problem (1), (2):

f ∈ L2(�), g0 ∈ H 5/2(�) and g1 ∈ H 1/2(�).

Then the problem (1), (2) has a unique solution u ∈ H 4(�). For the function u2 determined by (22), (23) we have also
u2 ∈ H 4(�).

Theorem 3.3. Let u be the solution of Problems (1), (2) and � be the solution of Eq. (25). Then, if {
k+1} is the
Chebyshev collection of parameters, constructed by the bounds �1 and �2 of the operator B, namely


0 = 2

�1 + �2
, 
k = 
0

�0tk + 1
, tk = cos

2k − 1

2M

, k = 1, . . . , M �0 = 1 − �

1 + �
, � = �1

�2
(34)

we have

‖u(M) − u‖H 4(�) �C1qM , (35)

where

C1 = C‖�(0) − �‖L2(�) (36)

C being the constant in (33),

qM = 2�M
1

1 + �2M
1

, �1 = 1 − √
�

1 + √
�

. (37)

In the case of the stationary iterative process, 
k = 
0 (k = 1, 2, . . .) we have

‖u(k) − u‖H 4(�) �C1�
k
0, k = 1, 2, . . . . (38)

Proof. According to the general theory of the two-layer iterative schemes (see [12]) for the operator equation (25) we
have

‖�(M) − �‖L2(�) �qM‖�(0) − �‖L2(�),

if the parameter {
k+1} is chosen by the formulae (34) and

‖�(k) − �∗‖H 4(�) ��k
0‖�(0) − �∗‖L2(�), k = 1, 2, . . .

if 
k = 
0 (k = 1, 2, . . .). In view of these estimates the corresponding estimates (35) and (38) follow from (33) applied
to the problems

L1(v
(k) − v) = �(k) − � in �,

�

��
(v(k) − v) = 0 on �,

L2(u
(k) − u) = v(k) − v in �,

�

��
(u(k) − u) = 0 on �,

which are obtained in the result of the subtraction (10) and (11) from (12) and (13), respectively. The theorem is
proved. �
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Remark. Theorem 3.3 theoretically ensures the error estimate (35) and the convergence of the iterative method (26)
when the computing process is ideal, that is, all the computations are carried out with an infinity number of significant
digits. But any computer makes calculations with a finite speed and a finite number of digits. In this case rounding
errors may accumulate and the computing process may be unstable. In order to overcome this computational instability
following Samarskii and Nikolaev [13,12] it is needed to use a stable collection of parameters {
∗

k} calculated by the
formula


∗
k = 
0

�0t
∗
k + 1

, t∗k = − cos
( 


2M
�∗
M(k)

)
, k = 1, . . . , M ,

where �∗
M is the sequence of the odd integers from 1 to 2M − 1, determined by a rule given there.

An alternative way to treat the numerical instability of the Richardon’s iterative method (26) is the use of the semi-
iterative method based on stationary Richardon method as was recommended in [14] for solving a system of linear
algebraic equations. But it requires extra computational work in computing sums of iterations.

In the case of the stationary process the value 
0, as well known in [12,13], is optimal. But for calculating it we
need to know ‖A‖, which is difficult to be determined. Therefore, in the next section, first we shall determine ‖A‖
experimentally from one particular case, and then use it to find nearly optimal value of the iterative parameter in some
other cases.

4. Numerical results

We performed some limited experiments in MATLAB for testing the convergence of the iterative process (12)–(14)
in dependence on iterative parameters, which are taken fixed at all iterations, i.e. 
k ≡ 
 . In the examples considered
below the computational domain is a rectangle with the uniform grid including 65×65 nodes. The Neumann problems
for the second order equations (12), (13) are discretized by difference schemes of second order approximation obtained
by a variational method. The stopping criterion for the iterative process is ‖�(k)‖∞ < 10−4.

Example 1. We take an exact solution u = sin x sin y in the rectangle [0, 
] × [0, 
] and vary the coefficients a and b
in the equation (1). Hence, the right-hand side of the equation is f = (4 + 2a + b) sin x sin y.

In all two examples we take a = 1, � = � = 0.5 and change only b. First, we take b = 1 and make experiments for
testing the convergence of the iterative method in dependence on the choice of the iterative parameter 
. The results of
computation are presented in Table 1, where k is the number of iterations, err is the error of approximate solution uap,
err = ‖uap − u‖∞.

From Table 1 we see that it is possible to adopt experimentally 
opt = 0.36. Meanwhile, the formulae (32), (34) give


opt = 2

2 + 	‖A‖ , (39)

where 	 = b − ��. From here we can calculate ‖A‖ ≈ 4.7407. Note that for a fixed domain ‖A‖ depends only on �
and �. Therefore, this value of ‖A‖ can be used for calculating good iterative parameter for the cases of other values

Table 1
Case b = 1


 k err

0.20 30 0.0006
0.30 20 0.0006
0.35 16 0.0006
0.36 15 0.0006
0.37 16 0.0006
0.40 18 0.0005
0.45 39 0.0008
0.50 ∞
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Table 2
Case b = 0.5


 k err

0.40 13 0.0011
0.50 13 0.0011
0.55 9 0.0011
0.60 8 0.0011
0.6279 7 0.0011
0.65 7 0.0011
0.70 8 0.0009
0.80 15 0.0013

Table 3
Case b = 1.5


 k err

0.20 31 0.0005
0.22 29 0.0005
0.25 25 0.0005
0.27 24 0.0005
0.2523 25 0.0005
0.30 41 0.0006
0.32 111 0.0001
0.35 ∞

Table 4
Case b = 1


 k err

0.20 49 1.2e − 5
0.30 32 6.6e − 6
0.35 25 4.9e − 6
0.36 26 4.9e − 4
0.37 25 5.2e − 6
0.40 24 6.8e − 5
0.45 45 2.1e − 4
0.50 ∞

Table 5
Case b = 0.5


 k err

0.4 21 1.4e − 5
0.5 16 8.1e − 6
0.5 16 8.1e − 6
0.55 14 6.9e − 6
0.6279 12 2.8e − 6
0.65 11 6.9e − 6
0.7 10 2.1e − 4
0.8 18 2.1e − 4
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Table 6
Case b = 1.5


 k err

0.20 50 8.1e − 6
0.22 46 5.8e − 6
0.25 40 5.2e − 6
0.2523 40 4.5e − 6
0.27 38 4.5e − 6
0.30 48 2.1e − 4
0.32 127 2.0e − 4
0.35 ∞

of b provided that a, �, � are unchanged. The results presented in Tables 2 and 3 support this assertion. In these tables
as in Tables 4–6 below the values of 
 in bold face are calculated by the formula (39) with ‖A‖ = 4.7407.

Example 2. We take an exact solution u = (x2 − 4)(y2 − 1) in the rectangle [−2, −2] × [−1, 1]. The right-hand side
of the equation (1) is f = 8 − 2a(x2 + y2 − 5) + b(x2 − 4)(y2 − 1).

The results of the convergence of the method are presented in Tables 4–6.
From Tables 1–6 it is clear that the values of iterative parameter 
 computed by (39), where ‖A‖ is found experi-

mentally, are nearly optimal.

5. Concluding remark

In the paper, an iterative method was proposed for reducing the Neumann problem for biharmonic type equation to a
sequence of Neumann problems for second order equations. The convergence rate of the method depends on the choice
of the iterative parameter 
, whose optimal value is determined by the norm of the operator A. In its turn, this norm is
fully defined for each domain and each value of the coefficient a in Eq. (1) if a choice of � and � is fixed, for example,
� = � = a/2. By experimental way it is possible to find this quantity. Theoretical estimate for ‖A‖ is an interesting
problem to be studied.
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