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Current knowledge of lipid and protein diffusion rates in homogeneous, fluid, artificial bilayers is 
reviewed and the ability of current theory to account for these rates is evaluated as a reference for 
understanding lateral diffusion in biomembranes. Experimental evidence on the effects of increasing 
protein concentration on the lateral diffusion of membrane lipids and proteins is summarized to provide 

a qualitative description of the situation in biomembranes. 
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1. INTRODUCTION 

Recent detailed experiments and theoretical work 
have made it possible to test various descriptions 
of the lateral diffusion of lipids and proteins in 
bilayer membranes (review [1,2]). Such an en- 
deavor involves examining the fit of the explicit 
size and temperature dependences to the data, and 
this is best done with artificial bilayer membranes, 
where the most control over the experimental para- 

Abbreviations: DLPC , dilauroylphosphatidylcholine; 
DMPC, dimyristoylphosphatidylcholine; DPPC, dipal- 
mitoylphosphatidylcholine; DOPC, dioleylphosphatidyl- 
choline; egg PC, egg phosphatidylcholine; PE, 
phosphatidylethanolamine; NBD-phospholipid, N-(4- 
nitrobenzo-2-oxa-1,3-diazolyl)-conjugated to stated 
phospholipid; di1, used for the Cis and Cis forms of 
3,3’-diacylindocarbocyanine iodide and 3,3’-dioctade- 
cylindodicarbocyanine iodide; IMP, intramembranous 
particle; T, absolute temperature; T,,,, gel-to-liquid 
crystalline phase transition temperature; k, Boltzmann 
constant; af, free area; 7, viscosity 

meters and the most detailed knowledge about the 
physical system exist. Following the treatment of 
Nir and Stein [3] proposing two modes of diffusion 
in liquids, it seems reasonable to divide diffusive 
behavior in fluid bilayers into two regimes based 
on whether the molecular size of the diffusant is 
larger than or comparable to that of solvent, i.e., 
the lipids of the bilayer; these regimes may be 
separated by a transition region (see top of fig.1). 
For molecules comparable in size to the host phos- 
pholipids, free area or lattice models can be used 
to fit the data. For molecules large compared to 
the ‘solvent’ phospholipids (i.e., proteins), hydro- 
dynamic models viewing the bilayer as a con- 
tinuum can be used. This part of the paper deals 
with diffusion under ‘ideal’ conditions where lipid 
probe and protein are present in the bilayer in very 
dilute amounts. Next, the effects of increasing pro- 
tein concentrations on the lateral diffusion of both 
lipids and membrane proteins are reviewed to 
begin an understanding of the ‘non-idealities’ 
caused by the higher amounts of protein found in 
biomembranes. 
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2. DIFFUSANT COMPARABLE IN SIZE TO 
SOLVENT: LATERAL DIFFUSION RATES 
OF LIPID-LIKE MOLECULES IN SINGLE- 
COMPONENT, FLUID, ARTIFICIAL BI- 
LAYERS 

As a background, it is instructive to mention de- 
velopments in the description of transport proper- 
ties in liquids. Success has been achieved using a 
quasicrystalline model of liquid structure. Such 
models yield transport properties which exhibit Ar- 
rhenius behavior with respect to temperature. 
However, the fluidity of associated liquids and 
many polymeric liquids display large departures 
from Arrhenius behavior and this stimulated re- 
newed interest in various free volume approaches. 

Transport properties such as viscosity of bulk 
fluids are intuitively expected to depend in some 
way on the free volume present. This expectation 
is founded on the empirical relationship discovered 
by Batschinski ]4] and extended by Hildebrand [5], 
which demonstrated that in many non-associated 
liquids and their solutions, fluidity, self-diffusion 
and solute diffusion were all directly proportional 
to the relative volume expansion in these fluids. In 
fact, examination of transport properties over 
large temperature ranges showed that the depen- 
dence of these properties on relative volume expan- 
sion was not strictly linear 161. 

Cohen and Turnbull [7] quantitatively con- 
sidered the effect of free volume on diffusion in 
hard-sphere fluids. In their treatment, a spectrum 
of free volume sizes is formed by solvent density 
fluctuations. A test molecule can undergo a diffu- 
sive step if a free volume exists adjacent to it of a 
certain minimum size. The test molecule, although 
largely confined by the solvent cage, is assumed to 
possess a velocity given by the kinetic theory of 
gases and quickly moves into the adjacent ‘hole’. 
The diffusive step is completed when another sol- 
vent fluctuation closes the free volume left by the 
test molecule before it can reenter this hole. 

Macedo and Litovitz [8] combined the activated 
lattice diffusion approach and the Cohen-Turnbull 
free volume description to yield a two-parameter 
model capable of fitting a wide range of liquid 
transport data. The hybrid expression essentially 
recognized that a diffusive step of a test molecule 
requires both that an adjacent free volume of ade- 
quate size exist and that the molecule possess a 
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minimum energy to break the attractive forces with 
its neighbors. 

Less attention has been directed toward quanti- 
tatively accounting for the diffusion of lipids in 
bilayers. To begin, consider a two-dimensional 
square lattice in which the lipid lateral diffusion 
coefficient, D, is given by: 

D = l/4&, (1) 

where Y is the jump frequency and A is the jump 
distance (i.e., the lattice spacing). This equation 
can be derived in an analogous way to computing 
the mean end-to-end distance of a random coil 
polymer. Recently, Pace and Chan [9] proposed a 
model for lipid lateral diffusion in which the rate 
limitation for lateral diffusion is assumed to be the 
separation of neighboring head groups allowing 
movement of the test lipid through the space 
created by the separation. The frequency, Y (eq. l), 
and activation energy for chain separations which 
are large enough to allow diffusion to occur can be 
calculated from theories of polymer motion. This 
calculation gives D values of the right order of 
magnitude. Unfortunately, over large temperature 
regions, Arrhenius plots of diffusion are not 
linear, giving rise to a departure of theory from ex- 
periment [14]. Pace and Chan ]9] have noted that 
the temperature dependence of their calculated 
activation energy is not large enough to produce 
significant non-linearities in the Arrhenius plot. 

Other investigators have studied the relationship 
of the lateral diffusion coefficient to the free area 
available in the bilayer. An adaptation of the 
Cohen-Turnbull equation to two-dimensional 
fluids by Galla and co-workers [lo] is capable of 
fitting the lipid analog lateral diffusion data ob- 
tained by the photobleaching method [11,14]. 
MacCarthy and Kozak [12] have shown that this 
adaptation can be derived directly from cell theory 
in a form not requiring the specification of pheno- 
menological constants yielding: 

D = A exp [&*/af (T)] (2) 

where a* is close packed area per molecule and 
rzr(T) is the mean free area per molecule at a given 
temperature, T, and is calculated as the increase in 
free area at the phase transition, plus the increase 
above the phase transition temperature (7”) due to 
thermal expansion, 
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The preexponential factor, A, can take several 
forms. (1) According to Cohen-Turnbull theory, it 
involves the gas kinetic velocity of the diffusant 
within the cage defined by the surrounding solvent 
molecules and hence is dependent on T1’2. Ex- 
plicitly, the m~mum jump frequency is given by 
prnax = (X/u)-’ where u is the velocity of the test 
molecule within its cage (u = (2kT/m)“2), m being 
the mass of the diffusant. (This maximum jump 
frequency must be multiplied by the probability of 
having free area af 2 a* and inserted into eq. 1 to 
obtain the diffusion coefficient.) (2) Recent work 
[ 13,141 suggests that the pre-exponential factor 
should incorporate the fact that the lipid diffuses 
within its cage and is not in a vacuum but rather 
coupled to other lipids and the aqueous phase. In 
this treatment, 

A = kTlf (3) 

where f is the translational frictional coefficient 
due to interaction of the diffusing particle with the 
adjacent aqueous layer and, for the case of dif- 
fusing lipid particle which only traverses one of the 
monolayers, with the opposing monolayer. Note 
that A is identified with the diffusion coefficient of 
the test molecule within its cage. (3) By analogy to 
bulk fluids [8], the diffusant can be required to 
have enough energy, Ea, to break the bonds with 
the neighbo~ng lipids when an adjacent void of 
sufficient free area occurs. In this case, D is pro- 
portional to both the probability of having a re- 
quisite adjacent free volume as well as the energy 
to make the jump and 

A = &exp - [EJRT], (4) 

A now having an exponential dependence on T. 
The free area theory predicts an extremely steep 

dependence on the critical area for diffusion, a*. 
Cohen-Turnbull theory [7] predicts that molecules 
occupying less area than the solvent will diffuse at 
the same rate as the solvent since a diffusive step 
of the test molecule is only completed when a sol- 
vent molecule jumps into the void left by the test 
molecule. Hence, in fig.1 the dotted line is hori- 
zontal at r < 3.9 A. Of course this is an oversimpli- 
fication since the solvent molecules move in a col- 
lective fashion to allow the rapid filling of voids 
smaller than the close-packed area of a solvent 

molecule. Nevertheless, data on single-chain diffu- 
sants [15] tend to support this prediction of the 
free volume theory. The generally untested nature 
of this size dependence is indicated by the broken 
line in fig.1. 

However, the free area dependence of eq.2 can 
be tested by assessing the linearity of 1ogD vs aT1 

plots at constant temperature. Peters and Beck [16] 
elegantly demonstrated the validity of this relation- 
ship for monolayers at an air/water interface by 
measuring the translational diffusion of NBD-egg 
PE as a function of area per molecule in DLPC 
monolayers* (see fig.ZA). This analysis can be ex- 
tended to lateral diffusion in bilayers. In fig.2B, 
the lateral diffusion data of McCown et al. [18] is 
shown to be linear with reciprocal free area in the 
bilayer; in this case, free area was varied isother- 
mally by changing the hydration of the bilayer in 
multibilayer specimens. Although the interbilayer 
spacing also changes with hydration, there is 
reason to believe, based on the similarity of elastic 
area compressibility data in single vs multibilayer 
samples, that lateral diffusion will not be especially 
sensitive to the ch~ging interbilayer distance [ 181. 
Free area can also be varied by changing tempera- 
ture. In fig.2C the lateral diffusion coefficients of 
NBD-C12PE in DLPC bilayers and NBD-C14PE in 
DMPC bilayers are given as a function of free area 
in these bilayers. The free areas were calculated 
using the thermal expansion values quoted by 
Goodsaid-Zalduondo and Elson [ 111. The linearity 
of the data in fig.ZC indicates that the free area 
dependence dominates the temperature depen- 
dence in the pre-exponential factor of eq.2, over 
the small ranges of absolute temperature ex- 
amined, and that larger temperature ranges would 
be required to examine the temperature depen- 
dence of the preexponential factor. Similar plots 
for NBD-egg PE diffusing in DLPC and DOPC bi- 
layers also indicate a linear relationship between 
log D and aF’ [ 111. It should be noted that the 
pressure dependence of the diffusion coefficient 
extracted from pyrene excimer measurements also 
suggests the validity of the free area theories [19]. 

*We note that Von Tscharner and McConnell 1171 ob- 
tained a much weaker dependence of D for NBD-PE on 
area per molecule in DPPC monoIayers transferred to 
glass substrates. However, the range of areas per mole- 
cule examined was more restricted than in the study of 
Peters and Beck [16]. 
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Fig.1. Diffusion coefficient as a function of,diffusant radius in artificial DMPC bilayers at 36”C, with the exception 
of ATPase which was reconstituted in lipids from the sarcoplasmic reticulum. Bar at top shows theoretical regimes. The 
dotted line to the left shows the very steep dependence of D on size in the free area theory given by eq.2. The NBD-PE 
point is taken from data of Vaz et al. [14]. Experimental data are taken from Vaz et al. [30] (rhodopsin, acetylcholine 
receptor, and the ATPase from sarcoplasmic reticulum) and from Peters and Cherry [24] (bacteriorhodopsin). The 
shaded region gives the very weak dependence of D on size in the Saffman-Delbrtick treatment (eq.6) for membrane 
viscosities (T,) in the range 0.75-1.5 P. For reference, the beaded line gives the size dependence of the Stokes-Einstein 

equation (&Yu-‘) given a D value of 3.5 x 10e8 cm’ls for a particle of radius a = 5 A. 

Free area descriptions have intuitive appeal to 
describing fluid transport: nevertheless, the agree- 
ment between theory and experiment (fig.2) is sur- 
prising in view of the origins of the theory (see [ 131, 
for critique). The free area theory was adapted 
from the parent free volume theory for hard- 
sphere rigid molecules, in which the motions of the 
test molecule are not influenced by the motions of 
the solvent molecuies. Phospholipids, of course, 
have an attractive component to the intermolecular 
potential curves, and, when assembled into bi- 
layers, undergo correlated motions. They also have 
internal degrees of freedom so that not all the free 

area developed is available for diffusion, That is, 
some of the free area in the liquid crystalline (fluid) 
phase is effectively filled by the variety of acyl 
chain conformers accessible to the molecule. How- 
ever, the linearity of the curves in fig.2 suggests 
that this putative inaccessible free area is relatively 
small and/or constant when compared to the large 
free area developed at the phase transition. Finally, 
interactions of the diffusant head group with the 
bulk aqueous medium and terminal portion of the 
acyl chains with the opposing monolayer are 
neglected. 

It is possible that some or all of these missing 
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Fig.2. The dependence of lipid probe lateral diffusion coefficients on free area. (A) Data for NBD-egg PE in DLPC 
monolayers at the air/water interface. (Redrawn from Peters and Beck [16]). (B) Data for NBD-PE in egg PC bilayers 
in which area per molecule is varied by changing the hydration of the bilayer . (From the data of McCown et al. [18] .) 
D at full hydration assumed to be 5 x 10-s cm’/s; close packed area at which diffusion ceases assumed to be 54 A 1181. 
(C) Lateral diffusion of NBD-C14PE in DMPC and NBD-CI~PE in DLPC measured at various temperatures above the 
phase transition temperature [14]. Free areas calculated according to the thermal expansion values quoted by 

Goodsaid-Zalduondo et al. [23]. 

features will have to be involved to explain one 
puzzling aspect of the data in fig.2C: at the same 
free areas, diffusion in DLPC is faster than in 
DMPC. The free area theory can be adapted to 
accommodate this feature of the data by adjusting 
the pre-exponential factor; however, given the 
similarity of the lipids, the justification for doing 
this is not obvious. 

3. DIFFUSANT LARGER THAN SOLVENT: 
INTEGRAL PROTEIN DIFFUSION RATES 
IN SINGLE-COMPONENT, FLUID, ARTI- 
FICIAL BILAYERS 

The broken line in fig. 1 indicates that, according 
to the free area theory, D decreases too rapidly 
with molecular size to account for the lateral diffu- 
sion of the larger membrane proteins. Fortunately, 
we can regard proteins as being large enough in 
most cases, so that the surrounding lipid solvent 
can be treated as a continuum. Motion is driven by 
random, fluctuating forces provided by unbalanced 
collisions with the solvent molecules and is resisted 
by the frictional forces inherent in a viscous sol- 
vent. The diffusion coefficient is given by D = kT/f, 
where k is the Boltzmann constant and f is the fric- 
tional coefficient. In the case of a spherical particle 

of radius a in a medium of viscosity 7, f = 6qa, 
resulting in the familiar Stokes-Einstein equation: 

D = kT/6qa (5) 

in which the diffusion coefficient is inversely pro- 
portional to both the radius of the diffusant, a, 
and the medium viscosity, q. 

The continuum treatment was extended by 
Saffman and Delbriick [20,21] to diffusion in thin, 
viscous sheets and resulted in the following limiting 
equation: 

D = (kT/4r&)ln [p,,h/q,a - 0.57721 (6) 

where q,,, and qlw are the viscosities of the mem- 
brane and bathing phases, respectively (with 
qW e a,,,), a is the radius of a cylindrical membrane 
diffusant, and h is the membrane thickness. This 
equation is seen to fit the data for membrane diffu- 
sants having larger radii (r > 10 A) (see fig. 1, solid 
line), confirming the remarkably weak size depen- 
dence predicted by eq.6. The range of protein radii 
examined has been extended by cross-linking of 
integral proteins. For example, the acetylcholine 
receptor protein diffusion was examined in soy- 
bean lipid bilayers as a monomer, covalently 
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Fig.3. Effect of increasing protein concentration on lipid probe diffusion (open bars) and protein diffusion (filled bars) 
in bacteriorh~opsin-DMPC recombinants at the lipid : protein molar ratios indicated. (A) Data from Peters and Cherry 
1241. Lipid probe was dio~tadecyloxatric~bocyanine, Height of hatched bar represents D for rhodopsin in the intact 

rod outer segment membranes. (B) Data taken from Goodsaid-Zalduondo et al. [23]. Lipid probe was NBD-PE. 

linked dimer, and covalently linked tetramer (Vaz, 
W.L.C. and Criado, M., in preparation). The 
translations diffusion coefficient for the 3 protein 
species was found to be the same within experi- 
mental error. In further work glycophorin diffu- 
sion was examined in DMPC bilayers in the 
presence and absence of wheat germ agglutinin 
(WGA) (Vaz, W.L.C., in preparation). WGA 
binds to the sialic acid residues in glycophorin and 
causes cross-linking o$ the protein. L) for glyco- 
phorin in the presence of WGA was only 20% 
lower than D for this protein in the absence of the 
lectin. (It is important to note that the extension of 
the Saffman-Delbr~ck equation f22] for the situa- 

tion that the bathing viscosities are comparable to 
the membrane viscosity is not required.*) The de- 
pendence of this equation on bilayer viscosity has 
not been tested. 

4. TRANSITION REGION 

Fig.1 indicates a transition region between the 
diffusive behavior described by the free area and 

*The extended Saffman Delbrtick equation would be 
required if the dimensionless parameter e 2 0.1. Since 
c = (Zp.J~,)(a/h) and vrn is thought to exceed 10qW, the 
extended form is not required. 
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continuum theories. At this time, it is not clear into inner mitochondrial membranes, resulting in a 
which regime important integral proteins with demonstrated dilution of membrane proteins. In- 
small diameter membrane spanning or inserting creasing the lipid content by up to 7~~~ increased 
domains, such as glycopho~n or cytochrome bs, the dif and the NBD-PE diffusion coefficients by 
respectively, would fall. a factor of about 3. 

5. EFFECT OF HIGHER PROTEIN CONCEN- 
TRATION ON LATERAL DIFFUSION 

The previous section dealt with protein diffusion 
in the limit of very small concentrations of protein. 
Biomembranes, of course, have larger concentra- 
tions of proteins and recent data allow one to ex- 
amine qualitatively the effect of protein concentra- 
tion on both lipid and protein diffusion, Investiga- 
tions have been performed by ~o~said-Z~duondo 
et al. [23] and Peters and Cherry 1241 who have 
reconstituted bacteriorhodopsin with lipids to 
form recombinants having a defined lipid : protein 
ratio. The effect of protein on lipid analog diffu- 
sion rates is given in fig.3 for two different fluores- 
cent lipid probes (open bar). Essentially, the two 
groups worked in different regimes of lipid :pro- 
tein ratio: dilute (panel B) and more concentrated 
protein (panel A). However, there were some 
quantitative discrepancies at either limit of lipid to 
protein ratio: Go~said-Z~duondo et al. 1231 
found complete immobilization of bacteriorho- 
dopsin at a lipid : protein ratio of 74, in contrast to 
the sluggish diffusion of the protein depicted in 
fig.3A at a lipid : protein ratio of 30. In addition, 
the NBD-PE D value in pure DMPC (no protein 
limit) was larger by a factor of 2.5 in the study of 
Goodsaid-Zalduondo et al. 1231 than was the dio- 
ctadecyloxatricarbocyanine D value measured by 
Peters and Cherry [24] in pure DMPC bilayers. 
The results show that increasing protein concentra- 
tion gradually reduces the lipid diffusion coeffi- 
cient in DMP~-bacteriorhodopsin recombinants, 

Additional evidence for protein effects on lipid 
lateral diffusion can be garnered by correlating the 
diffusion coefficients of the lipid analog, di1, to 
the concentration of integral proteins in several 
systems. We take the intramembranous particle 
(IMP) density obtained from freeze-fracture elec- 
tron microscopy as a measure of the effective inte- 
gral membrane protein concentration. The correla- 
tion of lipid diffusion rate to protein concentration 
is given in table 1 and again shows how increasing 
protein diminishes the dif diffusion coefficient 
with the maximum retardation occurring in the 
inner membrane of the mitochondrion, 

It can be inferred from studies on fibroblast f25f 
and erythrocyte [26] membranes that lipid probe 
diffusion is retarded by proteins in cell mem- 
branes, In both of these studies, lipid probe diffu- 
sion in the intact membrane was compared to that 
found in pure lipid bilayers made by extracting the 
plasma membrane lipids from the respective cells, 
with the result that the diffusion coefficient of the 
lipid probe was increased by a factor of 4 by re- 
moving the membrane proteins. Similarly, Chazotte 
et al, 1281 have recently fused lipid vesicles with 

One can apply the archipelago theory of Saxton 
[27] to these data under the following assumptions. 
Firstly, the protein domains are assumed not to in- 
teract with the lipid probes and to be impermeable 
to them. Secondly, we assume the proteins diffuse 
so slowly in the biomembranes that they are ‘seen’ 
by lipids to be effectively immobile. Finally, we 
take an average effective IMP diameter, realizing 
that these normally span a range of diameters in 
typical biomembranes. However, our purpose is 
only to assess crudely the applicability of percola- 
tion theory ([2?], fig.2; r = 0 case) to explain the 
reduction of the di1 diffusion coefficient caused by 
the presence of increasing concentrations of IMPS. 
While percolation theory does account for the re- 
duction in lipid probe diffusion coefficients in pro- 
tein-rich biomembranes such as the erythrocyte 
membrane and the inner mitochondrial membrane 
(table 1, columns 4-d; see also [26]), it fails to pre- 
dict the magnitude of the reduction seen in the 
fibroblast and the l~ph~~e plasma membrane. 
There are a number of obvious possible reasons for 
this. It may be that lipid diffusion in the protein 
free bilayer is not as rapid as 5 x 10-s cm’ls. 
Secondly, freeze-fracture may not be detecting all 
of the relevant membrane proteins, i.e., those 
which diffuse slowly enough to be impediments to 
lipid diffusion. It is known, for example, that cap- 
ping of Con A and PHA receptors, as well as sur- 
face Ig and H2 and # antigens by the appropriate 
ligands does not alter the IMP distribution 1371. 
(Simply taking a larger mean IMP diameter will 
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Table 1 

Effects of membrane proteins on di1 diffusion 

Membrane Surface ‘IMP’ density D for di1 at (D/DF) Area fraction (D/Of) Ref.e 
(number/pm*)” 25°C (cm’/s) expt.b of fluid lipidC theoryd 

Fluid DMPC 

Bilayer of fibroblast PM lipids 
Lymphocyte PM 
Fibroblast PM 
Erythrocyte PM 
Inner mitochondrial membrane 

-o- 60 x lO-9 - - _ WI 
-o- 40 x lo-9 _ - - P51 

350-700 17 x lo-9 0.34 0.97-0.98 -0.9 [31,32] 
-850 10 x lo-9 0.20 0.96 -0.8 [25,33] 

-4200 8 x lO-9 0.16 0.81 0.2 [34,35] 
-4300 5 x lo-9 0.10 0.81 0.2 [28,36] 

aTotal of both fracture faces 
bAssuming DF (no protein) = 5 x 10m8 cm*/s 
‘Assuming a mean IMP diameter of 75 A 
d [27], fig.2; r = 0 curve 
e First reference: diffusion constant; second reference: surface IMP density estimate 

not improve the fit of theory to experiment nearly 
enough.) 

The effects of protein crowding on its own self- 
diffusion rate have also been examined in the 
bacteriorhodopsin-DMPC recombinant system 
[23,24]. The results are given in fig.3 as solid bars 
and show that bacteriorhodopsin self-diffusion is 
retarded as more protein is added to the mem- 
brane. Peters and Cherry [24] point out that rho- 
dopsin lateral diffusion data in the frog retinal disc 
membrane fit on this graph (hatched bar). This may 
represent close to a lower limit of the lipid : protein 
ratio in fluid biomembranes; the even lower value 
of lipid : protein ratio in the bacteriorhodopsin- 
DMPC system may be in a regime where protein 
self-aggregation severely retards the diffusion rates 
[23,24]. 

It is important to note that in many biomem- 
branes, protein lateral diffusion is even slower 
than the lower limit predicted by protein crowding. 
This fact implicates structures peripheral to natural 
membranes, e.g., the cytoskeleton and glycocalyx, 
in regulating the lateral diffusion and distribution 
of membrane proteins [29]. 

6. SUMMARY AND CONCLUSIONS 

(1) It seems reasonable to consider the lateral dif- 
fusion of dilute solutes in lipid bilayers as divided 
into two size regimes according to whether (i) the 
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solute is comparable in size to the ‘solvent’ lipid 
molecules or (ii) the solute is large compared to the 
solvent. 

(2) For lipid-like molecules having dimensions 
similar to the lipids in the bilayer an expression 
adapted from the Cohen-Turnbull free volume 
theory for liquid diffusion fits available lateral dif- 
fusion data over limited temperature regions. 

(3) For molecules larger compared to lipids, such 
as some integral membrane proteins, the solvent 
bilayer can be treated as a continuum and the 
theory of Saffman and Delbrtick describes the 
weak dependence of D on protein radius, when the 
proteins are present in dilute concentrations. 

(4) At this time, it is not clear where the break- 
point between the two regimes should be placed. 
For instance, is the lateral diffusion of proteins 
with relatively small diameter membrane spanning 
or penetrating segments best described by the free 
area or the continuum approach? 

(5) When proteins are present in higher concen- 
trations in both artificial and natural membranes 
systems, there is a definite reduction in both the 
lipid and protein lateral diffusion coefficients 
which is directly dependent on the amount of pro- 
tein in the membrane. 
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