Cooperative activation of IP₃ receptors by sequential binding of IP₃ and Ca²⁺ safeguards against spontaneous activity

Jonathan S. Marchant and Colin W. Taylor

Background: Ca²⁺ waves allow effective delivery of intracellular Ca²⁺ signals to cytosolic targets. Propagation of these regenerative Ca²⁺ signals probably results from the activation of intracellular Ca²⁺ channels by the increase in cytosolic [Ca²⁺] that follows the opening of these channels. Such positive feedback is potentially explosive. Mechanisms that limit the spontaneous opening of intracellular Ca²⁺ channels are therefore likely to have evolved in parallel with the mechanism of Ca²⁺-induced Ca²⁺ release.

Results: Maximal rates of ⁴⁵Ca²⁺ efflux from permeabilised hepatocytes superfused with medium in which the [Ca²⁺] was clamped were cooperatively stimulated by inositol 1,4,5-trisphosphate (IP₃). A minimal interval of ~400 msec between IP₃ addition and the peak rate of Ca²⁺ release as well as an absolute latency of 30 msec before initiation of Ca²⁺ mobilisation indicate that channel opening does not immediately follow binding of IP₃. Although the absolute latency of Ca²⁺ release was unaffected by further increasing the IP₃ concentration, it was reduced by increased [Ca²⁺].

Conclusions: We propose that the closed conformation of the IP_3 receptor is very stable and therefore minimally susceptible to spontaneous activation; at least three (probably four) IP_3 molecules may be required to provide enough binding energy to drive the receptor into a stable open conformation. We suggest that a further defence from noise is provided by an extreme form of coincidence detection. Binding of IP_3 to each of its four receptor subunits unmasks a site to which Ca^{2+} must bind before the channel can open. As IP_3 binding may also initiate receptor inactivation, there may be only a narrow temporal window during which each receptor subunit must bind both of its agonists if the channel is to open rather than inactivate.

Background

Cytosolic Ca²⁺ signals evoked by receptors linked to inositol 1,4,5-trisphosphate (IP₃) formation are complex: the signals often occur after a substantial latency [1] and then comprise cycles of Ca²⁺ release from intracellular stores that give rise to Ca²⁺ waves and Ca²⁺ spikes [2]. The IP₃ receptors that mediate these Ca²⁺ responses are homotetrameric or heterotetrameric assemblies of large subunits [3], which form high conductance IP₃-gated Ca²⁺ channels [4]. The stimulatory and inhibitory effects of cytosolic Ca²⁺ on IP₃ receptors [5–7], together with the possibility that responses to IP₃ are positively cooperative [8], are often invoked to explain the complex patterns of Ca²⁺ mobilisation [2].

In intact cells, the long latency and subsequent sigmoidal increase in cytosolic $[Ca^{2+}]$ after addition of agonists [1,2], flash photolysis of caged IP₃ [9–12], or intracellular perfusion with IP₃ [13] are consistent with either positively cooperative activation of IP₃ receptors by IP₃ alone or by positive feedback from cytosolic $[Ca^{2+}]$. Distinguishing between these mechanisms, however, is difficult in intact

Address: Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QJ, UK.

Correspondence: Colin W. Taylor E-mail: cwt1000@cam.ac.uk

Received: 27 February 1997 Revised: 17 April 1997 Accepted: 23 May 1997

Published: 18 June 1997

Current Biology 1997, 7:510–518 http://biomednet.com/elecref/0960982200700510

© Current Biology Ltd ISSN 0960-9822

cells, in which IP₃ receptor activation inevitably increases cytosolic [Ca²⁺]. In broken cells, the use of fluorescent indicators to measure rapid rates of Ca²⁺ efflux is prone to similar difficulties. Stopped-flow analyses of permeabilised basophilic leukaemia cells, for example, suggest that gating of IP₃ receptors by IP₃ is positively cooperative [8]. However, results from a variety of tissues using superfusion [5], bilayer recording [14,15], fluorescent indicators [16] or flash photolysis of caged IP₃ in intact cells [12] suggest that responses to IP₃ are either not positively cooperative [5,12,14] or only slightly so [15,16]. Each approach has its limitations and together the results provide no clear indication of whether responses to IP₃ are positively cooperative in the absence of positive feedback from cytosolic Ca²⁺.

The high degree of temporal and spatial resolution provided by confocal imaging has refined our understanding of the initiation of IP₃-mediated Ca²⁺ signals by suggesting that increasing concentrations of IP₃ progressively recruit a hierarchy of Ca²⁺-release events. Elementary events or 'Ca²⁺ blips', which may reflect the opening of single IP₃ receptors, are rare in unstimulated cells, but their frequency increases with IP₃ concentration [2,17]. Higher concentrations of IP₃ trigger larger, yet still localised, Ca^{2+} signals ('Ca²⁺ puffs') which result from the opening of clusters of IP₃ receptors. The frequency of these Ca²⁺ puffs also increases with IP₃ concentration, eventually giving rise to the Ca²⁺ waves that spread throughout the cytosol. Ca²⁺ is proposed to provide the link between this hierarchical sequence of Ca²⁺-release events [2,17]. By virtue of its ability to sensitise IP₃ receptors, Ca²⁺ released from a single receptor within a cluster may recruit neighbouring receptors and thereby transform a blip to a puff, and diffusion of Ca²⁺ from one cluster of receptors to another probably allows the regenerative propagation of a Ca²⁺ wave [2,17].

The complex organisation of intracellular Ca^{2+} signals allows effective delivery of Ca^{2+} to targets throughout the cytosol without exposing the cell to potentially damaging increases in cytosolic $[Ca^{2+}]$ [18]; however, the characteristics of IP₃ receptors that provide this complexity may present additional problems. The very large Ca^{2+} conductance of IP₃ receptors [4] together with the positive feedback provided by the ability of the receptors to mediate Ca^{2+} -induced Ca^{2+} release [2,7] suggest that activation of the receptors must be stringently controlled if intracellular Ca^{2+} stores are not to be released inappropriately. These properties of IP₃ receptors suggest that mechanisms that limit spontaneous opening are likely to have evolved in parallel with the Ca²⁺-induced Ca²⁺ release mechanism. To address these issues, we have used methods that allow the rapid kinetics of unidirectional 45 Ca²⁺ efflux from permeabilised hepatocytes to be measured during rapid changes of superfusion medium, whilst controlling the composition of this medium precisely.

Results and discussion

Cooperative activation of $\rm IP_3$ receptors in the absence of Ca²⁺ feedback

Permeabilised rat hepatocytes immobilised on the filters of our superfusion apparatus responded to the maintained application of various concentrations of IP₃ in cytosol-like medium (CLM) containing 200 nM free [Ca²⁺] by releasing ⁴⁵Ca²⁺ transiently from their intracellular stores (Figure 1a). The essential characteristics of this response were similar to those observed previously in conventional fluorescence studies [16] and ⁴⁵Ca²⁺-flux assays [19,20]. A saturating concentration of IP₃ (10 μ M) released 30 ± 5% (*n* = 10) of the intracellular Ca²⁺ stores. The response was stereospecific because L-(1,4,5)IP₃ (80 μ M) was inactive, and the response could be mimicked by active analogues of IP₃ in the correct order of potency, (1,4,5)IP₃ > 3-deoxy-IP₃ ≥ 2,3-dideoxy-IP₃ > (2,4,5)IP₃. Heparin is a competitive

Figure 1

Cooperative activation of IP₃ receptors by IP₃. (a) Permeabilised hepatocytes were superfused (20 psi) with CLM (free $[Ca^{2+}] = 200 \text{ nM}$) which included one of a range of concentrations of IP₃ (nM: 100, 150, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2500, 5000, 10000, from front to back) for the period (5 sec) indicated by the ³Hmarker (pale vellow background). The ⁴⁵Ca²⁺ released was collected for 80 msec intervals, and the rate of ⁴⁵Ca²⁺ release during each interval is expressed as a percentage of the total ⁴⁵Ca²⁺ content of the intracellular stores. Each trace is from a single experiment but is representative of at least four individual experiments. (b) In this schematic representation, the main panel shows the complete time course of a response to IP3 illustrating the 'peak rate' of ⁴⁵Ca²⁺ release and the time taken to reach the peak rate, defined as the 'activation time'. The inset shows results collected at higher temporal resolution (see Figure 3) in order to define the 'latency' of the response to $\ensuremath{\mathsf{IP}_3}\xspace$. In both panels, the solid line enclosing the yellow shaded area denotes the arrival of the ³H-inulin marker and that enclosing the white area denotes ⁴⁵Ca²⁺ release. (c) The concentration-dependent effects of IP3 on the peak rate of 45Ca2+ release were determined from experiments similar to those shown in (a). Open symbols $(n \ge 4)$ show results from CLM containing

1 mM EGTA and 200 nM free [Ca²⁺], and filled symbols show results from a single experiment in which the CLM contained 20 mM BAPTA and no added Ca²⁺. In each case, the results are expressed as a percentage of the maximal response. (d) The Hill coefficients derived from the curves shown in (c) suggest that three and possibly all four subunits of the tetrameric IP_3 receptor must bind IP_3 before the channel can open and release Ca^{2+} into the cytosol.

Peak rates of IP₃-evoked Ca²⁺ release occur after substantial delays. The interval between the onset of the superfusion with IP₃ (detected by the appearance of ³H-inulin in the superfusate) and attainment of the peak rate of ⁴⁵Ca²⁺ release (the activation time) was measured from experiments similar to those shown in Figure 1a ($n \ge 4$). The inset shows these activation times (Figure 1b) arbitrarily plotted against 1/[IP₃]; extrapolation to infinite [IP₃] suggests a minimal activation time of 418 msec.

antagonist of IP_3 receptors and at a concentration of 10 mg/ml blocked the action of 500 nM IP_3 (data not shown). In subsequent experiments, the superfusion apparatus was used to measure the rapid kinetics of IP_3 receptor activation in the absence of feedback effects of cytosolic Ca²⁺.

The effect of IP₃ on the peak rate (Figure 1b) of ⁴⁵Ca²⁺ mobilisation, which provides the best indicator of the number of open IP₃ receptors/channels [11], was positively cooperative (Hill coefficient, $n_H = 3.0 \pm 0.3$) and halfmaximal (EC_{50}) when the IP_3 concentration was 941 ± 21 nM (Figure 1c). The rapid flow of superfusion medium containing 1 mM EGTA through the small chamber containing the cells minimised any possible contribution of positive feedback from cytosolic Ca2+ to the responses to IP₃. Further evidence that the positively cooperative response to IP₃ was an intrinsic property of the receptor was provided by the observation that the response remained positively cooperative $(n_H = 2.4)$ when the cells were superfused with CLM containing a much higher concentration (20 mM) of the faster Ca²⁺ buffer, BAPTA (1,2bis(2-aminophenoxy)ethane-N,N,N'N'-tetra-acetic acid; Figure 1c) [21]. The two-fold decrease in sensitivity to IP₃ in the presence of BAPTA is a consequence of the ability of BAPTA to act as a weak competitive antagonist of the IP₃ receptor [22]. A recent analysis of the rate of IP₃evoked ⁴⁵Ca²⁺ release from hepatic microsomes has also

suggested a positively cooperative response ($n_H = 3.4$) to IP₃ [23]. We conclude that at least three and possibly all four subunits of the IP₃ receptor must bind IP₃ to initiate opening of the channel (Figure 1d).

Delayed opening of IP₃ receptors

The time taken for IP₃-evoked Ca²⁺ release to rise to its peak (the activation time, Figure 1b) decreased from several seconds at the lowest concentrations of IP₃ to a lower limit of 370 ± 85 msec (*n* = 10) with 10 μ M IP₃ (Figure 2). This interval is much longer than the time taken (~15 msec) to reach an IP_3 concentration (2 μ M) capable of evoking a maximal rate of ⁴⁵Ca²⁺ release (Figure 1c). The long activation times observed during submaximal stimulation are probably a further reflection of the need for at least three IP3 molecules to bind to the receptor and cause activation (Figure 1d) [8,23]. Slow binding events alone, however, cannot account for the lack of any further decrease in the activation time upon increasing the superfusing IP₃ concentration from 1 µM to 10 µM (Figure 2). The extrapolated estimate of the minimal activation time at infinite IP₃ concentration was 418 msec (Figure 2, inset). These results suggest that IP₃ binding might not be the sole determinant of receptor activation.

The rapid superfusion and sample collection system allowed us to examine this issue of receptor activation by investigating the effects of IP₃ at higher temporal resolution (9 msec), while simultaneously recording the arrival of IP₃ at the permeabilised cells. Using CLM containing 200 nM free [Ca²⁺], there was a long delay of > 100 msec between the application of a submaximal concentration of IP₃ $(1 \mu M)$ and channel opening (Figure 3a). The response to a 250 msec superfusion with a suprasaturating concentration of IP₃ (100 μ M) is shown in Figure 3b. Under these conditions, the cells were exposed to $\ge 19 \ \mu M \ IP_3$ within 9 msec; this concentration of IP₃ is far higher than that needed to evoke a maximal rate of ⁴⁵Ca²⁺ release (2 µM; Figure 1c). Despite the rapid exposure of the cells to such a high concentration of IP₃, the rate of ⁴⁵Ca²⁺ release did not increase immediately, but increased only after a latency of 34 ± 8 msec (*n* = 8). Further increasing the final IP₃ concentration to 300 μ M (i.e. to \geq 56 μ M within 9 msec) failed to reduce this latency, which remained at 31 ± 2 msec (n = 3, Figure 3c). Over a 10-fold range of final IP₃ concentrations (30-300 µM), there was no significant difference in the latency between application of IP3 and the onset of Ca2+ release from the intracellular stores: the extrapolated lower limit — the absolute latency — was 29 msec (Figure 3d).

As with any receptor-ligand interaction, the rate of association of IP₃ with its receptor is expected to increase with IP₃ concentration [24]. Our observation that a substantial increase in IP₃ concentration failed to reduce the absolute latency before channel opening therefore indicates that the delay is not due to the kinetics of IP₃ binding to its receptor. This argument is further supported by the results from rapid analyses of ${}^{3}\text{H-IP}_{3}$ binding to the receptor [24], from which we estimate the half-time for association of 56 μ M IP₃ (see above) to be less than 400 μ sec.

Slow opening of IP₃ receptors contrasts with rapid gating of plasma membrane ion channels

The long delay between addition of supramaximal concentrations of IP₃ and Ca²⁺ release was unexpected and in marked contrast to the rapid gating of most plasma membrane ligand-gated ion channels, which typically open within 1 msec of maximal stimulation [25,26]. The ion channels most closely related to IP₃ receptors, ryanodine receptors and cyclic GMP-activated channels, also open rapidly (< 1 msec) after maximal stimulation [27,28]. In view of the unusual behaviour of IP₃ receptors, we wanted to eliminate any possible artefactual explanation for our results.

Our first approach involved examining the kinetics of activation of nicotinic acetylcholine receptors, which have previously been well characterised using a variety of methods [25]. The electric organs of the marine ray Torpedo are derived from skeletal muscle and provide a uniquely rich source of each of the components of a cholinergic synapse, including the nicotinic acetylcholine receptors that allow the postsynaptic fibre to respond to the acetylcholine released into the synaptic cleft. Passive leakage of ²²Na⁺ from vesicles prepared from Torpedo electric organs was extremely slow ($t_{1/2} > 20$ min). During stimulation with acetylcholine (1 mM) in Torpedo physiological saline under the same superfusion conditions used to analyse the rapid activation of IP₃ receptors, the rate of ²²Na⁺ efflux increased within 9 msec to a peak value that was ~1000-fold greater than the basal leakage rate (Figure 4). In the continued presence of acetylcholine, the rate of ²²Na⁺ efflux then decayed with biexponential kinetics with half-times of 7 msec and 50 msec, which are comparable to those describing rapid inactivation and desensitisation of nicotinic acetylcholine receptors [29]. By confirming that the nicotinic acetylcholine receptor is maximally opened within 9 msec of

Figure 3

Delayed Ca²⁺ release after maximal stimulation of IP₃ receptors. (a–c) Rates of ⁴⁵Ca²⁺ efflux (open symbols) were recorded at 9 msec intervals in response to rapid superfusion (30 psi) with CLM (free [Ca²⁺] = 200 nM) containing IP₃ at final concentrations of (a) 1 μ M, (b) 100 μ M and (c) 300 μ M. The kinetics of IP₃ delivery to the cells were reported by the rate of appearance of ³H-inulin in the superfusate (filled symbols; $n \ge 3$). (d) Experiments similar to those shown in (a–c) were used to establish the effects of IP₃ concentration on the latency. The latency was defined as the interval between the time at which IP₃ was detected in the superfusate and the onset of ⁴⁵Ca²⁺ release (Figure 1b); the latter was described as the first of three consecutive increases in the rolling average of three successive rate measurements ($n \ge 3$). Curve-fitting of these data provided an extrapolated absolute latency of 29 msec at infinite [IP₃]. superfusion with acetylcholine, these results establish that our apparatus is capable of resolving very rapid changes in ion flux.

The presence of high concentrations of Ca^{2+} buffers within the cytosol substantially slows Ca^{2+} diffusion, such that Ca^{2+} diffuses approximately 20-fold more slowly than IP₃ [30]. We were concerned that, while IP₃ rapidly reached the intracellular stores during our superfusion protocol, much of the ⁴⁵Ca²⁺ released could be trapped by buffers,

Rapid activation of nicotinic acetylcholine receptors. The kinetics of 22 Na⁺ efflux from *Torpedo* electric organ vesicles were measured at 9 msec resolution. Acetylcholine at a final concentration of 1 mM in *Torpedo* physiological saline (solid bar) evoked a maximal rate of 22 Na⁺ efflux within 9 msec, which then declined towards baseline over the next 250 msec. The inset shows data from the first 100 msec of stimulation plotted semi-logarithmically to illustrate the biphasic decay in the rate of 22 Na⁺ efflux (*n* = 3).

and therefore would reach the superfusate only after a considerable delay. Previous rapid kinetic analyses of permeabilised cells have not addressed this concern [8,16]. Several lines of evidence establish that such delays due to diffusion are not the cause of the absolute latency to IP₃. Firstly, the kinetics of washing ⁴⁵Ca²⁺ and ³H-inulin from cells pre-equilibrated with CLM containing the two radiolabels were indistinguishable, indicating that ⁴⁵Ca²⁺ is not selectively bound by the cells. Secondly, during our permeabilisation procedure, hepatocytes lost more than 90% of their lactate dehydrogenase and, as this is a very large cytosolic enzyme (130 kDa), it is unlikely that any mobile Ca²⁺ buffers are retained by the permeabilised cells. Thirdly, the kinetics of ⁴⁵Ca²⁺ efflux decay more rapidly after a brief incubation with IP₃ than after prolonged stimulation, indicating that Ca²⁺ buffering does not limit the temporal resolution of our method (data not shown). Finally, the kinetics of IP₃ receptor activation were identical when we used a cell-free preparation of intracellular Ca²⁺ stores [16] rather than permeabilised cells (Figure 5): using the cell-free preparation, the absolute latency in response to 30 μ M IP₃ was 38 ± 6 msec (n = 3).

Previous analyses of IP₃-evoked Ca²⁺ release from broken cells [5,23,31] and reconstituted receptors [3] have either lacked the temporal resolution to detect an absolute latency or the latencies observed (20–65 msec) have been impossible to resolve from delays attributable to diffusion barriers or to the properties of fluorescent indicators [8,16,32]. Our methods circumvent both of these limitations

Delayed ⁴⁵Ca²⁺ efflux is not a consequence of intracellular Ca²⁺ buffering. Experiments identical to those described in Figure 3 were used to measure the rapid kinetics of ⁴⁵Ca²⁺ efflux from an acellular preparation of intracellular Ca²⁺ stores ('saposomes') prepared from permeabilised rat hepatocytes [20] in response to 30 μ M IP₃ (*n* = 3).

and demonstrate that, with Ca^{2+} buffered at a level comparable to that found in the cytosol of unstimulated hepatocytes (200 nM), there is a delay of ~30 msec between IP₃ binding to its receptor and the opening of the intrinsic Ca^{2+} channel of the receptor. This observation is consistent with results from a variety of intact cells, which demonstrate an absolute latency of ~20–30 msec between the release of a high concentration of IP₃ by flash photolysis of its caged precursor and an increase in cytosolic [Ca²⁺] [10–12]. The kinetics of the activation of IP₃ receptors have yet to be examined using electrophysiological methods [4,14,15].

Ca²⁺ accelerates opening of IP₃ receptors

Low concentrations of ATP potentiate the effects of even maximal concentrations of IP₃ on cerebellar IP₃ receptors [33] by increasing the probability that the channel is open [34]. ATP is also implicated in the gating of ryanodine receptors [21]. However, ATP had no effect on the kinetics of Ca²⁺ mobilisation from permeabilised hepatocytes stimulated with 60 μ M IP₃, because the absolute latency, the activation time and the peak rate of ⁴⁵Ca²⁺ release were the same in the absence and presence of 1 mM ATP (data not shown). These results from hepatocytes, in which most IP₃ receptors are type 2, contrast with those from cerebellum, where almost all IP₃ receptors are type 1 [35].

In contrast to the lack of effect of ATP, changing the free $[Ca^{2+}]$ of the superfusing medium significantly altered the absolute latency in response to 60 μ M IP₃. When cells were superfused with CLM containing ~4 nM free $[Ca^{2+}]$ for 5 sec before and then during the addition of IP₃ (60 μ M), the absolute latency was 84 ± 26 msec, and it decreased to 20 ± 3 msec when the free $[Ca^{2+}]$ was 730 nM (Figure 6a,b). As with the results obtained in CLM containing 200 nM Ca²⁺ (Figure 3d), the longer latency recorded in the presence of ~4 nM free $[Ca^{2+}]$

Figure 6

Cytosolic Ca²⁺ shortens the absolute latency. (a) Using experiments similar to those shown in Figure 3, rates of ⁴⁵Ca²⁺ efflux (filled circles) were recorded from permeabilised cells pre-incubated for 5 sec with CLM containing the indicated free [Ca2+] (~4, 200 and 730 nM) before addition of 60 µM IP₃ to the same medium. The effects of higher free [Ca2+] were examined without pre-incubation by applying 60 µM IP₃ in CLM containing 17 μM Ca²⁺ (bottom trace, solid squares). The solid curve denotes the ³H-inulin content of the superfusate and the arrow heads denote the latency. Each trace is typical of those obtained in at least three independent experiments. Inset: absolute latencies during stimulation with 60 μ M IP₃ were determined in CLM in which the free [Ca2+] was 200 nM and the total EGTA was varied for both 5 sec before the superfusion with IP₃ and then during the superfusion (n = 5). (b) The duration of the preincubation with CLM containing different free [Ca2+] (~4-730 nM) was varied (0.5-5 sec) and the latency of the

response to 60 μ M IP₃ was then measured in the same medium. Prior to the pre-incubation, cells were superfused with CLM containing either 200 nM Ca²⁺ (yellow and red blocks,

test Ca²⁺ = ~4 nM and 730 nM, respectively) or ~4 nM Ca²⁺ (purple blocks, test Ca²⁺ = 200 nM). Results are means \pm s.e.m. of at least three independent experiments.

could not be reduced by further increasing the IP₃ concentration to 200 μ M; under this condition, the latency was 83 ± 8 msec (n = 5).

Pretreatment of the cells with CLM containing much higher free [Ca²⁺] (17 μ M) abolished the response to IP₃, in accordance with the well-documented inhibitory effect of substantial increases in cytosolic [Ca²⁺] on IP₃ receptor function [5–7,23,36,37]. By simultaneously delivering CLM containing 17 μ M free Ca²⁺ and 60 μ M IP₃, however, we could observe the effects of very high cytosolic [Ca²⁺] on channel opening ahead of the more slowly developing Ca²⁺-mediated inactivation [5]. Under these conditions, the absolute latency was reduced to 6 ± 4 msec (*n* = 6), and there was no detectable latency in four of these six experiments (Figure 6a), indicating that the channel can open very rapidly when stimulated maximally by both of its agonists.

As EGTA is a very weak competitive antagonist of IP_3 receptors ($IC_{50} > 20 \text{ mM}$) [22], we considered the unlikely possibility that the effects of changing the free [Ca^{2+}] might be an indirect consequence of the accompanying changes in the free EGTA concentration of the CLM. This possibility was eliminated by the results shown in the inset to Figure 6a which demonstrate that, at a constant free [Ca^{2+}] of 200 nM, there was no difference in the absolute latency of the response to 60 μ M IP₃ over a 200-fold range of free EGTA concentration. These results demonstrate that increases in cytosolic [Ca^{2+}] shorten the interval between IP₃ binding to the receptor and channel opening.

A model for receptor activation: opening of IP_3 receptors after sequential binding of IP_3 and Ca^{2+}

For all ligand-gated ion channels, the delay between delivery of the agonist and opening of the channel decreases as the concentration of agonist is increased, until eventually agonist binding is so rapid that the channelgating processes become rate-limiting [26,28,38]. Nicotinic acetylcholine receptors, for example, open within tens of microseconds of supramaximal stimulation [25], consistent with the ability of proteins to change conformation very rapidly. In medium that mimics the cytosol of an unstimulated cell (free $[Ca^{2+}] = 200 \text{ nM}$), the much longer delay of ~30 msec between IP3 binding and opening of the intrinsic Ca²⁺ channel of the receptor (Figure 3) suggests that a more complex gating process is occurring. In Xenopus oocytes, confocal imaging of Ca2+ release after flash photolysis of caged IP₃ has also revealed an absolute latency of ~28 msec between maximal stimulation and the first detectable Ca²⁺ mobilisation [12].

The effect of cytosolic Ca^{2+} on the latency (Figure 6b) was independent of the duration of the pre-incubation with Ca^{2+} (0.5–5 sec; up to 10 min for 200 nM Ca^{2+}). If the Ca^{2+} -binding site were accessible in the absence of IP₃, it would have equilibrated with Ca^{2+} before addition of IP₃. Under our conditions, superfusion with IP₃ is predicted to achieve maximal occupancy within no more than a few milliseconds (see above); the IP₃ receptor would therefore equilibrate with both of its agonists well within the first 9 msec collection interval. Any delay before channel opening could then only reflect slow conformational changes within the receptor protein and not

Figure 7

Activation of IP₃ receptors by sequential binding of IP₃ and Ca²⁺. (a) The proposed sequence of events leading to IP₃ receptor activation is shown for only a single subunit of the tetrameric IP₃ receptor. Binding of IP₃ rapidly changes the conformation of the receptor exposing a Ca²⁺-binding site. Ca²⁺ then binds to this newly exposed site, and when all four subunits of the receptor have bound Ca²⁺, the channel opens allowing Ca²⁺ to pass through. (b) When cells are stimulated with supramaximal concentrations of IP₃, as in most of our experiments, binding of IP₃ to its receptor is rapid and very rapidly followed by exposure of the Ca²⁺-binding site (1); shown in more detail in (a). At lower concentrations of IP₃, the initial IP₃-binding steps will be slower. The subsequent binding of Ca²⁺ to the newly exposed Ca²⁺-binding

ligand-binding events. Yet when the free $[Ca^{2+}]$ was very high, the channel opened within 6 ± 4 msec (Figure 6a). We conclude that, under conditions in which further increases of the IP₃ concentration are ineffective because the receptor is already maximally occupied (Figure 3d), and despite the ability of an appropriately liganded channel to open rapidly (Figure 6a), increasing the cytosolic $[Ca^{2+}]$ shortens the delay between addition of IP₃ and Ca²⁺ mobilisation (Figure 6).

These observations indicate that when IP₃ binding is complete, it is the binding of Ca²⁺ that limits the rate of channel opening. The simplest explanation consistent with our observations is that as IP₃ binds to each subunit of the receptor, it evokes a rapid conformational change that exposes a high-affinity Ca²⁺-binding site to which Ca²⁺ must bind before the channel can open (Figure 7a). The long latencies after addition of supramaximal concentrations of IP₃ (Figures 3,6) reflect the association of Ca²⁺ with this site: the rate of association is slow at submaximal Ca²⁺ concentrations and faster when the cytosolic [Ca²⁺] is increased (Figure 6).

Multiple IP₃-binding sites allow activation of receptors that are quiet at rest

The commonly espoused advantage of having multiple agonist-binding sites on a receptor is that a response can be evoked within a narrow range of stimulus intensities; however, there are also energetic advantages [39], which are likely to be more important in IP₃ receptor activation. As any small agonist like IP₃ binds first to the inactive

sites (2) is relatively slow if the free cytosolic $[Ca^{2+}]$ is low, but faster when the cytosolic $[Ca^{2+}]$ is increased (Figure 6a). When all four subunits of the receptor have each sequentially bound IP_3 and then Ca^{2+} , the channel rapidly opens allowing Ca^{2+} to be released from the intracellular stores (3). In most cells, the resulting rise in cytosolic $[Ca^{2+}]$ causes a delayed inactivation of IP_3 receptors (5). Activation steps compete with additional inactivation processes, which remain poorly understood but are probably initiated by IP_3 binding (4). We speculate that binding of IP_3 to the first subunit therefore initiates the race between inactivation and channel opening, the latter occurring only if each subunit can bind IP_3 and then Ca^{2+} within the timeframe dictated by the inexorable inactivation.

state of its receptor and then more tightly to the active conformation, the potential energy released by the improved binding drives receptor activation. For the IP₃ receptor to be largely inactive at rest (i.e. for the closed state to be very stable) and then to be driven into its active state by IP₃, the binding of IP₃ to the active receptor must release substantial binding energy. A small ligand like IP₃ may not form enough contacts with the receptor protein to provide sufficient energy to drive a large change in the conformational equilibrium of the receptor. A similar argument has been extensively developed for the nicotinic acetylcholine receptor [39]. We suggest that a highly stable closed conformation of the IP₃ receptor has evolved to minimise the risk of its spontaneous activation. The energy needed to drive the closed receptor from this stable conformation to its open state cannot be provided by the binding of IP₃ to a single subunit, but requires the binding energy that is released as all four subunits bind IP₃. The four IP₃-binding sites of the receptor therefore provide a defence against noise by allowing the receptor to be stably closed at rest without preventing the receptor from opening in response to IP₃.

Coincidence detection provides a further defence from noise The delayed inactivation of IP₃ receptors by the increase in cytosolic [Ca²⁺] that inevitably follows opening of the intrinsic Ca²⁺ channel (Figure 7b) has been observed in many experimental settings [5–7,11,23,36,37]. Such feedback inhibition undoubtedly influences the kinetics of Ca²⁺ release in intact cells [11,37] and has been proposed to contribute both to quantal Ca²⁺ release [31,36] and to the mechanisms that allow intracellular stores to be replenished between episodes of Ca²⁺ mobilisation [7]. Additional mechanisms may also initiate receptor inactivation before the channel opens, however [23,40].

The mechanisms that we propose are responsible for activation of IP₃ receptors (Figure 7) suggest a very precise form of molecular coincidence detection. In keeping with several previous reports [5–7], we conclude that IP₃ and Ca^{2+} are co-agonists of the receptor, but that they act in strict temporal sequence, because the site to which Ca^{2+} must bind to open the channel is accessible only after IP₃ binding (Figure 7a). Binding of IP₃ has also been proposed to initiate a form of receptor inactivation ([40], but see [41]), which may or may not depend on the presence of cytosolic Ca^{2+} [23,40]. Inactivation of the receptor by IP₃ may allow IP₃ binding to define a temporal window within which the receptor will inactivate unless the newly exposed Ca^{2+} -binding site becomes occupied leading to activation.

We speculate that if inactivation of a single receptor subunit is sufficient to prevent channel opening then the requirements for receptor activation are remarkably stringent. Each of the four subunits of the receptor must first bind IP₃ and then Ca^{2+} within a narrow timeframe if the channel is to open rather than inactivate. In effect, the first IP₃-binding event starts a molecular clock. Such an extreme form of coincidence detection may provide a further defence against spontaneous activation because, unless IP₃ and Ca^{2+} are appropriately presented to the receptor, the channel is more likely to inactivate than open (Figure 7b).

Although most plasma membrane ligand-gated ion channels open very rapidly [25,26], the receptors for N-methyl-D-aspartate (NMDA) are conspicuously slower [42]. Intriguingly, these receptors, like IP₃ receptors, behave as coincidence detectors [43], allowing the passage of ions only after binding of both glutamate and glycine has activated the receptor and depolarisation has displaced Mg²⁺ from within the channel.

Conclusions

The rather unusual features of IP_3 receptor activation the need for each of its four subunits to first bind IP_3 and then Ca^{2+} — safeguard against spontaneous activation. These adaptations allow IP_3 receptors to be stable in their closed state and then to open only when both IP_3 and Ca^{2+} are presented within a short interval timed from the binding of IP_3 to the first subunit of the receptor.

Materials and methods

Materials

IP₃ was obtained from American Radiolabeled Chemicals, L-IP₃ from LC Laboratories, and 2,3-dideoxy-IP₃ and 3-deoxy-IP₃ from Calbiochem. Acetylcholine, BAPTA and heparin were from Sigma. All other reagents were from suppliers reported previously [19,44].

Rapid superfusion apparatus

Rapid changes of the medium superfusing permeabilised rat hepatocytes were achieved using apparatus modified from [45]. The permeabilised cells were immobilised within a sandwich of filters (Schleicher and Schuell) selected to maximise flow rate and sample retention while minimising dead space, shear forces and switching artefacts. The filter chamber was linked by four solenoid valves (response times < 2 msec) to pressurised vessels containing superfusion media. Superfusion protocols and the rotation of the fraction collector were coordinated by computer. The stream of effluent from the chamber was collected into 100 samples during a single rotation of a variable-speed turntable (9-3000 msec per fraction), the velocity of which was verified both electronically and with an optical tachometer. The high flow-rate (2ml/sec) and small dead volume of the chamber containing the cells (10 µl) allowed rapid exchange of media with half-times for mixing of 30 ± 4 msec and 46 ± 6 msec when media were delivered at 30 psi and 20 psi, respectively ($n \ge 6$). Inclusion of trace amounts of an inert marker (³H-inulin) in appropriate media allowed the timing of solution exchange to be precisely related to changes in ⁴⁵Ca²⁺ efflux. The entire apparatus was maintained at 20°C in a thermostatically regulated cabinet.

⁴⁵Ca²⁺ efflux from permeabilised hepatocytes

Isolated hepatocytes were prepared by collagenase digestion of the livers of male Wistar rats and stored at 4°C in Eagle's minimal essential medium buffered with NaHCO₃ (26 mM) for up to 24 h [19]. Hepatocytes $(2 \times 10^{6}$ /ml) were permeabilised by incubation with saponin (10 μ g/ml) in cytosol-like medium (CLM: 140 mM KCl, 20 mM NaCl, 2 mM MgCl₂, 1 mM EGTA, 20 mM PIPES, pH7 at 37°C). After permeabilisation, cells were washed and resuspended (at 107 cells/ml) in CLM supplemented with CaCl₂ (300 µM; free [Ca²⁺] = 200 nM at 37°C). The intracellular Ca2+ stores were loaded to steady-state levels with 45Ca2+ (1-2 nmol/10⁶ cells) by incubating the cells at 37°C with ⁴⁵CaCl₂ (100 µCi/ml), ATP (7.5 mM), phosphocreatine (15 mM), creatine kinase (15 U/ml) and FCCP (carbonyl cyanide p-trifluoromethoxyphenylhydrazone; 10 µM). After 5 min, cells were immobilised by filtration onto a prerinsed filter triplet, and rapidly secured into the chamber. The superfusion fluid flow rate was adjusted during two prewashes (5 sec) with CLM containing 200 nM free Ca2+ at 20°C, which removed 45Ca2+ that was not trapped within intact intracellular stores. The superfusion protocol was then initiated. These steps were completed within 20 sec, and as the halftime for passive efflux of ⁴⁵Ca²⁺ from the intracellular stores was 162 ± 13 sec at 20°C (n=3), the ${}^{45}Ca^{2+}$ content of the intracellular stores at the onset of the experiment was \geq 92% of the steady-state level. At the end of each run, cells were superfused with CLM containing Triton X-100 (0.05%) to release all ⁴⁵Ca²⁺ remaining within the intracellular stores. The radioactivity (³H and ⁴⁵Ca²⁺) of each sample was determined by liquid scintillation counting in EcoScint-A scintillation cocktail. The free Ca2+ concentrations of the superfusion media were determined both fluorimetrically using fura-2 (K_d^{Ca}=135 nM at 20°C) or fluo-3 (K_d^{Ca}=400 nM at 22°C) and with a Ca²⁺-selective macro-electrode (Ingold).

²²Na⁺ efflux from Torpedo electroplax vesicles

Vesicles rich in nicotinic acetylcholine receptors, which had been prepared from *Torpedo* electric organ, were a generous gift from Nigel Unwin (Laboratory of Molecular Biology, Cambridge). The vesicles (~3 mg protein/ml) were passively loaded with ²²Na⁺ (40 μ Ci/ml) by incubation for 48 h at 4°C in *Torpedo* physiological saline (250 mM NaCl, 5 mM KCl, 3 mM CaCl₂, 2 mM MgCl₂, 5 mM Na₂HPO₄, pH 7) and extravesicular ²²Na⁺ was then removed by passing the vesicles over a 3 ml Sephadex G50 ion-exchange column. After a further 30 min incubation at 4°C to allow damaged vesicles to lose their ²²Na⁺, the vesicles were immobilised on a filter array (3 HAWP filters) and transferred to the superfusion apparatus.

Analysis of results

All traces were corrected for the unstimulated rate of ${}^{45}Ca^{2+}$ efflux and the amount of ${}^{45}Ca^{2+}$ in each sample was then expressed as a fraction of the total ${}^{45}Ca^{2+}$ content of the intracellular stores [5,23]. Concentration-response relationships were fitted to a four-parameter logistic equation using a non-linear curve-fitting program (Kaleidagraph, Abeldeck Software) as previously described [26]. Computer-assisted curve-fitting (Kaleidagraph and Microsoft Excel) with > 200 iterations was used to fit exponential equations. The statistical significance of mono-exponential and multi-exponential fits was assessed according the 'extra sum of squares' principle; p < 0.05 was considered significant. All data are expressed as means \pm s.e.m.

Acknowledgements

We thank Nigel Unwin for *Torpedo* electric organ vesicles and Arnold Burgen for helpful discussions. This work was supported by the Wellcome Trust, Lister Institute and the Biotechnology and Biological Sciences Research Council, UK.

References

- Berridge MJ: Relationship between latency and period for 5-hydroxytryptamine-induced membrane responses in the Calliphora salivary gland. Biochem J 1994, 302:545-550.
- Berridge MJ: Elementary and global aspects of calcium signalling. J Physiol 1997, 499:291-306.
- Hirota J, Michikawa T, Miyawaki A, Furuichi T, Okura I, Mikoshiba K: Kinetics of immunoaffinity-purified inositol 1,4,5-trisphosphate receptor in reconstituted lipid vesicles. J Biol Chem 1995, 270:19046-19051.
- Bezprozvanny I, Ehrlich BE: Inositol (1,4,5)-trisphosphate (InsP₃)gated Ca channels from cerebellum: conduction properties for divalent cations and regulation by intraluminal calcium. *J Gen Physiol* 1994, 104:821-856.
- Finch EA, Turner TJ, Goldin SM: Calcium as a coagonist of inositol 1,4,5-trisphosphate-induced calcium release. *Science* 1991, 252:443-446.
- lino M: Biphasic Ca²⁺ dependence of inositol 1,4,5-trisphosphateinduced Ca release in smooth muscle cells of the guinea pig taenia caeci. J Gen Physiol 1990, 95:1103-1122.
- 7. Taylor CW, Traynor D: Calcium and inositol trisphosphate receptors. J Membr Biol 1995, 145:109-118.
- Meyer T, Wensel T, Stryer L: Kinetics of calcium channel opening by inositol 1,4,5-trisphosphate. *Biochemistry* 1990, 29:32-37.
- Ogden DC, Capiod T, Walker JW, Trentham DR: Kinetics of the conductance evoked by noradrenaline, inositol trisphosphate or Ca²⁺ in guinea-pig isolated hepatocytes. J Physiol 1990, 422:585-602.
- Carter TD, Ogden D: Kinetics of intracellular calcium release by inositol 1,4,5-trisphosphate and extracellular ATP in porcine cultured aortic endothelial cells. Proc R Soc Lond Biol 1992, 250:235-241.
- Khodakhah K, Ogden D: Fast activation and inactivation of inositol trisphosphate-evoked Ca²⁺ release in rat cerebellar Purkinje neurones. J Physiol 1995, 487:343-358.
- Parker I, Yao Y, İlyin V: Fast kinetics of calcium liberation induced in Xenopus oocytes by photoreleased inositol trisphosphate. *Biophys J* 1996, 70:222-237.
- Shrenzel J, Demaaurex N, Foti M, Van Delden C, Jacquet J, Mayr G, et al.: Highly cooperative Ca²⁺ elevations in response to Ins(1,4,5)P₃ microperfusion through a patch clamp pipette. *Biophys J* 1995, 69:2378-2391.
- Watras J, Bezprozvanny I, Ehrlich BE: Inositol 1,4,5-trisphosphategated channels in cerebellum: presence of multiple subconductance states. J Neurosci 1991, 11:3239-3249.
- Bezprozvanny I, Watras J, Ehrlich BE: Bell-shaped calcium-response curves for Ins(1,4,5)P₃- and calcium-gated channels from endoplasmic reticulum of cerebellum. *Nature* 1991, 351:751-754.
- Champeil P, Combettes L, Berthon B, Doucet E, Orlowski S, Claret M: Fast kinetics of calcium release induced by myo-inositol trisphosphate in permeabilized rat hepatocytes. J Biol Chem 1989, 264:17665-17673.
- Parker I, Choi J, Yao Y: Elementary events of InsP₃-induced Ca²⁺ liberation in *Xenopus* oocytes: hot spots, puffs and blips. *Cell Calcium* 1996, 20:105-121.
- Taylor CW: Why do hormones stimulate Ca²⁺ mobilization? Biochem Soc Trans 1995, 23:637-642.
- Nunn DL, Taylor CW: Luminal Ca²⁺ increases the sensitivity of Ca²⁺ stores to inositol 1,4,5-trisphosphate. *Mol Pharmacol* 1992, 41:115-119.
- Patel S, Taylor CW: Quantal responses to inositol 1,4,5-trisphosphate are not a consequence of Ca²⁺ regulation of inositol 1,4,5trisphosphate receptors. *Biochem J* 1995, 32:789-794.
- Tripathy A, Meissner G: Sarcoplasmic reticulum lumenal Ca²⁺ has access to cytosolic activation and inactivation sites of skeletal muscle Ca²⁺ release channel. *Biophys J* 1996, 70:2600-2615.
- Richardson A, Taylor CW: Effects of Ca²⁺ chelators on purified inositol 1,4,5-trisphosphate (InsP₃) receptors and InsP₃-stimulated Ca²⁺ mobilization. *J Biol Chem* 1993, 268:11528-11533.

- 23. Dufour J-F, Arias IM, Turner TJ: Inositol 1,4,5-trisphosphate and calcium regulate the calcium channel function of the hepatic inositol 1,4,5-trisphosphate receptor. *J Biol Chem* 1997, **272**:2675-2681.
- Hannaert-Merah Z, Coquil J-F, Combettes L, Claret M, Mauger J-P, Champeil P: Rapid kinetics of myo-inositol trisphosphate binding and dissociation in cerebellar microsomes. *J Biol Chem* 1994, 269:29642-29649.
- 25. Dilger JP, Liu Y: **Opening rate of acetylcholine receptor channels.** *Biophys J* 1991, **60**:424-432.
- Maconochie DJ, Zempel JM, Steinbach JH: How quickly can GABA_A receptors open? Neuron 1994, 12:61-71.
- Györke S, Vélez P, Suárez-Isla B, Fill M: Activation of single cardiac and skeletal ryanodine receptor channels by flash photolysis of caged Ca²⁺. *Biophys J* 1994, 66:1879-1886.
- Karpen JW, Zimmerman AL, Stryer L, Baylor DA: Gating kinetics of the cyclic-GMP-activated channel of retinal rods: flash photolysis and voltage-jump studies. Proc Natl Acad Sci USA 1988, 85:1287-1291.
- Forman SA, Miller KW: High acetylcholine concentrations cause rapid inactivation before fast desensitization in nicotinic acetylcholine receptors from *Torpedo*. *Biophys J* 1988, 54:149-158.
- Allbritton NL, Meyer T, Stryer L: Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science 1992, 258:1812-1815.
- Combettes L, Hannaert-Meah Z, Coquil J-F, Rousseau C, Claret M, Swillens S, Champeil P: Rapid filtration studies of the effect of cytosolic Ca²⁺ on inositol 1,4,5-trisphosphate-induced ⁴⁵Ca²⁺ release from cerebellar microsomes. *J Biol Chem* 1994, 269:17561-17571.
- Ogden D, Khodakhah K, Carter I, Thomas M, Capiod T: Analogue computation of transient changes of intracellular free Ca²⁺ concentration with the low affinity Ca²⁺ indicator furaptra during whole-cell patch-clamp recording. *Pflügers Arch* 1995, 429:587-591.
- Goldin SM, Finch EA, Reddy NL, Hu LY, Subbarao K: Exocytosis, calcium oscillations, and novel glutamate release blockers as resolved by rapid superfusion. Ann NY Acad Sci 1994, 710:271-286.
- Bezprozvanny I, Ehrlich BE: ATP modulates the function of inositol 1,4,5-trisphosphate-gated channels at two sites. *Neuron* 1993, 10:1175-1184.
- Wojcikiewicz RJH: Type I,II and III inositol 1,4,5-trisphosphate receptors are unequally susceptible to down-regulation and are expressed in markedly different proportions in different cell types. J Biol Chem 1995, 270:11678-11683.
- Swillens S, Combettes L, Champeil P: Transient inositol 1,4,5trisphosphate-induced Ca²⁺ release: a model based on regulatory Ca²⁺ binding sites along the permeation pathway. *Proc Natl Acad Sci* USA 1994, 91:10074-10078.
- Parker I, Ivorra I: Inhibition by Ca²⁺ of inositol trisphosphate-mediated Ca²⁺ liberation: a possible mechanism for oscillatory release of Ca²⁺. Proc Natl Acad Sci USA 1990, 87:260-264.
- Clements JD, Westbrook GL: Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl-D-aspartate receptor. Neuron 1991, 7:605-613.
- Jackson MB: Perfection of a synaptic receptor: kinetics and energetics of the acetylcholine receptor. Proc Natl Acad Sci USA 1989, 86:2199-2203.
- Hajnóczky G, Thomas AP: The inositol trisphosphate calcium channel is inactivated by inositol trisphosphate. Nature 1994, 370:474-477.
- Combettes L, Cheek TR, Taylor CW: Regulation of inositol trisphosphate receptors by luminal Ca²⁺ contributes to quantal Ca²⁺ mobilization. *EMBO J* 1996, 15:2086-2093.
- Jahr CE: NMDA receptor kinetics and synaptic function. Semin Neurosci 1994, 6:81-86.
- Bourne HR, Nicoll R: Molecular machines integrate coincident synaptic signals. Cell 1993, 72:65-75.
- Marchant JS, Chang Y-T, Chung S-K, Irvine RF, Taylor CW: Rapid kinetic measurements of ⁴⁵Ca²⁺ mobilization reveal that Ins(2,4,5)P₃ is a partial agonist of hepatic InsP₃ receptors. *Biochem J* 1997, 321:573-576.
- Turner TJ, Pearce LB, Goldin SM: A superfusion system designed to measure release of radiolabeled neurotransmitters on a subsecond time scale. *Anal Biochem* 1989, 178:8-16.

Because *Current Biology* operates a 'Continuous Publication System' for Research Papers, this paper has been published on the internet before being printed. The paper can be accessed from http://biomednet.com/cbiology/cub – for further information, see the explanation on the contents page.