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On the Iwasawa decomposition of a symplectic matrix
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Abstract

We consider the computation of the Iwasawa decomposition of a symplectic matrix via the QR factorization. The algorithms
presented improve on the method recently described by T.-Y. Tam in [Computing Iwasawa decomposition of a symplectic matrix
by Cholesky factorization, Appl. Math. Lett. (in press) doi:10.1016/j.aml.2006.03.001].
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

A matrix S ∈ R
2n×2n is called symplectic if it satisfies St J S = J , where

J =
(

0 In

−In 0

)
.

In this note we are concerned primarily with the real case; the complex case can be treated along similar lines. Under
matrix multiplication, the symplectic matrices form a (non-compact) Lie group denoted by S = Sp(n, R) = {S ∈
SL2n(R) : St J S = J }, where SL2n(R) denotes the group of 2n × 2n matrices with unit determinant. The symplectic
group is closed under transposition. Consider the following subgroups of S:

K =
{

K =
(

K11 K12
−K12 K11

)
: K11 + iK12 ∈ U(n)

}
= O(2n) ∩ Sp(n, R),

A =
{(

A11 0
0 A−1

11

)
: A11 positive diagonal

}
,

N =
{(

N11 N12

0 N−t
11

)
: N11 unit upper triangular , N11 Nt

12 = N12 Nt
11

}
.

The first of these three subgroups is compact, the second is abelian, and the third is nilpotent. The decomposition
S = KAN is called the Iwasawa decomposition of S. Any S ∈ Sp(n, R) can be written as S = K AN , where
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K ∈ K, A ∈ A, and N ∈ N ; moreover, this decomposition is unique. It is a special case of the general Iwasawa
decomposition of a connected semisimple Lie group first given in [7]. For a more detailed discussion of the Iwasawa
decomposition, see [9] or [5]. The importance of this decomposition is both theoretical and practical, in particular in
the area of dynamical systems. Note that the factorization S = K AN (more precisely, the factorization S = K M
with M = AN) differs from the QR factorization [10], since N is not upper triangular. (Note that the factors in the
usual QR factorization of S are not symplectic, in general.) It is also not to be confused with the SR factorization (see,
e.g., [3, p. 20]). The decomposition S = K M with M = AN is called a unitary SR decomposition in [2, pp. 68–69].

In the recent note [8], Tam presents a method for explicitly computing the Iwasawa decomposition S = K AN of
a symplectic matrix using the Cholesky factorization of St S. The approach in [8], however, does not take numerical
stability considerations into account and may lead to inaccurate results in finite precision computations. It is also not
very efficient in terms of operation count. Here we give a more accurate and efficient algorithm for computing the
Iwasawa decomposition of a symplectic matrix.

2. Computing the Iwasawa decomposition

The approach in [8] is based on the following result.

Theorem 2.1. Let S =
(

S11 S12
S21 S22

)
∈ S and St S =

(
A1 B1
Bt

1 D1

)
(also in S). Let A1 = Ut HU be the root-free Cholesky

factorization of the symmetric positive definite matrix A1, where U is unit upper triangular and H is positive diagonal.
Then S = K AN, where

A =
(

H
1
2 0

0 H − 1
2

)
, N =

(
U H −1U−t B1

0 U−t

)
, and K = S(AN)−1,

is the Iwasawa decomposition of S.

On the basis of Theorem 2.1, the author of [8] proposes a Cholesky-based approach for explicitly determining the
Iwasawa factors K , A, N of a given symplectic matrix. This approach has certain drawbacks. The main problem is
that the approach in [8] may lead to inaccurate results in finite precision arithmetic. It is well known that forming the
product St S explicitly may lead to significant loss of information in finite precision computations; see [6, p. 386]. If
S is ill-conditioned (which can happen, since the group S is not compact), forming St S may even result in loss of
positive definiteness, with the consequent breakdown of the Cholesky factorization. It is also important to avoid the
use of explicit matrix inverses when computing the factorization. Although efficiency is not the primary concern of
this note, it is also worth noting that the approach in [8] has a rather high computational complexity.

It is possible to extract from [2, pp. 64–69] a method for computing the Iwasawa decomposition of a symplectic

matrix, which proceeds as follows. Given a real symplectic matrix S =
(

S11 S12
S21 S22

)
, the following algorithm computes

the factors K , A, N of the Iwasawa decomposition of S.

Algorithm 2.2. 1. Compute the QR factorization of S11 + iS12; denote by U the unitary factor of S11 + iS12.
2. Compute the Iwasawa factors K , A and N of S as follows:

K11 = 1

2
(U + Ū), K12 = i

2
(Ū − U),

K =
(

K11 K12
−K12 K11

)
,

N̂ = K t S

A = diag(n̂11, . . . , n̂2n,2n), where n̂ii are the diagonal entries of N̂ ,

N = A−1 N̂ .

Note that Algorithm 2.2 necessitates complex arithmetic even if the symplectic matrix S and its factors are real, an
undesirable feature. Motivated by this, we examine here another algorithm for computing the Iwasawa decomposition
of a symplectic matrix. This approach is based on the “thin” QR factorization [4, p. 230] and does not require complex
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arithmetic. Let S be partitioned into four blocks as in Theorem 2.1. The following algorithm computes the factors K ,
A, N in the Iwasawa decomposition of S.

Algorithm 2.3. 1. Let S1 =
(

S11
S21

)
.

2. Compute the thin QR factorization of S1, where Q =
(

Q11
Q21

)
and R = R11.

3. Factor the upper triangular matrix R11 as R11 = HU with H diagonal and U unit upper triangular. Then
Rt

11 R11 = Ut DU , where D = H 2.
4. Compute the Iwasawa factors A, K and N of S as follows:

A =
(

D
1
2 0

0 D− 1
2

)
∈ A,

K11 = Q11 H D− 1
2 , K12 = −Q21 H D− 1

2 ,

K =
(

K11 K12
−K12 K11

)
∈ K,

N =
(

U N12
0 N22

)
∈ N , where

(
N12
N22

)
= A−1K t

(
S12
S22

)
.

To see that Algorithm 2.3 computes the Iwasawa factors, first note that A ∈ A. Furthermore, we need to show that
K11 + iK12 is unitary. To this end, it suffices to verify the following two equalities:

K t
11K12 = K t

12K11, K t
11K11 + K t

12 K12 = In .

For the first equality it is enough to observe that Qt
11 Q21 = Qt

21 Q11. Since S ∈ Sp(n, R) and hence St
11S21 = St

21S11,
the first equation follows. The second equality can be rewritten as

D− 1
2 U−t (St

11S11 + St
21S21)U

−1 D− 1
2 = In .

Since St
11S11 + St

21S21 = Ut DU we conclude that K11 + iK12 ∈ U(n) and therefore K ∈ K. It can be easily
seen using the symplecticity of S that N22 = U−t . Using the fact that A−1

1 B1 = Bt
1 A−t

1 where A1 and B1 are as in
Theorem 2.1 one can easily show that U Nt

12 = N12Ut , and hence N ∈ N . Finally note that K AN = S.

A few remarks are in order. Since D = H 2, the matrix H D− 1
2 appearing in step 4 is just a signature matrix, i.e.,

a diagonal matrix with entries equal to ±1. The above algorithm requires no explicit matrix inverses except for that
of a diagonal matrix. The cost of the algorithm is dominated by the computation of the QR factorization of S1 and
by the matrix products in the computation of N12 and N22. We point out that the overall cost of Algorithm 2.3 is
40
3 n3 + O(n2) floating point operations. This is somewhat less than the cost of the method proposed in [8], which can

be shown to be 48
3 n3 + O(n2) operations. We also note that the use of complex arithmetic in Algorithm 2.2 makes

this approach significantly more expensive than Algorithm 2.3 in the real case. It might be possible that even more
efficient algorithms could be developed, for instance making use of the symplectic QR decomposition described in [1].
Here we restrict ourselves to algorithms that can be easily implemented in MATLAB using only built-in functions.

3. Numerical experiments

We constructed a number of symplectic matrices of different dimensions by first constructing the symplectic
Iwasawa factors K , A and N and then forming the product S = K AN . Specifically, we constructed the blocks
for the factors as follows. First we generated a random positive diagonal matrix A11 to form A ∈ A. For N , we
constructed a random n × n upper triangular matrix N11 with unit diagonal and set N12 = N11. Finally, to form K
we generated two random n × n matrices X and Y and let C = X + iY . We then computed the QR factorization
of C and let K11 be the real part of Q and K12 be the imaginary part of Q. We tested Algorithms 2.2 and 2.3 on a
large set of these matrices and observed a noticeable difference in the accuracy of the computed factors compared to
the approach suggested in [8]. Algorithms 2.2 and 2.3 are more accurate, especially for matrices with relatively high
condition numbers. In particular, the factor K̄ may be far from being orthogonal when the method suggested in [8] is
used. Also, with that method the computed N̄ may not satisfy the symplecticity conditions to high relative accuracy.
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Table 1
Results for the three approaches

Tam’s algorithm Algorithm 2.2 Algorithm 2.3

10 × 10 matrix with condition number 3 × 101

‖K̄ t K̄ − I‖2 1 × 10−15 6 × 10−16 7 × 10−16

‖K11 − K22‖2 9 × 10−16 0 0
‖K12 + K21‖2 8 × 10−15 0 0
‖K̄ − K‖2 9 × 10−16 4 × 10−16 4 × 10−16

‖U Nt
12 − N12Ut ‖2 3 × 10−15 1 × 10−15 2 × 10−15

‖U Nt
22−I‖2

‖U‖2
0 2 × 10−16 5 × 10−16

‖N̄−N‖2‖N‖2
8 × 10−16 5 × 10−16 1 × 10−15

‖ Ā−A‖2‖A‖ 3 × 10−16 2 × 10−16 2 × 10−16

‖S−K̄ ĀN̄‖2‖S‖2
3 × 10−16 4 × 10−16 5 × 10−16

100 × 100 matrix with condition number 7 × 104

‖K̄ t K̄ − I‖2 1 × 10−10 2 × 10−15 8 × 10−14

‖K11 − K22‖2 6 × 10−11 0 0
‖K12 + K21‖2 6 × 10−11 0 0
‖K̄ − K‖2 7 × 10−11 7 × 10−14 8 × 10−14

‖U Nt
12 − N12Ut ‖2 3 × 10−09 2 × 10−12 2 × 10−11

‖U Nt
22−I‖2

‖U‖2
2 × 10−15 7 × 10−15 3 × 10−14

‖N̄−N‖2‖N‖2
7 × 10−11 6 × 10−12 3 × 10−12

‖ Ā−A‖2‖A‖ 2 × 10−11 2 × 10−15 5 × 10−15

‖S−K̄ ĀN̄‖2‖S‖2
6 × 10−15 1 × 10−15 7 × 10−14

4 × 4 matrix S in (3.1) with t = 8; condition number 107

‖K̄ t K̄ − I‖2 3 × 10−03 2 × 10−16 2 × 10−16

‖K11 − K22‖2 3 × 10−03 0 0
‖K12 + K21‖2 1 × 10−03 0 0
‖U Nt

12 − N12Ut ‖2 6 × 10−08 2 × 10−10 5 × 10−10

‖U Nt
22−I‖2

‖U‖2
0 4 × 10−10 1 × 10−10

‖S−K̄ ĀN̄‖2‖S‖2
2 × 10−10 3 × 10−16 3 × 10−16

Table 1 shows some sample computational results comparing the three algorithms. The first two examples use
“random” matrices constructed as described above. For those instances we compare the computed factors K̄ , Ā and
N̄ to the factors K , A and N used to construct the symplectic matrix S. In addition, we compute errors to measure
the departure of the computed factors from satisfying the simplecticity conditions. For the last example we use the
following symplectic matrix:

S =

⎛
⎜⎜⎝

cosh t sinh t 0 sinh t
sinh t cosh t sinh t 0

0 0 cosh t −sinht
0 0 −sinht cosh t

⎞
⎟⎟⎠ , t ∈ R. (3.1)

For the first example, which is well conditioned, all three approaches yield good approximations to the Iwasawa
factors (by any measure). When the symplectic matrix S to be factored is larger and/or has a higher condition number,
as in the second example, we begin to notice some loss of (forward) accuracy in some of the factors computed using
Tam’s method. As may be expected, the effect is also present with the other two methods, but is less pronounced.
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Finally, the third example shows that accuracy can be seriously compromised when Tam’s method is used. Similar
trends were noticed in all our numerical experiments.

4. Implementation

For completeness, we include the MATLAB code we used to test Algorithm 2.3.

function [K,A,N] = iFactor(S);
%
% This function computes the Iwasawa decomposition of
% a real symplectic matrix of order 2n.
%
% Input: a real symplectic matrix [S_11 S_12; S_21 S_22]
%
% Output: K = 2n-by-2n orthogonal symplectic matrix
% A = 2n-by-2n positive diagonal symplectic matrix
% N = 2n-by-2n "triangular" symplectic matrix
%
% s.t.
%
% S = K*A*N
%

n_2 = size(S);
n = n_2/2;

% Compute thin QR factorization of S1 = [S_11; S_21].

S_11 = S(1:n,1:n);
S_21 = S(n+1:n_2,1:n);

S1 = [S_11; S_21];
[Q,R] = qr(S1,0);

Q_11 = Q(1:n,1:n);
Q_21 = Q(n+1:n_2,1:n);

% Compute U and D from given R where U is unit upper triangular
% and H is a diagonal matrix such that R = H*U and
% R’*R = U’*H^2*U.

H = diag(diag(R));
U = H\R;

% Compute blocks for the factors K, A, N.

h = sign(diag(H));
SQRT_D = diag(h.*diag(H));
SQRT_D_inv = diag(1./diag(SQRT_D));
h = h’;
h = h(ones(1,n),:);
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K_11 = Q_11.*h;
K_12 = -Q_21.*h;

% Form the Iwasawa factors K, A, N.

A = [SQRT_D zeros(n) ; zeros(n) SQRT_D_inv];
K = [K_11 K_12; -K_12 K_11];
S1 = S(1:n_2,n+1:n_2);
N1 = A\(K’*S1);
N = [U N1(1:n,1:n); zeros(n) N1(n+1:n_2,1:n)];
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