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SUMMARY

Endogenous ligands for cannabinoid receptors
(‘‘endocannabinoids’’) include the lipid trans-
mitters anandamide and 2-arachidonoylgly-
cerol (2-AG). Endocannabinoids modulate a
diverse set of physiological processes and are
tightly regulated by enzymatic biosynthesis
and degradation. Termination of anandamide
signaling by fatty acid amide hydrolase (FAAH)
is well characterized, but less is known about
the inactivation of 2-AG, which can be hydro-
lyzed by multiple enzymes in vitro, including
FAAH and monoacylglycerol lipase (MAGL).
Here, we have taken a functional proteomic
approach to comprehensively map 2-AG hydro-
lases in the mouse brain. Our data reveal that
�85% of brain 2-AG hydrolase activity can be
ascribed to MAGL, and that the remaining
15% is mostly catalyzed by two uncharacter-
ized enzymes, ABHD6 and ABHD12. Interest-
ingly, MAGL, ABHD6, and ABHD12 display
distinct subcellular distributions, suggesting
that they may control different pools of 2-AG
in the nervous system.

INTRODUCTION

The lipid transmitters anandamide (AEA) and 2-arachido-

noylglycerol (2-AG) are referred to as ‘‘endocannabinoids’’

because they serve as natural ligands for the cannabinoid

(CB) receptors, which are also targets of the psychoactive

component of marijuana, D9-tetrahydrocannibinol [1, 2].

Endocannabinoids are biosynthesized from membrane

phospholipid precursors in an activity-dependent manner,

stimulate CB receptors in the vicinity of their production,

and are inactivated by rapid enzymatic hydrolysis. Endo-

cannabinoid signaling has been found to modulate a num-

ber of physiological processes, including pain sensation

[3], appetite [4], and cognitive and emotional state [5, 6].

Endocannabinoid levels are tightly controlled by enzy-

matic biosynthesis and degradation in vivo, and, as
Chemistry & Biology 14, 1347–135
such, the enzymes responsible for these processes are

considered central components of endocannabinoid sig-

naling networks [7–10]. The hydrolysis of AEA to arachi-

donic acid and ethanolamine (Figure 1) is principally medi-

ated by a single enzyme in the nervous system—the

integral membrane enzyme fatty acid amide hydrolase

(FAAH) [11, 12]. Brain tissue from FAAH-knockout mice

[13] or rodents treated with FAAH inhibitors [14] is essen-

tially void of AEA-hydrolyzing activity. Moreover, endoge-

nous brain levels of AEA and other bioactive fatty acid am-

ides are dramatically elevated in FAAH-disrupted animals,

leading to a variety of CB-receptor-dependent behavioral

phenotypes [3, 13–16]. In contrast, much less is under-

stood about the enzymes that terminate 2-AG signaling

in vivo. The hydrolysis of 2-AG to arachidonic acid and

glycerol (Figure 1) can be performed by multiple enzymes

in vitro, including FAAH [17], neuropathy target esterase

(NTE) [18], and the cytosolic enzymes monoacylglycerol

lipase (MAGL) [19] and hormone-sensitive lipase (HSL)

[20]. Whether these enzymes constitute the principle or,

for that matter, only 2-AG hydrolases in mammalian tis-

sues, however, remains unknown.

It has generally been assumed that MAGL is the main

contributor to 2-AG hydrolysis in the brain [9]. MAGL is

a serine hydrolase originally purified and cloned from

adipose tissue [21], where it is thought to catalyze the final

step of triglyceride metabolism. MAGL is also abundant in

brain tissue [19], where it localizes to presynaptic termi-

nals [22]. Multiple studies have provided evidence for

the involvement of MAGL in 2-AG hydrolysis in the ner-

vous system. Overexpression of MAGL in rat cortical

neurons was found to reduce the activity-dependent ac-

cumulation of 2-AG [19]. Immunodepletion of MAGL in

soluble rat brain fractions decreased 2-AG hydrolysis by

�50% [23]. Similarly, treatment of rat cerebellar mem-

branes with maleimide reagents that irreversibly inhibit

MAGL decreased 2-AG hydrolysis by �85% [24]. Most

recently, first-generation MAGL inhibitors have been re-

ported to raise brain 2-AG levels and produce antihyperal-

gesic effects in rodents [3, 25]. However, the efficacy and/

or selectivity of these inhibitors have since been called into

question [26, 27]. Taken together, these results suggest

that MAGL likely plays an important role in 2-AG hydrolysis

in the brain. That MAGL inhibition or immunodepletion

did not completely eliminate 2-AG hydrolysis in brain
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Figure 1. Structures of 2-Arachidonoyl-

glycerol, Anandamide, and Their Hydro-

lysis Products
preparations, however, indicates the existence of addi-

tional pathways for 2-AG degradation in the nervous sys-

tem. Consistent with this idea, the murine microglial BV2

cell line was recently shown to possess 2-AG hydrolase

activity despite lacking MAGL expression [28].

Here, we have adopted a functional proteomic strategy

by which to assemble a complete and quantitative profile

of mouse brain enzymes that display 2-AG hydrolase activ-

ity. Our studies confirm that MAGL is a primary 2-AG

hydrolase in brain tissue and also identify two previously

uncharacterized enzymes, ABHD6 and ABHD12, that pos-

sess this activity. MAGL, ABHD6, and ABHD12 collectively

account for at least 98% of the total 2-AG hydrolase activ-

ity in the brain. We further show that each enzyme exhibits

a distinct subcellular distribution, suggesting that they may

regulate different pools of 2-AG in the nervous system.

RESULTS

A Comprehensive Profile of Candidate 2-AG
Hydrolases in Mouse Brain
Previous studies demonstrated that 2-AG hydrolase activ-

ity in the rodent brain is sensitive to the general serine hy-

drolase inhibitors methyl arachidonyl fluorophosphonate

(MAFP) and phenylmethylsulphonyl fluoride (PMSF) [29].

Based on these results, we hypothesized that all 2-AG hy-

drolases in the mouse brain could be collectively enriched

and identified by using the activity-based proteomic probe

fluorophosphonate-biotin (FP-biotin), which broadly tar-

gets members of the serine hydrolase superfamily [30].

We first determined that FP-biotin (5 mM, 1 hr) blocked

greater than 98% of the 2-AG hydrolase activity in mouse

brain-membrane or soluble proteomes (Figure 2). We then

enriched brain targets of FP-biotin by avidin chromatogra-

phy and identified these proteins by using an advanced

liquid chromatography-mass spectrometry (LC-MS)

platform termed ABPP-MudPIT (activity-based protein

profiling-multidimensional protein identification technol-

ogy) [31]. Briefly, after binding to avidin beads, FP-bio-

tin-labeled proteins were digested on-bead with trypsin,

analyzed by multidimensional LC-MS, and identified by

using the SEQUEST search algorithm [32]. ABPP-MudPIT

analysis identified a total of 32 metabolic serine hydro-

lases in mouse brain-membrane (Table 1) and soluble

(Table S1, see the Supplemental Data available with this
1348 Chemistry & Biology 14, 1347–1356, December 2007 ª20
article online) proteomes. Among these hydrolases were

several well-characterized enzymes (e.g., FAAH, MAGL,

HSL, acetylcholinesterase), as well as many enzymes of

unknown function. Serine proteases, components of the

proteasome, and fatty acid synthase were also identified

as targets of FP-biotin, but these proteins were not re-

garded as likely contributors to brain 2-AG hydrolase

activity and were therefore excluded from subsequent

analyses.

Evaluation of the 2-AG Hydrolase Activity
of Recombinantly Expressed Brain
Serine Hydrolases
To determine which of the 32 brain serine hydrolases

displayed 2-AG hydrolase activity, we recombinantly

expressed each enzyme in COS-7 cells by transient

Figure 2. Mouse Brain 2-Arachidonoylglycerol Hydrolase

Activity Is Completely Inhibited by the Activity-Based Proteo-

mic Probe FP-Biotin

The 2-arachidonoylglycerol (2-AG) hydrolase activity of membrane

and soluble mouse brain fractions was reduced by >98% after

treatment with FP-biotin (5 mM, 1 hr). 2-AG hydrolase activity was

measured under the following conditions: 50 mM Tris-HCl (pH 7.5),

50 mg protein/ml, 100 mM 2-AG, 200 ml reaction volume, 10 min,

room temperature. Results represent the average values ± standard

errors of the mean (SEM) for three independent experiments.
07 Elsevier Ltd All rights reserved
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Table 1. List of the Metabolic Serine Hydrolases Identified in the Mouse Brain Membrane Proteome by ABPP-MudPIT

Ensemble Identifier Common Name Abbreviation

Average

Spectral Counts SEM

ENSMUSG00000027698 KIAA1363 KIAA1363 163 26

ENSMUSG00000025277 a/b-hydrolase 6 ABHD6 149 7

ENSMUSG00000033174 Monoacylglycerol lipase MAGL 123 19

ENSMUSG00000032046 a/b-hydrolase 12 ABHD12 110 20

ENSMUSG00000034171 Fatty acid amide hydrolase FAAH 99 36

ENSMUSG00000007036 HLA-B-associated transcript 5 BAT5 51 5

ENSMUSG00000021996 Esterase 10/Esterase D ES10 37 5

ENSMUSG00000070889 GPI deacylase GPID 33 8

ENSMUSG00000036257 Similar to calcium-independent

phospholipase A2

iPLA2-2 32 2

ENSMUSG00000047368 Cgi67 CGI67 31 6

ENSMUSG00000002475 a/b-hydrolase 3 ABHD3 30 6

ENSMUSG00000033157 a/b-hydrolase 10 ABHD10 30 2

ENSMUSG00000023913 Phospholipase A2 group VII PLA2g7 25 2

ENSMUSG00000072949 Acyl-coenzyme A thioesterase 1 ACOT1 24 5

ENSMUSG00000040997 a/b-hydrolase 4 ABHD4 24 1

ENSMUSG00000003346 BC005632 BC0 20 2

ENSMUSG00000004565 Neuropathy target esterase NTE 17 7

ENSMUSG00000038459 RIKEN cDNA 2210412D01 gene R2D01 15 2

ENSMUSG00000023328 Acetylcholinesterase AChE 14 1

ENSMUSG00000028670 Acyl-protein thioesterase 2 APT2 14 1

ENSMUSG00000031903 Lysophospholipase 3 LYPLA3 14 1

ENSMUSG00000040532 a/b-hydrolase 11 ABHD11 14 2

ENSMUSG00000030718 Protein phosphatase methylesterase 1 PME1 13 1

ENSMUSG00000039246 Lysophospholipase-like protein 1 LPL1 13 4

ENSMUSG00000025903 Acyl-protein thioesterase 1 APT1 12 1

ENSMUSG00000001229 Dipeptidyl peptidase 9 DPP9 9 1

ENSMUSG00000027428 Retinoblastoma-binding protein 9 RBBP9 8 2

ENSMUSG00000032590 Acyl peptide hydrolase APEH 7 1

ENSMUSG00000005447 Platelet-activating factor

subunit acetylhydrolase IBg

PAFAH Ibg 6 1

ENSMUSG00000003123 Hormone-sensitive lipase HSL 5 1

Peptide spectral counts of serine hydrolases in the membrane fraction are reported as the average values of three individual ABPP-

MudPIT experiments ± SEM. Spectral count values for serine hydrolases identified in the soluble fraction are listed in Table S1.
transfection. Successful expression of 30 of the 32 pro-

teins as active enzymes was confirmed by ABPP analysis

with a rhodamine-tagged FP probe (FP-rhodamine;

Figure 3 and Figure S1). The only exceptions were Ca2+-

insensitive phospholipase A2g (iPLA2g) and glycerophos-

phoinositol deacylase (GPID); however, since both of

these enzymes have been ascribed metabolic functions

distinct from 2-AG hydrolysis [33, 34], we suspected that

their contributions to this activity would be negligible. Ser-

ine hydrolase-transfected cell homogenates were as-
Chemistry & Biology 14, 1347–1356
sayed for 2-AG hydrolase activity relative to a mock-trans-

fected homogenate (transfected with empty vector). The

data were further normalized to account for differences

in the expression levels of active enzymes, which were

measured by in-gel fluorescence scanning of FP-rhoda-

mine labeling intensities. This analysis identified seven en-

zymes that displayed significant 2-AG hydrolase activity:

MAGL, FAAH, HSL, NTE, platelet-activating factor subunit

1Bg (PAFAH IBg), a/b-hydrolase 6 (ABHD6), and a/b-hy-

drolase 12 (ABHD12) (Figure S2).
, December 2007 ª2007 Elsevier Ltd All rights reserved 1349
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Figure 3. Recombinant Expression of

Mouse Brain Serine Hydrolases

COS-7 cells transiently transfected with mouse

brain serine hydrolase cDNAs were labeled

with FP-rhodamine (2 mM, 1 hr), separated by

SDS-PAGE, and analyzed by in-gel fluores-

cence scanning to confirm expression of active

enzymes. The expression efficiency of active

enzyme was calculated from the integrated

fluorescence intensities of the asterisked

bands. Fluorescent gel shown in grayscale.
In order to estimate the relative contribution that each of

these seven enzymes made to total brain 2-AG hydrolase

activity, we needed to account for their relative expression

levels in brain tissue. Since brain 2-AG hydrolase activity

was primarily localized to membranes (�90% of total

activity; Figure 2), we focused our attention on this proteo-

mic fraction. Expression levels of serine hydrolases in the

brain-membrane proteome were estimated by first quan-

tifying their average spectral counts in ABPP-MudPIT data

sets of FP-biotin-enriched samples (Table 1). These

values were then normalized to account for differences

in the number of theoretical tryptic peptides per protein

(largely a reflection of differences in molecular mass).

This isotope-free method for protein quantification has

been shown to provide accurate estimates of the absolute

expression levels of proteins in proteomic samples [35].

The resulting profile of normalized brain 2-AG hydrolase

activities is shown in Figure 4. Consistent with previous

studies [24], MAGL was found to be the principal 2-AG

hydrolase in mouse brain, accounting for �85% of the

total membrane activity. Interestingly, however, none of

the other known 2-AG hydrolases (FAAH, HSL, NTE)

made substantial contributions to the remaining brain

activity, which instead was mostly attributable to the two

uncharacterized enzymes, ABHD12 (�9%) and ABHD6

(�4%). FAAH was identified as the next largest contributor

to 2-AG hydrolysis, accounting for �1% of total mem-

brane activity.
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Pharmacological Characterization of 2-AG
Hydrolases in Mouse Brain
Our functional proteomic analysis designated MAGL,

ABHD12, and ABHD6 as the major 2-AG hydrolases in

mouse brain membranes, with a minor contribution also

being made by FAAH. To confirm these results, we sought

to identify inhibitors that could discriminate among these

enzymes. The FAAH inhibitor URB597 [14] has previously

been shown to specifically target this enzyme in brain-

membrane proteomes [36, 37]. We recently reported a

selective inhibitor of ABHD6, WWL70, that was discov-

ered in a competitive ABPP screen of a carbamate library

[38]. Consistent with these previous studies, we observed

selective blockade of FP-rhodamine labeling of FAAH

and ABHD6 in brain-membrane proteomes treated

with URB597 (10 mM) and WWL70 (10 mM), respectively

(Figure 5A). Although specific inhibitors of MAGL and

ABHD12 are not yet available, we determined, by compet-

itive ABPP [39], that N-arachidonoyl maleimide (NAM) [24]

and the lipase inhibitor tetrahydrolipstatin (THL) [40] inac-

tivated these enzymes, respectively, without targeting

a large number of additional serine hydrolases in brain-

membrane proteomes (Figure 5A). In addition to blocking

FP-rhodamine labeling of MAGL, NAM appeared to at

least partially affect FAAH and ABHD12, especially at

higher inhibitor concentrations (10–50 mM), at which both

proteins showed altered migration by SDS-PAGE (pre-

sumably due to covalent modification of free cysteine
007 Elsevier Ltd All rights reserved
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Figure 4. The Relative 2-Arachidonoylglycerol Hydrolase Activities for Mouse Brain Membrane Serine Hydrolases

SH-transfected cell homogenates were assayed for 2-arachidonoylglycerol (2-AG) hydrolase activity (50 mM Tris-HCl (pH 7.5), 50 mg protein/ml, 100

mM 2-AG, 10 min, room temperature), and these values were normalized to account for differences in enzyme expression in transfected cells. To de-

termine the relative contribution of each enzyme to total brain-membrane 2-AG hydrolase activity, the results were further normalized based on

mouse brain expression levels for each serine hydrolase, as estimated by their average spectral count values from the ABPP-MudPIT analysis (Table

1) corrected for the number of theoretical tryptic peptides per enzyme. Results represent the average values ± SEM of two independent experiments

for two separate transfections per enzyme (n = 4).
residues by the NAM inhibitor) (Figure 5A; Figure S3). THL

(20 mM), on the other hand, completely blocked FP-rhoda-

mine labeling of ABHD12 and partially blocked ABHD6,

but did not inhibit MAGL or FAAH (Figure 5A; Figure S3).

We confirmed these general inhibitor sensitivity profiles

by using recombinantly expressed enzymes (Figure 5B).

We next tested the effects of inhibitors on the 2-AG

hydrolase activity of brain-membrane preparations. Con-

sistent with previous studies [24], NAM (20–50 mM)

blocked �85% of the total brain-membrane 2-AG hydro-

lase activity (Figure 5C). THL (20 mM), WWL70 (10 mM),

and URB597 (10 mM) individually blocked 66%, 24%,

and 10%, respectively, of the remaining ‘‘NAM-resistant’’

activity (Figure 5D). Combined treatment of NAM, THL,

and WWL70, which completely blocked MAGL, ABHD6,

and ABHD12 (as judged by ABPP; Figure S3), decreased

the total membrane 2-AG hydrolase activity by �98%,

lowering it to a level equivalent to inhibition by FP-biotin

(Figure 5D). We also applied THL, WWL70, and URB597

to untreated (i.e., NAM-free) brain-membrane proteome.

THL (20 mM) significantly decreased 2-AG hydrolysis by

10.5% ± 1.9% (Figure 5E). URB597 and WWL70 caused

more modest reductions in 2-AG hydrolysis activity

(1.9% ± 4.3 and 5.1% ± 2.3%, respectively) (Figure 5E),

but these values did not reach statistical significance

compared to control reactions performed in the absence

of inhibitor. Combined treatment of the brain-membrane

proteome with THL and WWL70 decreased 2-AG hydroly-

sis by 15.6% ± 2.7% (Figure 5E), matching remarkably

well the residual level of activity observed in MAGL-

inhibited (i.e., NAM-treated) samples. Collectively, these

data provide further evidence that the hydrolysis of 2-AG
Chemistry & Biology 14, 1347–13
in brain membranes is dictated by the combined action

of three enzymes: MAGL, ABHD6, and ABHD12.

MAGL, ABHD6, and ABHD12 Display Distinct
Subcellular Distributions
Why might the brain possess multiple 2-AG hydrolases?

One possibility is that these enzymes exhibit different cel-

lular and/or subcellular distributions, which could impart

upon them the ability to regulate distinct pools of 2-AG

in the brain. Consistent with this premise, hydropathy

plots predicted that both ABHD6 and ABHD12 are integral

membrane enzymes (Figure S4). In contrast, MAGL is

a soluble enzyme that associates with membranes in a pe-

ripheral manner [12]. We confirmed these general distribu-

tions by ABPP analysis of cellular fractions of transfected

COS-7 proteomes (Figure 6A), as well as by analysis of the

original ABPP-MudPIT data sets of brain-membrane and

soluble proteomes (Table S1). Interestingly, treatment of

transfected proteomes with the general N-linked glycosi-

dase PNGaseF resulted in a significant shift in gel migra-

tion for ABHD12, but not ABHD6 or MAGL (Figure 6A).

These data indicate that ABHD12 is an integral membrane

enzyme with its active site oriented toward the lumenal/

extracellular compartments of the cell, while ABHD6 is

an integral membrane enzyme that faces the cytoplasm

(Figure 6B). These data thus invoke a model in which

each of the major 2-AG hydrolases in brain membranes re-

sides in a distinct subcellular compartment: ABHD12 as

an integral membrane protein with lumenal/extracellular

orientation; ABHD6 as an integral membrane protein

with cytoplasmic orientation; and MAGL as a soluble/pe-

ripheral membrane protein with cytoplasmic orientation.
56, December 2007 ª2007 Elsevier Ltd All rights reserved 1351
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Figure 5. Effects of Inhibitors of MAGL, ABHD12, and ABHD6 on Brain Membrane 2-Arachidonoylglycerol Hydrolase Activity

(A and B) The selectivity profiles of NAM (50 mM), WWL70 (10 mM), THL (20 mM), URB597 (10 mM), and FP-biotin (5 mM) as judged by competitive ABPP

analysis (1 hr preincubation with inhibitors, followed by 1 hr labeling with FP-rhodamine [2 mM]) in the (A) mouse brain-membrane proteome and (B)

transfected COS-7 proteomes. Note that MAGL migrates as two distinct protein bands in the brain proteome, consistent with previous findings [23, 48].

(C) NAM treatment (0–50 mM, 1 hr) inhibited up to 85% of the 2-arachidonoylglycerol (2-AG) hydrolase activity of the mouse brain-membrane

proteome.

(D) Effects of inhibitors of ABHD12, ABHD6, and FAAH (with THL [20 mM], WWL70 [10 mM], and URB597 [10 mM], respectively) on the ‘‘NAM-resis-

tant’’ 2-AG hydrolase activity of the mouse brain-membrane proteome. Assays were conducted in proteomic samples pretreated with NAM (50 mM,

10 min) to block MAGL activity.

(E) Effects of inhibitors on total brain-membrane 2-AG hydrolase activity. For (C)–(E), results represent the average ± SEM of 3–5 individual exper-

iments. *, p < 0.05; **, p < 0.01; ***, p < 0.001 for inhibited versus control (DMSO)-treated samples.
DISCUSSION

The hydrolysis of monoacylglycerides, and 2-AG in partic-

ular, has been ascribed to many enzymes in vitro, includ-

ing several that are expressed in the nervous system (e.g.,
MAGL, FAAH, HSL, and NTE). These findings starkly con-

trast with the degradation of AEA, which is principally

mediated by a single brain enzyme, FAAH, and raise the

pertinent question of which enzymes in the nervous

system make the most significant contribution to 2-AG
Figure 6. MAGL, ABHD12, and ABHD6

Exhibit Distinct Subcellular Distributions
(A) The distribution of enzymes in the mem-

brane and soluble fractions of transfected

COS-7 cells, as judged by ABPP analysis.

PNGaseF treatment revealed that ABHD12,

but not MAGL or ABHD6, is a glycoprotein, in-

dicating a lumenal/extracellular orientation for

this enzyme.

(B) Cartoon model representing the predicted

orientations of the principal 2-AG hydrolases

in mouse brain.
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hydrolysis in vivo. To answer this question, a more com-

plete and quantitative understanding of the brain enzymes

that exhibit 2-AG hydrolase activity is required. Recogniz-

ing that virtually all 2-AG hydrolase activity in brain tissue

is sensitive to inhibition by general serine hydrolase inhib-

itors, such as MAFP or PMSF [29], we adopted a functional

proteomic approach to fully inventory the 2-AG hydro-

lases expressed in the mouse brain. This approach took

advantage of the activity-based probe FP-biotin [30]

coupled with advanced LC-MS methods [31] to assemble

a list of 32 serine hydrolases expressed in the brain.

Recombinant expression of these enzymes identified

seven proteins that hydrolyzed 2-AG. Using spectral

counting methods to quantify the relative expression

levels of these enzymes in brain tissue, we were able to

estimate their respective contributions to total 2-AG

hydrolase activity. These estimates were confirmed by

pharmacological studies with inhibitors that showed dis-

tinct selectivity profiles for the brain 2-AG hydrolases.

MAGL was found to mediate�85% of total brain-mem-

brane 2-AG hydrolase activity. This value matches re-

markably well with values in previous reports that used

the MAGL inhibitor NAM to block 80%–85% of cerebel-

lar-membrane 2-AG hydrolase activity [24]. These data,

in conjunction with our competitive ABPP studies (e.g.,

see Figure 5A), further argue that NAM, despite containing

a highly reactive maleimide group, exhibits rather high

selectivity for MAGL relative to other brain serine hydro-

lases. MAGL has been modeled to contain a noncatalytic

cysteine residue in its active site [24], which could account

for its unusual sensitivity to maleimide reagents. We ini-

tially anticipated that the remaining 15% of brain 2-AG

hydrolase activity might be due to other enzymes known

to hydrolyze 2-AG, such as FAAH, HSL, and NTE. How-

ever, our data indicate that none of these enzymes makes

substantial contributions to total brain 2-AG hydrolase ac-

tivity. Instead, the MAGL-independent 2-AG hydrolase

activity is largely mediated by two enzymes of previously

uncharacterized function—ABHD12 (�9%) and ABHD6

(�4%); the remaining �2% activity is presumably per-

formed by FAAH and/or other enzymes. These percent

contribution values were determined at near physiologic

pH (pH 7.5), and it is important to note that they may be

pH dependent.

When contemplating why the brain might contain multi-

ple enzymes with 2-AG hydrolase activity, we consider the

following points. First, these enzymes could exhibit dis-

tinct cellular or subcellular distributions, or they could

undergo different forms of regulated expression. Indeed,

the metabolism of other classes of bioactive molecules,

including acetylcholine [41], monoamines [42], and pros-

taglandins [43], has been shown to be regulated by multi-

ple enzymes or multiple isoforms of the same enzyme.

This ‘‘redundancy’’ presumably offers cells greater versa-

tility to tailor the magnitude and duration of small-

molecule signaling events to meet specific physiological

objectives. For example, neurons that express mem-

brane-bound versus secreted acetylcholinesterase iso-

forms display differences in synaptic signal strength due
Chemistry & Biology 14, 1347–13
to distinct rates of acetylcholine degradation at the syn-

apse [41]. In this context, it is noteworthy that MAGL,

ABHD6, and ABHD12 each displayed a distinct subcellu-

lar distribution. We speculate that these enzymes may

have preferred access to distinct pools of 2-AG in vivo,

which could, in turn, shape the signaling activity of this

endocannabinoid at different synapses throughout the

nervous system. Recent work from the Parsons group

also argues for the existence of distinct pools of 2-AG in

the brain. These authors determined by in vivo microdial-

ysis that extracellular levels of 2-AG are �200-fold lower

than total brain levels of this lipid [44], indicating that

only a small fraction of total 2-AG may be ‘‘signaling com-

petent.’’ Of course, elucidating the respective roles of

MAGL, ABHD12, and ABHD6 as regulators of 2-AG sig-

naling in vivo will require selective genetic and/or pharma-

cological tools to perturb their individual functions. In this

regard, it is noteworthy that both ABHD6 and ABHD12

were inactivated by the lipase inhibitor THL. This finding

indicates that ABHD6 and ABHD12 likely share active-

site structural similarity, despite showing very low se-

quence homology (<20%). Active-site relatedness among

enzymes from the serine hydrolase family that lack se-

quence identity has been noted previously [39].

It is also possible that ABHD6 and/or ABHD12 may

play a more dominant role in 2-AG hydrolysis in cells

that lack MAGL. It will be interesting, for example, to de-

termine whether these enzymes contribute to 2-AG hy-

drolysis in microglial cells, which have recently been

shown to possess this activity despite lacking MAGL

[28]. Finally, it is also possible that ABHD6 and ABHD12

metabolize endogenous substrates that are distinct

from 2-AG. Such has proven to be the case with FAAH,

which, despite hydrolyzing 2-AG in vitro [17], is primarily

responsible for degrading fatty acid amide substrates

in vivo [45, 46]. On this subject, however, we do believe

it is instructive to place the 2-AG hydrolase activities of

ABHD6 and ABHD12 in perspective by noting that they

exceed the rate of FAAH-catalyzed hydrolysis of AEA in

brain tissue by �10- to 20-fold (2.6 and 5.9 nmol/min/mg

versus 0.3 nmol/min/mg [13]). Thus, although ABHD12 and

ABHD6 only contribute to �15% of the total 2-AG

hydrolysis in the brain, their activities are still quite high

compared to other pathways for lipid transmitter

degradation.

In summary, we have performed a comprehensive,

functional proteomic characterization of brain enzymes

that hydrolyze 2-AG. These studies both confirm the role

of established 2-AG hydrolases, such as MAGL, and des-

ignate the enzymes ABHD12 and ABHD6 as potential

regulators of endocannabinoid signaling pathways. As-

suming that one or more of these enzymes is confirmed

to regulate 2-AG degradation in vivo, they might constitute

useful therapeutic targets for a range of nervous system

disorders. More generally, we suggest that the functional

proteomic strategy put forth in this manuscript could be

employed to comprehensively inventory enzymes that

possess other hydrolytic activities of relevance to mam-

malian signaling and physiology, including, for example,
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diacyl- and triacylglyceride metabolism and the produc-

tion and/or degradation of bioactive lipids such as lyso-

phosphatidic acid.

SIGNIFICANCE

Endocannabinoids are lipid transmitters that modu-

late a wide range of physiological processes. The

two principal endocannabinoids in the nervous sys-

tem, anandamide (AEA) and 2-arachidonoyl glycerol

(2-AG), are regulated by distinct biosynthetic and deg-

radative pathways. Identifying the enzymes that con-

trol AEA and 2-AG metabolism is imperative to achieve

a mechanistic understanding of endocannabinoid sig-

naling networks and to control these pathways for

therapeutic gain. While the degradation of AEA has

been shown to be principally mediated by the integral

membrane enzyme fatty acid amide hydrolase (FAAH),

multiple enzymes, including FAAH and monoacylgly-

cerol lipase (MAGL), are known to hydrolyze 2-AG in

vitro. Here, we have adopted a functional proteomic

strategy to comprehensively inventory the 2-AG hy-

drolases expressed in the mouse brain. We find that

virtually all brain 2-AG hydrolase activity (>98%) can

be accounted for by three enzymes—MAGL (�85%

of total), ABHD12 (�9% of total), and ABHD6 (�4% of

total). These results thus confirm that MAGL is the

principal, but not sole, 2-AG hydrolase in the mamma-

lian brain. The discovery of ABHD12 and ABHD6 as

2-AG hydrolases with subcellular distributions distinct

from MAGL designates these enzymes as potential

new components of the endocannabinoid system.

We speculate that MAGL, ABHD12, and ABHD6 may

regulate different cellular or subcellular pools of

2-AG, thereby making unique contributions to endo-

cannabinoid signaling in vivo. More generally, we be-

lieve that the functional proteomic methods detailed

herein can be applied to globally inventory enzymes

that possess any hydrolytic activity of relevance to

mammalian physiology.

EXPERIMENTAL PROCEDURES

Materials

2-Arachidonoylglycerol (2-AG), pentadecanoic acid, N-arachidonoyl

maleimide (NAM), and URB597 were purchased from Cayman Chem-

ical (Ann Arbor, MI). Tetrahydrolipostatin (THL) was purchased from

Sigma-Aldrich. FP-biotin and FP-rhodamine were prepared as previ-

ously described [30, 47].

Preparation of Mouse Brain Proteomes

Brains were harvested from wild-type C57Bl/6J mice and immediately

frozen on dry ice. The brains were then Dounce homogenized in Tris

buffer (50 mM Tris-HCl [pH 7.5]) with 150 mM NaCl, sonicated, and

centrifuged at slow speed (1,000 3 g for 10 min at 4�C) to remove

debris. The supernatant was centrifuged at high speed (145,000 3 g

for 45 min at 4�C), and this supernatant was saved as the soluble

proteome. The pellet was resuspended in Tris buffer, sonicated, incu-

bated at 4�C with rotation, and centrifuged at high speed (145,000 3 g

for 45 min at 4�C). This wash procedure was performed twice, and the

final pellet was resuspended in Tris buffer and saved as the membrane
1354 Chemistry & Biology 14, 1347–1356, December 2007 ª20
proteome. The total protein concentration of each proteome was de-

termined by using the Bio-Rad Dc Protein Assay kit. Aliquots of the

proteomes were stored at �80�C until use.

ABPP-MudPIT Analysis of Mouse Brain Proteomes

Mouse brain proteomes (1 mg in 1 ml Tris buffer) were treated with

5 mM FP-biotin for 1 hr at room temperature. Preparation of the labeled

samples for ABPP-MudPIT analysis was performed as previously

described [31], except that the Lys-C digestion step was omitted.

MudPIT analysis was performed as previously described [31] on an

LTQ ion trap mass spectrometer (ThermoFisher) coupled to an Agilent

1100 series HPLC. The tandem MS data were searched against the

mouse IPI database by using the SEQUEST search algorithm, and re-

sults were filtered and grouped with DTASELECT. Peptides with cross-

correlation scores greater than 1.8 (+1), 2.5 (+2), 3.5 (+3), and delta CN

scores greater than 0.08 were included in the spectral counting analy-

sis. Only proteins for which an average of ten or more spectral counts

were identified in either soluble or membrane samples were included in

the subsequent analysis. Spectral counts are reported as the average

of three samples with standard error of the mean (SEM).

Recombinant Expression of Brain Serine Hydrolases

in COS-7 Cells

Full-length cDNAs encoding mouse serine hydrolases identified by

MudPIT analysis were purchased from OpenBioSystems (Huntsville,

AL), with the exception of APEH, for which the rat cDNA was obtained,

and RBBP9 and NTE, for which human cDNAs were purchased.

cDNAs were either transfected directly (if available in a eukaryotic

expression vector) or subcloned into pcDNA3 (Invitrogen). Transient

transfections were performed as follows. COS-7 cells were grown to

�70% confluence in 100 mm dishes in complete medium (DMEM

with L-glutamine, nonessential amino acids, sodium pyruvate, and

FBS) at 37�C and 5% CO2. The cells were transiently transfected by

using the appropriate cDNA or empty vector control (‘‘mock’’) and

the FUGENE 6 (Roche Applied Science) or Lipofectamine (Invitrogen)

transfection reagents and following the manufacturers’ protocols.

After 48 hr, the cells were washed twice with phosphate-buffered

saline (PBS), collected by scraping, resuspended in 250 ml Tris buffer,

and lysed by sonication. The lysates were either used in assays as

whole-cell homogenates or centrifuged at 145,000 3 g for 45 min

at 4�C to isolate the soluble and membrane fractions. Protein con-

centrations were determined by using the Bio-rad Dc protein assay,

and aliquots of the homogenates were stored at�80�C until use. Suc-

cessful overexpression was confirmed by treatment of the cell homog-

enates (50 mg in 50 ml Tris buffer) with 2 mM FP-rhodamine for 1 hr at

room temperature. Reactions were quenched with 43 SDS-PAGE

loading buffer (reducing), separated by SDS-PAGE (10% acrylamide),

and visualized in-gel with a Hitachi FMBio IIe flatbed fluorescence

scanner (MiraiBio). Relative expression efficiency of the active enzyme

was determined by calculating integrated band intensities of the

labeled proteins. For deglycosylation studies of ABHD6, ABHD12,

FAAH, and MAGL, a portion of the FP-labeled cytosolic or membrane

lysates was treated with PNGase F (New England Biolabs) for 45 min

before SDS-PAGE analysis.

Enzyme Activity Assays

Enzyme assays of whole-cell lysates were performed in Tris buffer in

a total volume of 200 ml by using 10 mg total protein (except for

MAGL, where 0.1 mg MAGL-transfected cell lysate was diluted into

9.9 mg mock-transfected lysate). The reactions were incubated for

5 min at room temperature with 100 mM synthetic 2-AG (2 ml of 10 mM

stock in DMSO). The reactions were quenched by the addition

of 500 ml chloroform and 200 ml MeOH, vortexed to mix, and centri-

fuged for 5 min at 1,400 3 g to separate phases. The organic phase

was extracted, and 50 ml was injected onto an Agilent 1100 series

LC-MS. Briefly, chromatography was performed on a 50 3 4.60 mm

5 micron Gemini C18 column (Phenomenex), and products and stan-

dards were eluted with a 5 min gradient of 0%–100% Buffer B in Buffer
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A (Buffer A: 95% H2O, 5% MeOH, 0.1% ammonium hydroxide; Buffer

B: 60% iPrOH, 35% MeOH, 5% H2O, 0.1% ammonium hydroxide) and

mass analyzed in negative mode. Arachidonic acid release was mea-

sured by comparison with a pentadecanoic acid standard. The relative

activity of each enzyme was calculated by subtracting mock activity

and normalizing for expression efficiency in COS-7 by using the inte-

grated band intensity from the SDS-PAGE gel of the FP-rhodamine-la-

beled cell lysates. In order to account for the relative expression of ser-

ine hydrolases in the mouse brain, their 2-AG hydrolase activities were

normalized by using the average spectral count data from ABPP-Mud-

PIT analysis corrected for the number of theoretical tryptic peptides

per protein. The theoretical number of tryptic peptides for each serine

hydrolase was calculated based on amino acid sequence, and tryptic

peptides that were either less than 6 or greater than 39 amino acids

long were excluded from the numerical estimate. This analysis of the

data also assumes that each individual 2-AG hydrolase was labeled

to completion by FP-biotin, a premise that was validated by the com-

plete blockade of brain 2-AG hydrolase activity under the standard la-

beling conditions used for ABPP-MudPIT (see Figure 2). Assays were

conducted in duplicate for each of two separate transfections, and the

error bars represent SEM.

For activity assays of mouse brain, membrane fractions were diluted

to 1 mg/ml in Tris buffer and treated with DMSO, 5–50 mM NAM, 20 mM

THL, 10 mM WWL70, 10 mM URB597, 5 mM FP-biotin, or combinations

thereof for 1 hr at room temperature. A portion of this reaction was

labeled with FP-rhodamine as described above. 2-AG hydrolysis

activity assays were performed essentially as described above. Inhib-

itor-treated mouse brain proteome (10 mg) diluted in Tris buffer was in-

cubated with 100 mM synthetic 2-AG for either 10 or 60 min (reaction

time was adjusted to give �15% hydrolysis for the most active sam-

ple). The reactions were quenched and analyzed by LC-MS as de-

scribed above. Assays were conducted with n R 3, and the error

bars represent SEM.

Supplemental Data

Supplemental Data include ABPP-MudPIT data sets of brain mem-

brane and soluble proteomes, SDS-PAGE analysis of FP-labeled

mouse brain serine hydrolases recombinantly expressed in COS-7

cells, 2-AG hydrolase activity data of recombinant serine hydrolases,

competitive ABPP analysis of 2-AG hydrolase inhibitors in mouse brain

membranes, and TMpred analysis of ABHD12 and ABHD6 and are

available at http://www.chembiol.com/cgi/content/full/14/12/1347/

DC1/.
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