
Science of Computer Programming 63 (2006) 172–185
www.elsevier.com/locate/scico

Versioned boxes as the basis for memory transactions

Jõao Cachopo∗, António Rito-Silva

INESC-ID/Technical University of Lisbon, Rua Alves Redol n. 9, 1000–029 Lisboa, Portugal

Received 31 December 2005; received in revised form 1 May 2006; accepted 18 May 2006
Available online 4 August 2006

Abstract

In this paper, we propose the use of Versioned Boxes, which keep a history of values, as the basis for language-level memory
transactions. Unlike previous work on software transactional memory, in our proposal read-only transactions never conflict with
any other concurrent transaction. This may improve significantly the concurrency on applications which have longer transactions
and a high read/write ratio.

Furthermore, wediscuss how we can reduce transaction conflicts by delaying computations and re-executing only parts of a
transaction in case of a conflict. We propose two language-level abstractions to support these strategies: theper-transaction boxes
and therestartable transactions.

Finally, we lay out the basis for a more generic model, which better supports fine-grained restartable transactions. The goal of
this new model is to generalize the previous two abstractions to reduce conflicts.
c© 2006 Elsevier B.V. All rights reserved.

Keywords: Software transactional memory; Transactions; Conflict reduction; Multi-version concurrency control

1. Introduction

With the increased availability of multiprocessor computers, concurrent programming entered the realms of
mainstream programming. Yet, most programming languages lack adequate abstractions for concurrent programming.

Mechanisms such as Java’ssynchronized keyword are useful to develop thread-safe single objects, but are of
little help when various objects are involved. In these cases, to ensure consistency, we want that all operations execute
atomically. However, ensuring atomicity for complex domains with lock-based mechanisms is difficult and highly
error-prone.

Much of the recent work onsoftware transactional memories(STM) [17,9,7,8] deals with this problem by
introducing into the programming language abstractions such as transactions, which correspond to the atomic
execution of a group of operations. With transactional memories, several transactions can run in parallel using no
locks. Instead, either during the transaction or when the transaction commits, a check is made to ensure that the
transaction has seen a consistent view of the shared memory. If that is not the case, then the transaction is restarted.

Obviously, STMs are most effective when the number of restarts is low compared to the overall number of
transactions. Therefore, the number of transaction conflicts should be minimized. In this paper we concentrate on
this problem and make the following contributions:

∗ Corresponding author.
E-mail addresses:Joao.Cachopo@inesc-id.pt(J. Cachopo),Rito.Silva@inesc-id.pt(A. Rito-Silva).

0167-6423/$ - see front matterc© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2006.05.009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82330524?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/scico
mailto:Joao.Cachopo@inesc-id.pt
mailto:Rito.Silva@inesc-id.pt
http://dx.doi.org/10.1016/j.scico.2006.05.009

J. Cachopo, A. Rito-Silva / Science of Computer Programming 63 (2006) 172–185 173

• We propose the use of software transactional memories based onversioned boxes, which, unlike current
approaches, avoids the restart of read-only transactions. A problem with current nonblocking approaches to
STMs is that longer-running transactions have a higher probability of being restarted, leading eventually to the
transaction’s starvation. Using our approach, long-running transactions that only read never conflict with any other
transaction.

• We propose the use ofspeculative read-only transactions as a means to minimize the overheads of software
transactional memories in the common case of applications where read-only transactions largely outnumber
write transactions. In our approach, it is beneficial to distinguish betweenread-only transactions and write
transactions, because the former may have much less implementation overheads than the latter. Therefore, when
there is a high probability of a transaction being read-only, we may optimize its execution by assuming that it is
read-only and restarting it later if we find out that the assumption was wrong.

• To further reduce conflicts, we propose two strategies: (1) delaying computations, to avoid reading high-contention
boxes, and (2) re-executing only the parts of a transaction that caused the conflicts. Using these two strategies it is
possible to develop concurrency-friendly objects, which are designed specifically to remove high-contention points
from a concurrent program.

• To simplify the implementation of the two strategies to reduce conflicts, we extend our STM model with two new
abstractions: (1) theper-transaction boxes, which hold values that are private to each transaction, and (2) the
restartable transaction, which allows methods to be re-executed at commit time if a conflict occurs because of
them.

• Finally, we lay out the basis for a moregeneric STM model based on versioned boxes. The goal of this model is to
support restartable transactions that generalize the two abstractions proposed to reduce conflicts.

In the following section we describe our proposal for STM based onversioned boxesand discuss its implementation
as a Java library. Then, in Section3 we discuss some scenarios of conflicting transactions and propose the two
abstractions that help in the development of concurrency-friendly objects. Those two abstractions are compared and
generalizedin Section4. In Section 5 we discuss some related work and in Section6 we present theconclusions of
the paper.

2. Memory transactions based on versioned boxes

The distinctive element of our approach to STM is the use ofversioned boxesto hold the mutable state of
a concurrent program. Versioned boxes can be seen as a replacement for memory locations [7] or transactional
variables [8].

2.1. Model specification

Unlike conventional locations, which keep only a single value, aversioned box is a container that keeps a tagged
sequence of values—thehistory of the versioned box. Each of the history’s values corresponds to a change made to
the box by a successfully committed transaction, and is tagged with the number of the corresponding transaction. For
instance, if a boxB is changed three times, in transactions numbered5, 23 and87, thehistory ofB will have three
values, each tagged with one of the previous numbers.

There are two operations that a thread can execute on a versioned box: (1) theread operation, BoxRead(B), which
returns the current value of boxB, and (2) the write operation, BoxWrite(B, v), which setsthe current value of
boxB to v. Thebehavior of these operations and how they interact with transactions will be explained below. For now,
it is important to note that each of these operations must execute in the context of some transaction. If the executing
thread has no current transaction, then a new transaction is created immediately before and is committed immediately
after the operation.

Transactions, as usual, serve to delimit blocks of operations that should execute atomically. A transaction is
associated with exactly one thread – the thread that started it – and lasts until that thread either aborts or commits the
transaction. A transactionTc that starts in the context of another transactionTp is a nested transaction. Moreover,
we say thatTp is theparent of Tc and thatTc is achild of Tp. Transactions that have no parent are calledtop-level
transactions.

174 J. Cachopo, A. Rito-Silva / Science of Computer Programming 63 (2006) 172–185

When a transaction starts,it becomes the thread’scurrent transaction until it finishes or another (child) transaction
starts. When a transaction finishes, its parent, if any, becomes the thread’s current transaction.

We say that a boxB is read/written in the context of a transactionT whenT is the current transaction of the thread
executing a read/write operation onB.

Besides a reference for its parent, each transaction keeps the following information:(1) a transaction number,
(2) a set of boxes that were read in the context of the transaction, and (3) alocal-values map that mapsboxes to
values. To simplify the presentation below, given a transactionT, we will use the notationT-number, T-readSet and
T-localValues, to refer to each of these values, respectively.

The transaction number represents a version number, which is used both to tag the values on histories and to read
the appropriate values from versioned boxes. When a top-level transaction starts, its number is set to the number of
the last successfully committed top-level write transaction. So, all the top-level transactions that start between two
commits of write transactions have the same transaction number. When a nested transaction starts, its number is set to
thenumber of its parent.

2.1.1. Reading and writing boxes
A write operation,BoxWrite(B, v), executed in the context of a transactionT does not changeB. Instead, it adds

a mapping fromB to v to theT-localValuesmap. This map corresponds to the private storage of transactionT and
is used to keep track of the changes performed duringT.

A read operation,BoxRead(B), executed in the context of a transactionT should return the current value ofB.
Obviously, the expected behavior for this operation is that it returns the last value wrote toB in the context ofT. To
accomplish this behavior, the read operation searches for an existing mapping forB in T-localValues. If such a
mapping exists, the corresponding value is returned. Otherwise, the search continues recursively onT’s parent, until
either one mapping is found or no parent exists. If no mapping was found, then the value to return is obtained from
the history ofB andB is added toT-readSet. The valueobtained from the history ofB by the read operation executed
in T is the value tagged with the highest number which is less than or equal to the number ofT. As we shall see below
when we describe the commit of a transaction, this was the last value wrote toB whenT started.

2.1.2. Committing and aborting transactions
As transactions execute concurrently, accessing shared resources, they may conflict with each other. However,

conflicts are detected only at commit time. When a conflict occurs, the commit of some transaction fails. The commit
of a top-level transactionT may fail only if T is a read-write transaction. IfT is either a read-only or a write-only
transaction, then the commit will always succeed.

If T is read-only, thenno boxes were changed in the context ofT. Thus, we can safely assume that the transaction
executed instantaneously when it started, because all the boxes read byT are read in the state they were when the
transaction started. Even if several transactions committed during the execution ofT, the changes made by those
transactions are not visible toT. Therefore,T executed in a consistent view of the program state and so it can safely
commit. Moreover, as nothing was changed, there is nothing to be done in the commit of a read-only transaction.

On the other hand, ifT is a write transaction, then atleast onebox was changed duringT, and the changes
performed byT should become visible after its commit. Thus, to ensure that transactions are serializable,T can
commit successfully if and only if none of the boxes inT-readSet changed afterT started — in this case, we say
thatT is valid. Using this definition, a write-only transaction1 is always valid, because it never obtains values from the
history of a versioned box. So, its results will always be the same, no matter when it is executed, and we can assume
that it executes instantaneously when it commits.

The commit of a valid top-level write transactionT first renumbers the transaction, so thatT’s number is one greater
than the last successfully committed write transaction. Then, each of the values inT-localValues is added to the
corresponding history tagged with this new number. Of course, the check for transaction validity and these changes
should be executed atomically.

The commit of a nested transaction is simpler, as it just propagates the changes made during the nested
transaction to the parent’s context. Specifically, when a nested transactionTc with parentTp commits, the elements of

1 We say thatT is a write-only transaction if for each boxB read inT there is a previous write forB in T.

J. Cachopo, A. Rito-Silva / Science of Computer Programming 63 (2006) 172–185 175

public class Transaction {
public static void start();
public static void abort();
public static void commit();

}

public class VBox<E> {
public VBox(E initial);
public E get();
public void put(E newE);

}

Fig. 1. TheTransaction andVBox classes.

Tc-readSetare added toTp-readSet, and, also, the mappings inTc-localValuesare added toTp-localValues,
overriding any existing mapping in the parent’s map. The commit of a nested transaction always succeeds.

Finally, aborting either a top-level transaction or a nestedtransaction simply ends the transaction and does not have
any effect on boxes. All the transaction’s local-values,if any, are lost. Aborting a transaction always succeeds.

2.1.3. Garbage collecting old values
With versioned boxes, old values are not lost; they arekept in the history of the box. This is necessary so that

running transactions can read the correct values even after later transactions committed new values to a box. However,
as old transactions finish, older values become unreachable. So, unless we want to keep the whole history of changes,
the unreachable history values canbe safely garbage collected.

To capture this concept, we say that a transaction isactive if and only if it is either the current transaction of some
thread or the parent of an active transaction. Moreover, we say that a valuev of a history h is reachable if and only
if: (1) v is the most recent value in the historyh; or (2) there is anactive transaction that started before a value newer
thanv was added to historyh.

2.2. Model implementation

We implemented our approach to STMs as a Java library [10], although the facilities we need from Java are
available in most other object-oriented programming languages.

There are two core classes in the library – theTransactionclass and theVBox class – as shown inFig. 1. However,
to simplify transaction demarcation, in our current implementation we provide also a method annotation: the@Atomic
annotation. Classes that use this annotation are then post-processed to wrap the annotated methods’ bodies with the
boilerplate transaction calls.

Using this implementation, it is now easy to develop transactional objects. For instance, a simple transactional
counter is shown inFig. 2.

Note the use of aVBox to hold the counter state and the@Atomic annotation on theinc() method. Moreover, this
transactional object can be used in larger scale transactions. Ifinc() is called in the context of another transaction,
its body starts a nested transaction and, in the end, commits its changes back to the parent transaction.

In the following, we highlight some of the design decisions we made in our implementation.

2.2.1. Implementing versioned boxes
We implement versioned boxes using a variation of the Handle/Body idiom [2]. Each versioned box is separated

into a handle and a series of bodies. The handle instance represents the versioned box’s identity and its single field
is a reference to its most recent committed body. Each body represents a particular version of the box’s state. It has
fields to represent the box’s value, a version number and a reference to the body that maintains the previous version
of the box’s state. The version number in each body is the number of the transaction that committed the body. For
instance,Fig. 3shows the versioned box of aCounter object that was created during transaction number4, and that
was incremented subsequently, in transactions numbered8 and13.

176 J. Cachopo, A. Rito-Silva / Science of Computer Programming 63 (2006) 172–185

public class Counter {
private VBox<Long> count = new VBox<Long>(0L);

public long getCount() {
return count.get();

}

public @Atomic void inc() {
count.put(getCount() + 1);

}
}

Fig. 2. A transactionalCounter object.

count
body:

value: 2
version: 13
next:

value: 1
version: 8
next:

value: 0
version: 4
next: null

Fig. 3. Thecount box of aCounter instance.

Although aVBox keeps a reference to its body, none of theVBox’s methods, including theget andput operations,
access the body directly. Instead, all accesses occur through aTransaction object, so that the correct body for the
current transaction is used.

As we shall see, when a new value is written to a box, a new body is created by the transaction object, but it is not
put into the box’s history of bodies until the transaction commits.

As a final remark regarding the implementation of the versioned boxes, we note that both theVBox reference to
its body, as well as all the slots in the body class arevolatile. This is essential to ensure that assignments to these
fields by one thread are written in the same order that the fields are assigned to in the thread. These fields are assigned
only when a transaction commits a new body for an object. The last assigned field should be thebody field in class
VBox, so that if a concurrent thread reads the new value of this field, it obtains a body instance consistently assigned.2

This way, threads that access thebody field donot need to synchronize with any other.

2.2.2. Implementing transactions
In Fig. 4we show part of theTransaction class’s fields. The static fieldlastCommittedkeeps the number of the

last committed transaction, which is needed to give an initial number to each new top-level transaction. The value of
this static field changes only when a top-level write transaction successfully commits, in which case it is incremented
by one.

ThelocalValues map corresponds to the transaction’s private storage. The transaction uses this map to record
the new bodies for each box written during the transaction. When, during a transaction, a new value is first written to
aVBox, anew body is created with the new value and this new body is inserted into thelocalValuesmap. If, during
the same transaction another value is written to the samebox, then the previously created body is changed to reflect
the new value. This is safe, because no concurrent thread can access this new body.

Naturally, when a box is read, thelocalValuesmap is consulted first to see whether a new body exists for the box.
This search is performed recursively in the transaction’sparent until a body is found or until no parent transaction
exists. Only if no new body is found in any of thelocalValues map, will the transaction look for the appropriate

2 This restriction is a consequence of the Java Memory Model [11].

J. Cachopo, A. Rito-Silva / Science of Computer Programming 63 (2006) 172–185 177

class Transaction {
static int lastCommitted = 0;

int number;
Transaction parent;
Map<VBox,VBoxBody> bodiesRead = ...;
Map<VBox,VBoxBody> localValues = ...;

}

Fig. 4. The member fields of theTransaction class.

body in the box’s history. In this case, the transaction records in thebodiesReadmap that the box public history was
read. This will be needed at commit time to detect conflicts.

The search for the correct body in the public history of a box is a linear search in the sequence of bodies of that
box. The search stops once a body with a version number less than or equal to the transaction’s number is found.
Given that the history is sorted in descending order of the bodies’ version numbers, the search usually returns the
first element in the sequence. Only if a concurrent transaction committed a new value for the box after the current
transaction started, will the search need to go further in the sequence of bodies. Note that, even though the box may
have already a new value, committed by a concurrent transaction,the current transaction may safely proceed if it is a
read-only transaction. Only if we know already that the current transaction is a write transaction can we abort it when
a read is performed on a concurrently changed box.

Finally, when the transaction commits, if thelocalValues map is empty, the transaction is read-only and the
commit succeeds with no further actions. On the other hand, if thelocalValuesmap is not empty, the newly created
bodies in it should be installed in the corresponding boxes histories, but only if the transaction is valid. The check for
validity verifies that all the entries in thebodiesReadmap correspond, still, to the most recent values.

According to our model, the check for the transaction validity and the installment of the new bodies should be
performed atomically with respect to other concurrent commits. In our current implementation, this is accomplished
by forcing all the write transactions’ commits to synchronize on a single object, thereby ensuring the sequential
execution of all commits. Note, though, that neither the execution of concurrent transactions nor the commit of read-
only transactions are affected by this.

2.2.3. Speculative read-only transactions
The implementation we presented thus far registers all the boxes read during a transaction, so that the transaction

can be validated in the end. This introduces a significant overhead, both in memory, to store all the map’s entries, and
in time, to update that map. Moreover, reading a box forces a search in thelocalValues map, again introducing a
significant overhead. Fortunately, in some cases we can reduce these overheads.

Consider the case of a top-level read-only transactionT. As we saw, the commit ofT will always succeed, and the
bodiesRead map is not used for anything. Likewise, thelocalValues map is always empty, so the read operation
on any boxB obtains the result value from the history ofB. Therefore, if we know beforehand that a transactionT is
read-only, we can eliminate both of the overheads mentioned above. The problem is that, in general, it is not possible
to know, until the end of the transaction, that it is read-only.

However, we can speculatively assume that a top-level transaction is read-only when it starts. If a write operation
is attempted during the execution of the transaction, then we have to abort and restart the transaction as a generic
read-write transaction. In programs where read-only transactions largely outnumber read-write transactions, the cost
of restarting the erroneously assumed read-only transactions may be much less than the cost of unnecessarily using
read-write transactions. One way to improve this strategy is to give the programmer the possibility to give hints about
the nature of a transaction. Another, is to adaptively change the nature of a transaction in runtime based on prior
executions of the same transactional block.

This speculative strategy can be applied to nested transactions as well, but requires some special considerations.
If the parent transaction is not read-only, the nested transaction still has to register all the boxes read, so that it can
add them to the parent at commit time. Therefore, we can use a nested read-only transaction only when the parent

178 J. Cachopo, A. Rito-Silva / Science of Computer Programming 63 (2006) 172–185

is a read-only transaction. Moreover, when a write operation is executed in a nested read-only transaction we should
restart the top-level transaction, rather than the nested transaction itself.

2.2.4. Implementing garbage collection
To conclude the discussion on the implementation of the versioned boxes model, we describe how we deal with

the garbage collection of old values from the boxes’ histories. As we saw in Section2.1.3, old values are needed just
as long as there are active transactions that may need to access them. Otherwise, when a new value is committed to a
box, we could discard the box’s previous value.

Our strategy to deal with this problem is to make the transaction that commits a new value for a box be responsible
for the cleanup of old values. A transaction that commits new values already has, in itslocalValues map, the
collection of boxes that need cleanup. We just have to know at what time can the cleanup be performed.

For that, weuse a priority queue of active transactions, sorted by the transaction number, and a cleanup thread that
removes inactive transactions from this queue.

Whenever a new top-level transaction starts, it is put into the queue, sorted by its number. When a transaction
finishes, either by committing or aborting, it is marked as finished and the cleanup thread is signaled.

The cleanup thread waits until the transaction which is in the head of the queue (the oldest transaction) is finished.
When that happens, the cleanup process removes all the transactions that are already finished from the head of the
queue, calling the transactions’ cleanup code as it proceeds.The cleanup of a write transaction consists in going
through each of the bodies created by the transaction and discarding their previous versions (by setting the bodies’
next field to null). Because the queue is sorted, when a write transaction is removed from the queue no older
transaction is running, so the old values areunreachable and may be safely discarded.

3. Transaction conflicts

Now that we presented our proposal for STM, we will discuss some scenarios where transactions can conflict with
each other. We start with a simple example that illustrates the benefits of our approach compared to non-versioned
approaches. Then, we look into some examples which are hard to solve with current approaches (including ours). In
these harder-to-solve examples, many conflicts occur because transactions access some high-contention objects. To
solve this problem, we propose that these high-contention objects be reimplemented as concurrency-friendly objects,
and show how that can be accomplished through the useof two new transactional abstractions.

Wesay that an object is concurrency-friendly when it is designed to be aware of and to cooperate with transactions,
so that it reduces the number of conflicts on the transactions that use it.

3.1. Long-running transactions

Consider the typical example of a bank with several bank accounts, where we have two transactional methods: (1) a
transfermethod that transfers some amount between two accounts, and (2) atotalBalancemethod that calculates
the total balance of all bank accounts.

Typically, differenttransfer transactions involve different accounts, so the probability of conflict between two
such transactions should be rather low. However, the trivial implementation of thetotalBalance methoditerates
over all the bank accounts to sum their balance. Thus, without a versioned model, any transfer during the execution of
thetotalBalancemethod would force this latter method to abort. Alternatively, all transfers (or any other change to
bank accounts) should be suspended until thetotalBalance method finishes. Neither option is satisfactory. Using
versioned boxes as the basis for STM eliminates this problem, because thetotalBalance transaction is a read-only
transaction and therefore never conflicts.

3.2. Avoiding conflicts by delaying computations

Consider now that we want to keep a record of the total number of transfers made by the bank. An obvious
solution would be to use aCounter object (as shown in Section2.2) and increment the counter during each transfer
transaction. Unfortunately, now all transfer transactions will conflict with each other, because all of them read and
write theCounter state. TheCounter object became a high-contention point in our system because it is shared by
most transactions. Can we avoid this problem?

J. Cachopo, A. Rito-Silva / Science of Computer Programming 63 (2006) 172–185 179

The increment of the sharedCounter object on two transfer transactions causes them to conflict because the first
transaction to commit changes the publicly available state of theCounterobject, which is read by the other transaction
in a previous state. We cannot prevent the first transaction from changing the counter, but we can prevent the second
transaction from reading it in a previous state. To see why, note that the behavior of the transfer transaction is not
influenced by the value of the counter. Indeed, the value of the counter is read in theinc() method, and neither that
value nor the new value is returned to the calling method. Likewise, the execution flow of theinc() method does
not depend on the value of the counter. That value is relevant only to determine the new value. So, if we delay the
calculation of the new counter value, we can avoid the read of the counter value, thereby preventing the conflict of
the second transaction with the already committed transaction. But then, when will the delayed calculation be done?
To avoid the conflict, we propose to delay the read of the counter value until commit time, after the transaction has
been validated. By this time,if the transaction is valid, we know that all the boxes read during the transaction were
not changed meanwhile — thus, all the values read are still the most recent versions. Moreover, because commits of
write transactions execute in mutual exclusion, we know that during the commit, no box can be changed. So, it is
safe to update the transaction number to the most recent oneand to access any box during this time, because the most
recent version of every box is consistent with the currentlycommitting transaction. The key insight here is that, at this
time, the current value of the counter is the value written by the last committed transaction, rather than the value that
the counter had when the current transaction started. So, we can calculate the new counter value and commit this new
value. In order to do this we just have to know how many times theinc() method was called during the transaction
(and the current value of the counter, of course).

Summarizing, to reimplement theCounter object in such a way that it is no longer a high-contention point (in
the scenario presented above), we needto: (1) remember how many times theinc() method was called during a
transaction, and (2) delay the calculation of the new counter value until commit time (if possible). We shall now see
how to implement this.

3.3. Delaying computations with per-transaction boxes

To implement the strategy of delaying some computations until commit time, we propose a new abstraction in
our model — theper-transaction boxes. The key idea behind per-transaction boxes is that they serve to hold values
private to each transaction. These private values may then be merged with shared values, available on versioned boxes,
when the transaction commits.

To accomplish this, each transaction keeps track of the value of each per-transaction box accessed during the
transaction. When the top-level transaction commits,3 the transaction calls thecommit method on each of the per-
transaction boxes, with the current per-transaction box value. Typically, thecommit method will merge the per-
transaction value received with the values of some versioned boxes. However, the responsibility of writing this method
is left to the programmer that uses the per-transaction box.

The additional power given by this new abstraction stems from the fact that, when the per-transaction boxcommit
method executes,the transaction has been validated and its number is set tothe appropriate final number. Therefore,
if the method reads some versioned boxB, it will use the last committed value onB, rather than the value thatB had
when the transaction started. This last value ofB, as we saw on the previous section, is necessarily consistent with the
transaction.

Using this new abstraction, we can implement a new version of theCounter class that delays the increment, as
shown inFig. 5. In this new version, theinc() method no longer reads the value ofcount. Instead, it updates a per-
transaction box which holds the number of times that theinc() method was called. When the transaction commits,
the valueof the per-transaction box is added to thecount value. Obviously, the newgetCount() method needs to
take thetoAdd value into account. The good thing about this new counter is that it causes no conflicts in thetransfer
transactions anymore. Moreover, all the changes were made in the counter class and thetransfer method remains
the same.

TheCounter class is the simplest example where this approach of delaying the computations eliminates conflicts.
More interesting cases include the addition and removal of elements to collections, for instance. In this case, we would

3 The commit of a nested transaction simply propagates the per-transaction values to the transaction’s parent.

180 J. Cachopo, A. Rito-Silva / Science of Computer Programming 63 (2006) 172–185

public class Counter {
private VBox<Long> count = new VBox<Long>(0L);

private PerTxBox<Long> toAdd =
new PerTxBox<Long>(0L) {
public void commit(Long value) {
count.put(count.get() + value);

}
};

public long getCount() {
return count.get() + toAdd.get();

}

public @Atomic void inc() {
toAdd.put(toAdd.get() + 1);

}
}

Fig. 5. ACounter object that delays its increment.

use two per-transaction boxes: one to hold the elements to add, and another to hold the elements to remove. Both of
these boxes would be changed by the addition and removal operations, and the commit of the boxes would have to
perform the delayed additionsand removals. Like in theCounter case, a collection using this approach can prevent
the conflict between two concurrent transactions that change the same collection, becausethe access to the underlying
structure of the collection is delayed until commit time. Naturally, the conflict might still exist if the concurrent
transactions need to read the collection also. Likewise, if a transaction using aCounter object needs to read the value
of the counter, then the delay of theinc() operation is of no use to prevent the conflict with a concurrent transaction
that behaves the same. To read the counter’s value, thegetCount() method has to read thecount box. We shall
address these cases in Section4.

To conclude the presentation of the per-transaction boxes, we note that the drawback of this approach is that the
execution of the per-transaction boxes’commitmethods increases the time of the commit operation, which executes in
mutual exclusion with all the other commits of write transactions. However, neither the execution of other transactions
nor the commit of read-only transactions is influenced in any way by the execution of the per-transaction boxes’
commit methods.

3.4. Removing conflicts by restarting computations

The strategy used to reimplement theCounter class works whenever we can eliminate read operations. That
happens when the values returned by those read operations are not needed to decide on the execution flow of the
transaction. We shall now discuss some cases where this is not possible.

Consider an implementation of a singly-linked list that uses versionedboxes to keep the list forward links, and
which contains the following methods: (1) theremove(Object)method that removes an object from the list, and (2)
thecontains(Object)method that returns a boolean value indicating whether the given object exists in the list.

Furthermore, suppose that we have a listL, with two objectsO1 andO2, that is used by two concurrent read-write
transactionsT1 andT2. If T1 removesO1 from L and commits beforeT2, which calls contains(O2), then, on a
typical implementation of these methods,T2 will have to abort becauseL’s structure changed. In particular, the head
of the list now points to the node withO2, rather than the node withO1. However, after the changes made byT1, the
result ofcontains(O2) is the same, because the list still containsO2. Therefore, if T2 started afterT1 committed, it
would produce the same results. So,T2 can be serialized afterT1 and there should be no conflict.

Unfortunately, in this case we cannot delay the computation ofcontains(O2), because the whole point of using
this method inside a transaction is to know whether the listL containsO2 or not — presumably, to decide on what

J. Cachopo, A. Rito-Silva / Science of Computer Programming 63 (2006) 172–185 181

class List {
...
@Restartable boolean contains(Object obj) {
...contains body...

}
}

Fig. 6. Using restartable transactions.

to donext. We expect this to be true for every method that returns some value and does not have side-effects. Thus,
per-transaction boxes do not help us here.

The rationale presented above for the conclusion thatT2 should not conflict withT1, was that the result of the
operation that caused the conflict would be the same if that operation executed afterT1 committed. So, it seems that
we can remove the conflict, if we re-execute thecontains(O2) call at commit time, and the re-execution produces
the same result. If the result is not the same, then the transaction execution might have been different, and therefore
we must restart the transaction.

The advantage of this strategy is that it avoids the restart of the whole transaction, by re-executing just a smaller
part of the transaction. However, unlike the restart of the whole transaction, the re-execution occurs at commit time,
which means that it blocks the remaining commits during its execution.

Obviously, there is a tradeoff here that needs to be evaluated carefully. Nevertheless, we expect that for longer-
running transactions, with small blocks of restartable operations, this strategy pays off. More so, if those blocks
are high-contention points, because, in that case, they would force the transactions to execute almost sequentially
anyway.

3.5. Restartable transactions

To deal with the problem identified in the previous section we propose a new abstraction: therestartable
transaction.

From the programmer’s point of view, this new abstraction can be introduced as a new annotation,@Restartable,
to delimit this new kind of transactions.Fig. 6 illustrates its use in the example of theList class.

The semantics of this construction is an extension of the@Atomic annotation’s semantics, introduced in Section2.2.
Like the previous one, it serves to demarcate a transaction.However, it also serves to give a hint to the transaction
system that if a conflict occurs because of boxes read exclusively within this transaction, then the transaction can be
re-executed at commit time to see whether it produces the same value as in the first execution, thereby resolving the
conflict.

However, not all transactions can be restartable. If the transaction is not restartable, the@Restartable annotation
behaves like the@Atomic annotation. Here, we restrict restartable transactions to nested read-only transactions
implemented by a method. In this case, the only influence of the restartable transaction on the execution of its parent
is the method’s return value. In the following section, we will address the case of restartable transactions with side-
effects.

To implement restartable transactions, we need to capture the following information:

• The method body with all its arguments, so that we can re-execute it later.
• The method return value, so that we can compare it with the result of the re-execution.
• The current state of the enclosing transaction, including all of its ancestors. This state consists of a copy of all the

local-values maps of the restartable transaction’s ancestors at the time that it started executing for the first time. This
is needed, so that the re-execution can access the same values of the boxes written by the enclosing transaction.

To capture the method body with all its arguments (including thethis), the@Restartable annotation can be
expanded as shown inFig. 7.

TheRestartableTransaction object should obtain the set of boxes written in the current transaction, create a
new nested transaction (having the current transaction as its parent) and execute therun method within the context
of this newly created nested transaction. If therun method terminates normally and it did not write to any box,

182 J. Cachopo, A. Rito-Silva / Science of Computer Programming 63 (2006) 172–185

class List {
...
boolean contains(final Object obj) {
return
new RestartableTransaction<Boolean>() {
public boolean run() {

return restartable$contains(obj);
}

}.execute();
}

boolean restartable$contains(Object obj) {
...contains body...

}
}

Fig. 7. Implementing restartabletransactions.

then arestartable transaction record is created, with all the relevant data, and this record is added to the current
transaction. Otherwise, the nested transaction is committed or aborted as usual. Naturally, the restartable transaction
records should be propagated through the transaction hierarchy, as transactions commit. They will be used only at
commit time by the top-level transaction.

Restartable transactions hide the read operations performed during their execution from their parents. Therefore,
when the top-level transaction commits, the validity check will not take into account the boxes read during restartable
transactions. However, after the top-level validity checkpasses, each of the restartabletransaction records will be
validated in turn.

A restartable transaction record is valid if none of the boxes read during the restartable transaction have changed.
This is similar to the validity check of a top-level transaction. If a restartable transaction record is not valid, then
it is re-executed in a newly created nested transaction.If the re-execution terminates normally, produces the same
result as before, and does not write to any box, then the changes that occurred in the boxes do not affect the top-level
transaction and it can continue. Otherwise, the commit of the top-level transaction should fail.

The key point here is, again, that the re-execution of eachrestartable transaction occurs during the commit of the
top-level transaction, after it has been renumbered. Thisway, each re-execution will see the most recent values for the
shared resources, much in the same way as thecommit methods of the per-transaction boxes. Moreover, because the
top-level transaction is valid, all the values read during the re-execution of the restartable transaction are consistent
with the values read previously by the restartable transaction’s ancestors.

Finally, the drawback of this approach to resolve conflicts is the same that we referred to at the end of Section3.3:
The re-execution of restartable transactions at commit time may introduce huge overheads in the execution time of
the commit operation.

4. Towards a model for fine-grained restarts

The restartable transaction abstraction proposed in Section3.5 allows fine-grained control over which parts of
a transaction can be re-executed, provided that those partsdo not change any boxes. In this section, we begin by
discussing the implications of expanding this abstraction to include write operations. Then, we explore an extension
to the model presented in Section2 that is better suited to implement fine-grained restartable transactions.

4.1. Delaying computations versus restarting transactions

The first strategy we used to eliminate conflicts was to delay some computations until commit time. Then, we
introduced the notion of restartable transaction, which, again, works by making some computation at commit time.

J. Cachopo, A. Rito-Silva / Science of Computer Programming 63 (2006) 172–185 183

This apparent similarity raises the question of whether there is any relation between the two abstractions. More
specifically, we would like to know whether restartable transactions can replace the use of per-transaction boxes.

We used the per-transaction boxes to implement a new counter because the counter’sinc operation was causing
many conflicts. Similar reasons led to the use of restartable transactions to implement the list’scontains operation.
So, it is tempting to use this later abstraction to implement the counter’sinc operation, because it is simpler to use.
Unfortunately, if we try this, we face the problem that theinc operation writes to a box. Therefore, to unify the two
approaches, we need to extend the restartable transaction’s semantics to accommodate write operations.

4.2. Restartable transactions that write

The generic necessary condition for having a restartable transaction is that its re-execution in a different context
(at commit time) does not change the execution of the top-level transaction. A conservative approach to ensure this
condition is to require that the restartable transaction returns the same result as before and does not perform any
side-effects. This last restriction eliminates all the changes to shared resources. However, this approach is overly
restrictive.

A straightforward change in the restartable transactions’ semantics is to accept transactions that write new values
to versionedboxes, provided that those boxes are never read in the remaining of the enclosing top-level transaction.
This restriction applies both during theexecution and the re-execution of the transaction, because, when a restartable
transaction re-executes, different boxes may be written.

This change is sufficient to allow us to replace the per-transaction box by a restartable transaction in the simple case
presented in Section3.2. But if we consider a case where the counter is incremented twice in the same transaction,
then the implementation based on a restartable transaction fails to eliminate the conflict, although the per-transaction
box’s solution still works. The restartable transaction approach fails in this case, because the value of thecount box
written by the firstinc operation is used later (in the secondinc operation). Therefore, a different value for that
box can change the behavior of the top-level transaction.And it does, indeed, because the second increment would
produce a different result. However, the secondinc operation is a restartable transaction, also. So, if it re-executes
after the re-execution of the first restartable transaction, then the correct value would be produced.

This later observation leads to another change in the semantics of restartable transactions: A restartable transaction
may write a versioned box if, during the execution of the enclosing top-level transaction, that box is read only by
restartable transactions, in which case, the later restartable transactions should be re-executed whenever the value of
the box is changed. Although informally specified, this new semantics seems to be expressive enough to replace the
use of the per-transaction box in theCounter class.

The problem with this extended semantics is that it is much harder to implement in our current model than the
relatively simple per-transaction boxes. The difficultystemsfrom the fact that we need to keep track of which
transaction produced a particular value for a box, together with the need to capturethe currently written boxes
whenever a restartabletransaction starts.

4.3. Extending the versioned model

In our current model, if several nested transactions (of the same transaction) write to a boxB, they do not produce
different versions forB. Instead, they replace the previous value ofB with the new value. This can be done, because
nested transactions executesequentially, so there is noneed for older versions.

However, if we take into account restartable transactions, which may need older values when they re-execute, then
it makes sense to use the same approach of keeping a different version for each committed transaction, independently
of its nesting. Moreover, this approach extends naturally to allow concurrent nested transactions.

The fundamental change we propose here is to treat nested transactions in the same way as top-level transactions.
The only difference between the transactions becomes thecontext where they execute. The execution of transactions
inside other transactions forms a transaction tree, whereeach transaction in the tree keeps the information about what
was read and what was written by itself, rather than merging this information with its parent.

The advantage, for restartable transactions, of this new approach, is that they become much more easy to imple-
ment. First, because all the execution contexts needed to re-execute the transaction are kept by the transaction tree.
Second, because the re-execution of the transaction needs to concern only with updating its local values, rather than

184 J. Cachopo, A. Rito-Silva / Science of Computer Programming 63 (2006) 172–185

with propagating the changes to its parent. Finally, becauseit becomes trivial to record the dependencies between
different transactions.

With this approach it is feasible to consider that all transactions are restartable. Therefore, when a transaction
conflicts with another, it is possible to determine the smallest portions of code that need to be restarted to remove
the conflict. Naturally, any restart may fail to produce the same results, which would recursively cause a higher-level
transaction to restart, until we eventually restart the top-level transaction.

One interesting aspect of this approach is that the transaction granularity greatly influences the ability to
recover from a conflict. Furthermore,we believe that the use of fine-grained restartable transactions allows
a graceful degradation from an optimistic concurrency control policy to a pessimistic policy, but only when
needed.

5. Related work

Compared to other approaches to STM, e.g. [17,9,7,8], the distinctive feature of our model is the use of multiple
versions for each memory location. Therefore, our approachis better suited for long-running read-only transactions
than the rest. This comes at the expense of more memory overheads.

The use of multiple versions to increase the concurrency of transactional systems is well known in the area of
database management systems. Since the seminal work of Bernstein and Goodman [1] on multi-version concurrency
control, the technique of using multiple versions as the basis for optimistic concurrency control was applied in several
contexts. One such application was made by Graham and Parker [4]. They presented a formalism for describing multi-
version object base systems which is similar, at the model level, to our proposal. However, their work is in the context
of object databases, which have different concerns compared to a programming language level software transactional
memory. As far as we know, our STM proposal is the first to incorporate the ideas of multi-version concurrency control
in this context.

The idea of keeping a history of values for each object whenever it is changed, rather than replacing the old value,
was used by Reed in the context of the distributed execution of atomic actions [13,14]. However, many of his concerns
regarding the difficulty of synchronization on a distributed system do not apply in the context of STM. Moreover, in
Reed’s approach, when an object is read, the history of the object may be updated by that read operation, thereby
introducing a point of synchronization among concurrent read-only transactions, which defeats somehow the benefits
of this approach.

The semantics of nesting in our model corresponds to what Moss and Hosking [12] describe aslinear nesting.This
simplified model allows a simpler implementation of nesting and is sufficient to support theretry and theorElse
operations from [8]. Although we did not address these operations in this paper, their implementation in our model is
quite straightforward.

A notable difference of our implementation is that it uses a single lock to ensure mutual exclusion during the
commit, whereas others, e.g. [9], rely on a single CAS operation to performthe commit, because all the values are put
in place during the transaction’s execution. We may use a similar strategy in the future.

Regarding the reduction of transaction conflicts, Herlihy et al. [9] proposed the use of contention managers, which
decide whether conflicting transactions should abort other transactions or wait for them to finish. Since then, several
proposals of different contention management policies have been proposed [6,15,16]. By contrast with this work, our
approach is to eliminate conflicts by providing abstractions that allow the implementation of concurrency-friendly
objects. We believe that this approach is better suited to the development needs of a common programmer, as she can
concentrate on specific objects, involvedin specific transactions, instead of general contention management policies.
Nevertheless, we believe that the two approaches complement each other, but more research is needed to determine
how they should be combined.

Moreover, although we presented the discussion on the reduction of conflicts integrated with our model of versioned
boxes, most of what we propose applies equally well to other STM approaches. For instance, the per-transaction boxes
do not depend on the existence of versions and, therefore, could be used with any other STM, provided that there are
somemeans to execute arbitrary code during the commit of a transaction.

Finally, the idea of re-executing part of a transaction during the commit is similar to the use of thefield calls
technique to reduce the lock duration in traditional database transaction processing [5].

J. Cachopo, A. Rito-Silva / Science of Computer Programming 63 (2006) 172–185 185

6. Conclusions

In this paper we propose a new approach to implement software transactional memories, based on boxes that hold
multiple versions of their contents. This allows the execution of read-only transactions that never conflict with other
concurrent transactions. We implemented this approach in Java, as a library, and in the paper we discuss some of the
design decisions of this implementation. The source code of our implementation can be found in [10].

The JVSTM is being used in a production environment by the F´enixEDU project [3]. It replaced all the concurrency
control mechanisms based on locks in this web application, with significant improvements on the perceived application
performance. Versioned boxes were used to store each field of each one of the 240 domain classes, including all the
collections used to store the 320 bidirectional associations between domain classes. The database has approximately
1 GB of data, and the application is deployed in a cluster with three servers with two processors each.

To improve the concurrency of high-contention transactions, we propose in this paper two new abstractions: the
per-transaction box and the restartable transaction. These new abstractions facilitate the development of transactional
objects that allow the reduction of conflicts. The per-transaction box mechanism is implemented in the JVSTM and is
being heavily used in the F´enixEDU project to reduce the conflicts on the collections used to implement the domain
relationships.

Finally, we discuss an extension to the STM model that aims at providing better support for implementing
restartable transactions.

Acknowledgements

We would like to thank the anonymous reviewers for their insightful comments that helped us to improve this paper.
Also, we would like to thank the F´enix team, for their support in putting our STM model to work in a production
environment. Finally, we thank INESC-ID’s Software Engineering Group, and especially to Ant´onio Leitão, for the
fruitful discussions during our group meetings.

References

[1] P.A. Bernstein, N. Goodman, Multiversion concurrency control — theory and algorithms, ACM Transactions on Database Systems 8 (4)
(1983) 465–483.

[2] J.O. Coplien, Advanced C++ Programming Stylesand Idioms, Addison-Wesley, Reading, MA, USA, 1992.
[3] FenixEDU, FénixEDU, 2005, Home page at:http://fenixedu.sourceforge.net.
[4] P. Graham, K. Barker, Effective optimistic concurrency control in multiversion object bases, in: E. Bertino, S. Urban (Eds.), Proceedings of

the International Symposium on Object-Oriented Methodologies and Systems, vol. 858, Springer-Verlag, 1994, pp. 313–328.
[5] J. Gray, A. Reuter, Transaction Processing: Conceptsand Techniques, Morgan Kaufmann, Los Altos, CA, USA, 1992.
[6] R. Guerraoui, M. Herlihy, S. Pochon, Towarda theory of transactional contention management, in: Proceedings of the 24th Annual ACM

Symposium on Principles of Distributed Computing, ACM Press, Las Vegas, NV, USA, 2005.
[7] T. Harris, K. Fraser, Language support for lightweight transactions, in: Proceedings of the OOPSLA 2003 Conference on Object-Oriented

Programming, Systems, Languages, and Applications, in: SIGPLAN Notices, vol. 36,ACM Press, Anaheim, CA, USA, 2003, pp. 388–402.
[8] T. Harris, S. Marlowe, S. Peyton-Jones, M. Herlihy, Composable memory transactions, in: Proceedings of the ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, ACM Press, Chicago, IL, USA, 2005.
[9] M. Herlihy, V. Luchangco, M. Moir, W.N. Scherer III, Software transactional memory for dynamic-sized data structures, in: Proceedings of

the 22nd Annual ACM Symposium on Principles of Distributed Computing, ACM Press, New York, USA, 2003, pp. 92–101.
[10] JVSTM, JVSTM, 2005, Home page at:http://www.esw.inesc-id.pt/˜jcachopo/jvstm.
[11] T. Lindholm, F. Yellin, The Java Virtual Machine Specification, 2nd edition, Addison-Wesley, Reading, MA, USA, 1999.
[12] J.E.B. Moss, A.L. Hosking, Nested transactional memory: Model andpreliminary architecture sketches, in: Workshop on Synchronization

and Concurrency in Object-Oriented Languages, SCOOL05, San Diego,USA. Available at:http://hdl.handle.net/1802/2099, October 2005.
[13] D.P. Reed, Naming and synchronization in adecentralized computer system, Ph.D. Thesis, MIT, Cambridge, MA, USA, 1978.
[14] D.P. Reed, Implementing atomic actions on decentralized data, ACM Transactions on Computer Systems 1 (1) (1983) 3–23.
[15] W.N. Scherer III, M.L. Scott, Contention management in dynamic software transactional memory, in: Proceedings of the ACM PODC

Workshop on Concurrency and Synchronization in Java Programs, St. John’s, NL, Canada, July 2004.
[16] W.N. Scherer III, M.L. Scott, Advanced contention management for dynamic software transactional memory, in: Proceedings of the 24th

Annual ACM Symposium on Principles of Distributed Computing, ACM Press, Las Vegas, NV, USA, 2005.
[17] N. Shavit, D. Touitou, Software transactional memory, in: Proceedings of the 14th Annual ACM Symposium on Principles of Distributed

Computing, ACM Press, Ottawa, Canada, 1995, pp. 204–213.

http://fenixedu.sourceforge.net
http://www.esw.inesc-id.pt/~jcachopo/jvstm
http://hdl.handle.net/1802/2099

	Versioned boxes as the basis for memory transactions
	Introduction
	Memory transactions based on versioned boxes
	Model specification
	Reading and writing boxes
	Committing and aborting transactions
	Garbage collecting old values

	Model implementation
	Implementing versioned boxes
	Implementing transactions
	Speculative read-only transactions
	Implementing garbage collection

	Transaction conflicts
	Long-running transactions
	Avoiding conflicts by delaying computations
	Delaying computations with per-transaction boxes
	Removing conflicts by restarting computations
	Restartable transactions

	Towards a model for fine-grained restarts
	Delaying computations versus restarting transactions
	Restartable transactions that write
	Extending the versioned model

	Related work
	Conclusions
	Acknowledgements
	References

