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1. I~TTR~DIJ~ITON 

In this paper, we study the prime ideal structure of a class of non-commutative 
polynomial rings, called Ore extensions or twisted polynomial rings. Let y be 
an endomorphism of the ring R. We define a new ring A = R[x; ~1, whose 
underlying additive group coincides with that of H[x]. Multiplication is deter- 
mined by the distributive law and the rule 

YX - q(r), 

for all Y in R. We call A the Ore extension of R with respect to p. Observe that 
in the normal form for an element of A as a polynomial over R, the coefficients 
appear on the right side. 

In 1933, Ore considered these rings in the case that R is a division ring [9]. 
Shortly thercaftcr, Jacobson determined the two-sided ideals of such rings, and 
analyzed finitely-generated modules over them [G]. Little work appeared on 
Ore extensions for some time after that. In 1952, Curtis proved that A is an Ore 
domain if R is and q~ is injective [I, 41. But otherwise such rings were used 
primarily as a source of counter-examples. 

More recently, results have appeared which, in a sense, are generalizations of 
Hilbert’s Nullstellensatz. One form of the Nullstellensatz, due to Krull and 
Goldman, states that a commutative ring R is a Jacobson ring if and only if R[x] 
is, [3, 81. In fact, Watters has proved that the assumption of commutativity is 
unnecessary [ 111. Goldie and Michler have proved that for a noetherian ring R 
with automorphism 9, the associated Ore extension A = R[x; cp] is Jacobson if 
and only if R is. Their proof rests on a study of the ideal structure of A. ‘I’he 
assumption that R is noetherian is necessary, as an example of Stephenson and 
Pearson shows [lo]. 

In this paper we study Ore extensions A = R[x; ~1, where R is a commutative 
ring and 9 is an endomorphism. W’e show in Sections 3-5 that the prime ideals 
of A can be completely described in terms of certain ideals of R. In case R is 
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noetherian, these ideals of R take on a satisfying form. In Section 6, we prove a 
theorem on the preservation of Goldie rank for A, which leads to the result that, 
for noetherian rings R, the prime factor rings of ,4 are all Goldie. We study the 
Jacobson radical in Section 7, and prove that for R noetherian, the ring A is 
Jacobson if and only if R is. Then we turn to a family of examples, obtained by 
letting A == k[y], and reinterpret our results for these rings. We classify all the 
finite-dimensional irreducible representations, and then consider the question 
of whether infinite-dimensional irreducible representations exist. 

Many of the results of this paper form a part of my doctoral dissertation, 
submitted to the Massachusetts Institute of Technology [5]. I would like to 
thank Michael Artin, my thesis supervisor, for his sound advice and encourage- 
ment. 

2. PRELIMINARY RESULTS 

The Hilbert Basis Theorem states that a polynomial extension of a noetherian 
ring is noetherian, but the corresponding result for Ore extensions is not true. 
Let us review what positive results remain. Let ‘p be an endomorphism of an 
arbitrary ring R, with A = R[x; ~1 the associated Ore extension. The ring A 
can be viewed as a @[xl, R)-b imodule, with Z[x] acting on the left and R acting 
on the right. We say a bimodule is noetherian if the ascending chain condition 
holds for sub-bimodules, or equivalently, if every sub-bimodule is finitely 
generated. 

PROPOSITION 2.1. Let R be right noetherian. Then A is noetherian as a 
(Z[x], A)-bimodule. 

Proof. This is proved by an adaptation of the standard proof of the Hilbert 
Basis Theorem. Given a sub-bimodule I of A, we let b be the set of leading 
coefficients in R of polynomials in I. Then b is closed under addition because 
XI C I, so b is a right ideal of R. The proof now continues in the usual way. 

COROLLARY 2.2. Let A be right noetherian. Then A satisfies the ascending 
chain condition on (two-sided) ideals. Hence every semiprime ideal of A is a jinite 
intersection of prime ideals, and every ideal has finitely many primes minimal 
over it. 

PROPOSITION 2.3. Let g, be an automorphism of the right noetherian ring R. 
Then the Ore extension A is right noetherian. 

Proof. We modify the proof sketched in 2.1 slightly. The surjectivity of p 
implies that any element of A can be written as C r@, with the coefficients on 
the left. Adopting this as our normal form, we let b be the set of leading coeffi- 
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cients in R of a right ideal I. Because y is surjective, the set b is a right ideal 
of R, and we continue as usual. 

Let us record the classical theorems of Jacobson for R a field, as a source of 
comparison with the more general results to follow. The proofs may be found 
in [6]. 

THEOREM 2.4. Let g, be an in..nite order endomorphism of the J;eld K. Then 
the ideals of A = KS[x; q] are (0) and xi, i = 0, 1, 2,... The or& prime ideals are 
(0) and (x), and these are primitive. 

THEOREM 2.5. Let p be an automorphism of K with$nite order n, and let k be 
the Jixed field of q~ Then the ideals of A are generated by xip(xn), where p is a 
polynomial with coeficients in k. 

3. T-INVARIANT IDEALS OF COMMUTATIVE RINGS 

In this section we introduce some terminology and prove several basic facts 
which are essential for the main theorems of the next section. Let R be a com- 
mutative ring with endomorphism p, and call an ideal I of R q-invariant if 
q-l(I) = I. 

LEMMA 3.1. If I is q-invariant, so is rad(l). 

Proof. Let Y be in rad(1) an d r* E I. Then I contains I, or (~(r))~. Hence 
v(r) E rad(1). Conversely, given y(r) E 1, we can reverse the argument. 

DEFINITION. (i) A v-invariant ideal I is v-prime if, given two ideals J and K 
such that ~(1) C J and JK C 1, either J CI or K CI. 

(ii) A v-invariant ideal I is v-semiprime if, given an ideal J such that 
v(J) C J and Ja C I, then J C I. Th ese notions can be re-expressed in terms of 
elements as follows: 

LEMMA 3.2. (i) The y-invariant ideal I is y-prime if and only iffor any two 
elements r and s and integer n such that #(r)s E Ifor all i > n, either r or s lies in I. 

(ii) The v-invariant ideal I is v-semiprime if, for any element r and integer n 
such that @(r)r E Ifor all i 3 n, the element r is in I. 

Proof. We will only prove (i). Suppose that I is F-prime. Let J be the ideal 
generated by q+(s) for i > n and K = sR. Then JK C I and q~( J) C J, so we can 
deduce that v”(r) or s lies in I. By v-invariance of 1, the element p”(r) is in I 
if and only if r E I. 

Conversely, if K c1, choose an element s E K - I. For any r E J, since 
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v(J) C J, we have vi(r) c J. Hence, $(r)s E JK C I, and we conclude that r E I, 
so JCI. 

It is obviously difficult to recognize q-prime ideals. But fortunately there is 
a subclass which can be more easily described, and which yields all q-prime 
ideals in case R is noetherian or 9) has finite order. 

DEFINITION. (i) An ideal I C R is pcyclic if I = pi n ... n p, , where the pi 
are distinct prime ideals of R such that 

@(Pi+1) = Pi and F’(P1) = PT2 * 

(ii) I is p-semicyclic if I = p, n *a* np, and the operator v-r permutes 
these associated primes. 

It is obvious that v-(semi) cyclic ideals are cp-(semi) prime, and we can prove 
the converse in the following situation: 

PROPOSITION 3.3. Let I be a v-(semi) prime ideal, and assume that I contains 
qlmfo~ some m, and d1 has $nitely many associated primes. Then I is p(semi) 
cyclic. 

Proof. Let I be v-semiprime. By Lemma 3.1, 41 is v-invariant, and so I 
must equal di. By assumption, I has a reduced primary decomposition 

Pl n ... np,. But I is v-invariant, so 

I = fi @(Pi). 
i=l 

By the uniqueness of reduced primary decomposition, the set (@(pi)> must be a 
permutation of the set (p,}, and I is p-semicyclic. 

Now assume that I is v-prime. We must prove that the permutation q-l 
induces on the pi is cyclic. Assume the primes are ordered so that p, ,..., p, are 
cyclically permuted, and let 

J=p,n...np, 

K=p,+ln...np,. 

Then JK C I and g’(J) C J. Since I is T-prime, either I = J or I = K. The 
second possibility yields a shorter reduced primary decomposition, which is 
impossible. Hence I = J and the permutation is cyclic. 

COROLLARY 3.4. If R is noetherian, or has Krull dimension in the sense of 
Gabriel and Rentschler, then p(semi) cyclic and q~(semi) prime ideals are the same. 

Even without restriction on R, certain v-prime ideals must be p-cyclic. 



PRIME IDEALS OF ORE EXTENSIONS 319 

PROPOSITION 3.5. Let I be a F-prime ideal of R such that y induces a Jinite 
order automorphism on R/I. Then I is pcyclic. 

Proof. We may as well set I = 0, and assume that q~” = identity on R. 
We first make a couple of elementary observations. 

(i) If q~ fixes a non-zero element Y, then Y must be regular. 

Suppose YS = 0, then #(Y) = r implies that #(Y)s = 0, for all i; but (0) is 
p-prime, so s = 0. 

(ii) If Y is a zero-divisor, then ny=, #(r) = 0, for the product is fixed by 
91, and is not regular. 

The zero divisors of R are a union of prime ideals. Let p be one of them. 
Since CJI is an automorphism, q+(p) is also a prime consisting of zero-divisors. 
We wish to prove that 

(0) = p n v(p) n ... n q+‘(p). 

Let s be an element of this intersection, and let S be the subring of R generated 
over E by s, q~(s),.,., q+(s). Then S is closed under the action of q~, and is 
noetherian. Moreover, (0) must be a v-prime ideal of S, as is easily seen using 
the element definition. Therefore, by 3.4, the ideal (0) is v-cyclic in S. There 
exist prime ideals q1 ,..., qm in S such that (0) = n pi and y(qJ = qi+l, with 
m / n. 

By (ii), any element of S which is a zero-divisor in R must be a zero-divisor 
in S as well. Hence the ideal p n S, consisting of zero-divisors, lies in u pi . 
Since p n S is prime, it must actually lie in qj , for some j. Then 

@(PI f-3 s C 4i+i , 

where the indices are taken module m. and 

But ssSnpn . ..n@+l(p). and so s = 0. The element s is arbitrary, so 

(0) = P n .-a n p+‘(p). 

It follows that (0) is p-cyclic in R. 

Remark. It is not true in general that a v-prime ideal must be v-cyclic. 
A counter-example is provided by a theorem of Pearson and Stephenson [lo], 
which we shall mention at the end of Section 7. 
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4. MAIN REWLTS 

We can now state the main results on prime ideals of Ore extensions. Let v 
be an endomorphism of the commutative ring R, and let A = R[x; q]. Notice 
that a prime ideal of A which contains x can be viewed as an ideal of A, and so is 
in a sense known. We therefore concern ourselves with primes not containing X. 

THEOREM 4.1. Let I be a semiprime ideal of A, none of whose minimal primes 
contains x. Then I n R = b is a v-semiprime ideal of R. If I is prime, then b is a 
v-prime ideal of R. 

THEOREM 4.2. Conversely, let b be a v-semiprime ideal of R. Then AbA is a 
semiprime ideal of A. Moreover, if b is v-prime, then AbA is prime. 

Thus, to analyze the prime ideals of A, it suffices to determine the primes of A 
lying over a fixed v-prime ideal b of R. We may as well assume b = (0), and 
ask which primes of A intersect R in (0). There are two possibilities. 

THEOREM 4.3. Let q~ be an infinite order endomorphism of the p-prime ring R. 
Then the only prime of A, not containing x, which lies over (0) in R is (0). 

THEOREM 4.4. Let R be a q-prime ring and let q be an automorphism of jinite 
order n (so that R is actually q-cyclic). Let Q denote the $xed subring Rm. Then 
Q[x”] is the center of A. The primes of A which do not contain x and lie over (0) are 
in one-to-one correspondence with the primes of Q[x”] that do not contain xn and 
intersect Q in (0). 

We will prove the last theorem in the next section, but can now directly 
prove the first three theorems. 

Proof of 4.1. Assuming first that I is semiprime, let us show that b is v- 
invariant. If r is in b, then rx = x9(r) is in 1. Thus xv(r) is in each of the primes 
J minimal over I. It follows that xAy(r) 1 ies in J. To see this, let s = Ci xisi 
be an element of A. Then 

x&r) = 1 xi(xy(r))s, , 

which is an element of J. Since J is prime and x $ J, we find that v(r) E J. 
Therefore q(r) E I. Conversely, if v(r) E I, then xv(r) = rx E I. So rAx C I C J, 
which implies that r E J, for every minimal prime J. Hence r E I. 

To check that b is v-semiprime, suppose c is an ideal for which y(c) C c 
and c2 C b. Then cx C xc, and more generally, CA C AC. As a result, 

( AcA)~ C Ac2 C Ab C I. 

Since I is semiprime, AcA C I and c C b. 
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If I is prime, a similar argument applies. Suppose cd C b and T(C) C c. Then 

(AcA)(AdA) C AcdA C AbA C I. 

Since I is prime, either c or d must lie in In R = b. 

Proof of 4.2. We may as well set b = (0) an d assume that R is p-semiprime. 
What we must show is that A is semiprime. Let I be a non-zero ideal of A such 
that P = (0). Choose s = zy=, xisi in I and assume that s, # 0. For any integer 
i 3 0, sxjs = 0. The highest degree term of this expression is 

xns xix? n = X2n+jpi(Sn)S, . 

Therefore the coefficient r&s&. = 0 f or all j. The element criterion for (0) 
to be v-semiprime implies that s, = 0, a contradiction. 

Now assume R is p-prime. We want to show A is prime, so assume J and K 
are ideals whose product is (0), and K =+= (0). Let s = Cr=,, xisi be an element 
of K with s, # 0 and let Y = zz, xiyi be an element of J. Since JK = (0), 
the product YX~S = 0 for any integer j 3 0. The highest degree term of this 
expression is 

~~kn+$p-j(ym)S, . 

Therefore the coefficient v”+j(r,)s, = 0 for all j. The element criterion for (0) 
to be v-prime now implies that yrn = 0. Hence r = 0 and J = (0). 

Proof of 4.3. Let I be a non-zero prime of A and assume x $ I. We must 
show that In R is non-zero. Let r = CL-, xiyi be a non-zero element of I of 
minimal degree, with yrn # 0. If m = 0, then I contains Y,,, and the intersection 
is non-zero, so assume m > 0. Since g, has infinite order and is injective, there 
exists an element s E R such that $(s) f vm(s) for i < m. Otherwise we find 
that v must have finite order <m!. The ideal I contains 

which equals 
$(S)Y - qw(s), 

f X~Y{(p~+j(s) - qw(s)). 
i=O 

This is an element of lower degree than r, so it must equal 0. Therefore, 
ri(#+j(s) - p”+j(s)) = 0 for arbitrary j > 0 and each i < m. Since (0) is 
v-prime and @(s) # am, we deduce that ri = 0 for all i < m. 

Consequently, Y = xmrm, but x +k I and x”‘Ar, C1. We can conclude that 
rL E I, because I is prime. 

5. PROOF OF THEOREM 4.4. 

We shall use a result on the behavior of prime ideals under central localization 
which is similar to the result of commutative theory. Let A be a ring with center 
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C and let SC C be a multiplicatively closed subset. Then we can form the 
localization S-lA in the usual way. Any prime of S-l,4 restricts to a prime 
of A, and it is straightforward to prove 

PROPOSITION 5.1. The map Spec S-‘A + Spec A induced by restriction is 
injective, and the image is the set of primes of A which intersect S in the empty set. 

We will apply this theorem to algebras -4 which are finite as modules over 
their centers, in order to obtain localizations whose prime spectra omit ideals 
that are not of interest. The resulting localizations will turn out to be Azumaya 
algebra, whose centers are explicitly described. Thus we can picture the 
interesting primes of A as the restrictions of primes in an Azumaya algebra, 
which are merely the extended ideals of the primes in the center. (We recall 
the fact that the ideals of an Azumaya algebra are in 1 - 1 correspondence with 
the ideals of its center, under extension and restriction [7].) 

As an example, let R = lJTi Ki be a product of n copies of an algebraically 
closed field K. Define y to be the automorphism of order n which maps 

(a 1 ,.a*, a,) - (a, , a, ,..., 4, 

and let A be the Ore extension R[x; ~1. The fixed ring RQ is the set of elements 

(a,..., a), which is isomorphic to K, so the center of A is K[xn]. 
Any prime ideal 1 of A that contains x” also contains xAx+-l, which implies 

that x ~1. Moreover, the primes of A which contain x correspond to the n 
primes of R. In order to focus on the remaining primes, we can invert xn. 
Explicitly, let S be the multiplicatively closed set in K[x”] generated by x%, and 
pass to 

s-1-4 = K[x”, x-y &“] A. 

PROPOSITION 5.2. The algebra S-‘A is an Azumaya algebra over its center, 
Qcn, x-y. 

Proof. By a standard result on Azumaya algebras [7], it suffices to prove 
that for each maximal ideal m of K[xn, x+], the algebra FA/mFA is an 
Axumaya algebra. The maximal ideals of K[x”, X-“1 are principal ideals 
generated by P - c, for some c + 0, and K[xn, X-“l/m is isomorphic to K. 
We claim that S-lA/mS-lA is isomorphic to M,(K). The isomorphism is 
given by the following representation: Elements of R are mapped to diagonal 
matrices, 

al 

(al ,..., a,) -+ 

i i 

. * . . 

a, 
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The element x is sent to the matrix 

0 c 

i i 

l* . .sj= ** . . 
. 

1 0 

Then gn = cl, and x commutes with the diagonal matrices according to the 
rule determined by 9. The kernel of the representations contains (x” - c), and 
assuming the map is onto, a comparison of dimensions shows that the kernel 
is no larger. Thus is suffices to prove surjectivity. This follows from the general 
criterion given below. 

PROPOSITION 5.3. Let D be a division ring and let x andy be matrices in A&(D). 
Assume that y is a diagonal matrix with distinct entries and x is a monomial matrix 
whose corresponding permutation generates a transitive subgroup of the symmetric 
group S, . Then the subalgebra B generated over D by x and y is M,(D). 

Proof. Let V be an n-dimensional vector space over DOP, with standard 
basis e, ,..., e, . Then M,(D) is the ring of endomorphisms of V, and by the 
density theorem it suffices to show that B acts irreducibly on V. For then B 
must contain a full set of basis elements of M,(D), and since B contains D, we 
have B = M,(D), 

Let ‘L’ = Cy=, a,e, be an element of V with a,. and a, not equal to 0, and 
suppose ye, = diei . By assumption, the di are distinct, so the vector 

(y - d,)v = 2 (di - d,.) a,vi 

has fewer non-zero coefficients, and is non-zero. Thus B . v must contain a 
basis vector ei . The assumption on the matrix x implies that the powers of x 
map ei to scalar multiples of all other basis elements, so Bv = V. 

Using the fact that the ideals of an Azumaya algebra are exactly the extensions 
of the ideals in the center [7], we can conclude that the primes of the ring S-IA 
are (0) and {(x” - c) 1 c + 01. By Proposition 5. I, we obtain 

COROLLARY 5.4. The primes of A are (0), {(x” - c) j c # O>, and the primes 
which contain x. 

Let us consider a more general example. Let R = Hi & be the product of m 
copies of an arbitrary field K, and let 4 be an automorphism of K of order m’. 
Then define the automorphism F of R to be 

9% ,..-, a,) = (a, ,.-, a,, #+4). 
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Observe that 
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so q~ must have finite order n = mm’. The fixed ring RQ consists of elements 
of the form (a,..., a), for which $(a) = a. Thus RQ is isomorphic to the fixed 
field k of K under #. Letting A be the Ore extension R[x; ~1, we see that the 
center of A is k[xn]. Once again, the primes of A which contain F, and hence X, 
are of little interest, so we pass to the central localization of A by S = {xi”}: 

S-IA = k[xn, x-n] @kCzfil ‘4. 

PROPOSITION 5.5. The ring S-lA is an Azumuyu algebra over its center 
k[xR, x-“1. 

Proof. A ring is an Azumaya algebra if it becomes one after extending 
scalars by a faithfully flat extension of the center [7]. In particular, we can 
change the base from k[xn, x-“1 to k[xn, x-~], to obtain the algebra 

B = k 6& S-IA = s-l(k Ok A). 

Let us examine the ring k 6&K. The automorphism I/J of K induces an 
automorphism 1 @ 4 of R Ok K, which can be pictured explicitly. The extension 
k C K is Galois of degree m’, so the normal basis theorem implies that there is 
an element b E K such that (b, 4(b),..., $“‘-l(b)} forms a basis for K over k. 
As a vector space, K decomposes into the direct sum oi (@(b))k. Hence k @ K 
is a k-space of the form oi (q(b))& and the action of # on k @I~ K cyclically 
permutes the factors. 

As a result, k 6& R splits into a direct sum of n copies of k, and the action 
of 1 0~ on k Ok R cyclically permutes the n factors. In particular, qnl acts 
on each component k Ok Ki in the same way that # does on k ok K. Thus the 
ring k ok R and the automorphism 1 @ v have the form discussed in the 
preceding propositions. The algebra K @,YI~ A = k Ok R[x; ~1 is isomorphic to 

and so by Proposition 5.2, S-l(k 6~~ A) . is an Azumaya algebra. As observed, 
it follows that S-IA is an Azumaya algebra. 

COROLLARY 5.6. The prime ideals of WA are the extended ideals of the 
primes of k[xn, x-“1. 

This last example puts us in a position to prove Theorem 4.4. The setting 
is as follows: R is a v-prime ring, where g, is an automorphism of finite order n, 
and A = R[x; p)]. We wish to determine the prime ideals of A that intersect R 
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in (0) and do not contain x. Let Q be the fixed subring of R under v, and order 
the minimal primesp, ,..., p, so that q-i(pJ = p,+i . The set of regular elements 
of R is precisely S = R - v pi . 

LEMMA 5.7. The non-zero elements of Q are regular, and the center of A is 
the domain Q[x%]. 

Proof. Given a non-zero element r EQ, there is a prime pi which does not 
contain r, since njpj = (0). But then q-j(r) $P,+~, and v-i(r) = r. Hence r 
is in no associated prime of (0), which means r is regular. 

In order to insure that a prime I of A which does not contain x intersects R 
in (0), it suffices to require that In 5’ is empty. For I intersects R in some 
v-prime ideal, by Theorem 4.1, and any y-prime ideal larger than (0) must 
contain elements of S. Thus inverting the elements of S would throw out the 
primes which do contain elements of S, but such a process would not be a 
central localization. The next lemma says we can accomplish the same goal 
nonetheless. 

LEMMA 5.8. The map of fraction rings R,. + Ri, is an isomorphism, where 
Q” = Q - (0). 

Proof. Injectivity is clear, since the inverted elements are regular. Suppose 
rs-l E R, for some element s E S. Let u = r n;I: @(s) and ZJ = s nT=;’ @(s). 
Then u+ = rs-I, and v EQ*. 

Thus we may pass to the central localization Q*-IA = A,, . Let T denote 
R oI , and notice that the map 9 extends to an isomorphism of T of order 72, 
defined by ~(rq-r) = v(r)q-l. The fixed ring of T is exactly the quotient field K 
of the domain Q. For if cp fixes rq-l, then F(r)q-l = u-l, and v(r) = r, so 
r EQ. Let B be the Ore extension T[x; p)]. Then B is isomorphic to A,, , and 
the center of B is k[xn]. The diagrams below summarize the situation: 

RCT A = R[x; ~1 C B = T[x; q] 

u u U v . 

QCk _OPl = kP1 

The primes of A that we want to find are the restrictions of the primes of B, 
by 5.1. In order to discard the primes containing x, we may invert the central 
element xn. 

THEOREM 5.9. The ring B[x-“1 is an Azumaya algebra with center k[xn, x-“1. 

Proof. Let us take a closer look at T. The primes of T are the extensions 
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of pi, and all are maximal. Therefore by the Chinese Remainder Theorem, 
the map 

T- fi T/p, 
I 

is an isomorphism, and T is a product of fields. Let Ki denote the field T/p, , 
and define the map Bi to be the composition 

T-q+ T 4 Tip,-1 . 

This is a surjection, with kernel q-l( pieI) = pi . Hence Bi maps Ki isomorphically 
to Ki-, , and the action of r,~ on T = ni Ki is given by 

It is now clear that we are in the situation of Proposition 5.5, so we may conclude 
that B[x-~] is Azumaya. 

The primes of B[x-“1 are therefore extensions of the primes of K[x”, x+], 
and they restrict to the primes of A for which we are looking. Since k[x”, X-“1 
is the localization ofQ[xa] with respect to the set {Q*, @), the primes of K[x”, x+] 
correspond to the primes of Q[x”] which d o not contain any elements of the 
localizing set. We may then conclude 

COROLLARY 5.10 (4.4). The primes of A which intersect R in (0) and do not 
contain x are in one-to-one correspondence with the primes of the center Q[xn] 
which do not contain xT1 and which intersect Q in (0). 

6. PRESERVATION OF GOLDIE DIMENSION AND NON-SINGULARITY 

As noted in Section 2, an Ore extension of a noetherian ring need not be 
noetherian. However, some finiteness conditions may be preserved. It is well- 
known that a domain has finite Goldie dimension if and only if it has dimension 
one, or equivalently is an Ore domain. Thus the next theorem, due to Curtis 
and Hirsch, can be interpreted as saying that for domains, finite Goldie dimen- 
sion is preserved under Ore extensions. 

THEOREM 6.1 [ 1, 41. Let S be a right Ore domain and 9 a monomorphism. 
Then S[x; ~1 is an Ore domain. 

For us, let R be a commutative q-cyclic ring (for instance a noetherian 
v-prime ring), with n primes associated to (0). It is easy to see that R has Goldie 
dimension n. For instance, observe that its full quotient ring is a product of n 
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fields. Theorem 6.1 says, then, that in case R has dimension 1, so does R[x; p)]. 
More generally 

THEOREM 6.2. Let R be a commutative v-cyclic ring of Goldie dimension n. 
Then the Ore extension R[x; ~1 has right Goldie dimension n. 

Proof. Letp, ,..., p, be the minimal primes of R, ordered so that v-l(pi+J = 
pi . It suffices to construct n uniform right ideals of A which are pairwise in- 
dependent and whose direct sum is an essential right ideal of 4. 

Such a family of ideals for R can be constructed easily. We define the ideals 

qi =pin . ..nj$n “.np,. 

Then for i i: j, we see that qi n qi = (0). The ideals are uniform since R is 
commutative, and their sum is clearly essential. 

We construct the desired ideals in A using these ideals. Let Ji be the set of 
elements x xiri in A such that the coefficient r,, E pi , the coefficient ri G qi+l , 
and more generally, Y,, E qi+m , where the indices are taken modulo n. In other 
words, each coefficient is in all but one prime, the omitted prime being chosen 
in the unique manner required for Jix C Ji . 

It follows by this choice that each Ji is a right ideal, and Ji n Jj = (0) for 
i #j. We claim that the direct sum of these right ideals is an essential right 
ideal. To show this, we must prove that for any Y # 0 in A, the right ideal rA 
contains a non-zero element of the direct sum. Let 

and suppose that rm +pl . Let s be an element in q1 - p, . Then YS is non-zero, 
and every coefficient is either 0 or an element of q1 - p, . Therefore each xiyis 

lies in some Jk , and 

Lastly, we prove that the Ji’s are uniform. If r and s are elements of Ji , we 
must show that they have a non-zero common right multiple. Multiply each on 
the right by powers of x so that the two new elements have the same degree, 
a multiple of n. Next multiply both on the right by some t E qi - pi . The 
result is a pair of polynomials in x” with coefficients in qi . Therefore the two 
elements Y and s have non-zero right multiples in Q[x”; ~“1. Since q is a com- 
mutative domain, Theorem 6.1 implies that q[xn; ~“1 is an Ore domain, and 
this completes the proof. 

Non-singularity is also preserved under the Ore extension. 
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THEOREM 6.3. Let R be a commutative v-cyclic ring. Then A = R[x; q] is 
right non-singular. 

Proof. Assume that R has minimal primes p, ,..., p, , with ql(pi+J = pi , 
and let r = x7=, xiri have an essential right annihilator a in A. We must show 
r = 0. 

The right ideals 

(a: xi) = {a E A: xia E a] 

are also right essential, so the ideal a n (a: x) n ... n (a: XY-‘) is non-zero. 
Let s = z&, xisi be in the intersection, and assume that s, # 0. The highest 
degree term of rxis is 

xmym&-ns, = X~+i+nv,i+n(rm)S, . 

But rxis = 0 for any i = O,..., t - 1, so $+n(r,)s, = 0. Since S, # 0, it does 
not lie in some minimal prime, say p, . Then 

9)i+n(~?n> E Pt 

for i < t - 1, and so r,spi for every i. Hence rm. = 0 and r = 0. 

COROLLARY 6.4. Let A be a commutative v-cyclic ring. Then A = R[x; CJJ] 
is a prime right Goldie ring. 

Proof. The ring A is prime by 4.1, and it is well-known that a prime, 
finite-dimensional, non-singular ring is Goldie. 

COROLLARY 6.5. Let 9) be an endomorphism of a commutative noetherian 
ring R, and let A = R[x; q~]. Then the prime images of A are right Goldie. 

Proof. Let I be a prime ideal. If x E I, then A,/I is an image of R, and so is 
noetherian. Assume x $ I. If I = A(I n R)A, then A/I is an Ore extension of 
the v-cyclic ring R/In R, and Corollary 6.4 applies. In the only remaining 
case, by Theorem 4.3, y induces a finite order automorphism on R/In R, 
hence A/I is noetherian by Proposition 2.3. 

7. THE JACOBSON RADICAL 

Now that we can describe the prime ideals of an Ore extension, we would 
like to have information on the primitive ideals. To determine which prime 
ideals are primitive may be too much to ask, so let us ask instead how large the 
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Jacobson radical of a prime is. Recall that the Jacobson radical is the inter- 
section of the primitive ideals containing a prime. The next result shows that 
the radical tends to be small. 

THEOREM 7.1. Let R be a g)-cyclic ring and let A = R[x; p)]. Then the Jacobson 
radical of A is zero. 

Proof. Assume that the radical J is non-zero. We can order the minimal 
primes p, ,...,pt of R so that r&pi) = piPi . Let s = Eye, xisi be an element 
of J chosen so that ifs, is the highest non-zero coefficient, n is a multiple of t, 

and so that s0 = 0. This is easily arranged, since we can multiply an arbitrary 
element of J on the left by a power of x and obtain the desired element. The 
element 1 + ss, has an inverse Y = x:5,, xiri , where r0 = 1 and rm. # 0. The 
highest degree term of the product 1 = $1 + ss,) is 

xmrmxns*s, = Xm+nP)yrm)Sn2, 

so @YrTn)G2 2 = 0. The minimal primes of R that do not contain s, contain 
P)“(Y,). Since n is divisible by t, these primes contain Y, as well. 

On the other hand, consider the degree m term of the product: 

( 
m-1 

x”r, + x” 1 qJm-i(ri)S,-i S, . 
i=O 1 

This term must also equal 0, so rm is a multiple of s, . Hence r, is contained 
in the minimal primes which contain s, , as well as the minimal primes that do 
not contain s, . But then Y,,, = 0, a contradiction. 

A ring is called a Jacobson ring if the Jacobson radical of every prime ideal 
equals the prime ideal itself. For Ore extensions over not necessarily commuta- 
tive rings, the following result holds, due to Goldie and Michler [2]: 

THEOREM 7.2. Let v be an automorphism of a noetherian Jacobson ring 11. 
Then the Ore extension R[x; ~1 is Jacobson. 

If we restrict to commutative base rings, this result can be extended as 
follows: 

THEOREM 7.3. Let R be a commutative noetherian Jacobson ring, and let v be 
an arbitrary endomorphism. Then the Ore extension A = R[x; ~1 is a Jacobson ring. 

Proof. Let I be a prime ideal. If I contains x, then A/I is an image of R, so 
A/I has radical (0) since R is Jacobson. Assume x $ I. If I = A(I n R)A, then 
7.1 applies to show that A/I has radical (0). In the only remaining case, 9) is a 
finite order automorphism on R/In R, and Theorem 7.2 applies, 
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Remark. The assumption that R is Jacobson is necessary, for if r-l is Jacobson, 
so is its image A/(x), which is isomorphic to R. 

Also, the assumption that R is noetherian is necessary, as Stephenson and 
Pearson have shown [lo]. They have constructed a commutative Jacobson v- 
prime ring R with automorphism v such that A = R[x; ~1 has non-zero Jacobson 
radical, although il is prime. This shows, incidentally, that a v-prime ideal 
need not be v-cyclic. 

8. THE CASE R -= k[y] 

In order to illustrate the preceding theory, we shall examine the results if 
the base ring R is a polynomial ring k[y] over a field k. If k is real closed or 
algebraically closed, an explicit description of the irreducible representations 
of an Ore extension will be given. 

Let 9 be an endomorphism of R; the map y is determined by assigning the 
value of v(y), which we will assume isf(y). Then the Ore extension A = R[x; ~1 
can be presented by generators x and y over k, with the relation 

Our first task is to determine the v-prime ideals of R, which are all q-cyclic, 
since R is noetherian. We need some terminology: 

DEFINITIONS. (1) An element a of k is a periodic point off if there exists an 
integer n > 0 such that fn(a) = a, where f”(y) is the polynomial 

f(f(f . ..f(Y) ...))9 iterated n times. The least such integer n is the period of a. 

(2) Let pa(y) or p(a, y) denote the manic irreducible polynomial of a 
over k; i.e., the manic generator of the kernel of the map from k[y] to K given 
by sending y to a. 

(3) Let a be a periodic point with period n. We define 

4a(Y) = fj Pm4 Yh 

where m is the least integer such that p(u, y) = p(fm(a), y). 

PROPOSITION 8.1. The v-prime ideals of k[y] are (qa( y)), where a is a periodic 
point off, and also (0) if q3 is injective. 

Proof. The (0) ideal is prime, so it is v-prime if and only if it is y-invariant. 
This is the case if and only if v is injective. 

To determine the other ideals, consider the action of v* on Spec k[y]. The 
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generator of a prime ideal a must be an irreducible polynomial ~(a, y) for some 
element a E k. The image p*(a) is generated by p(b, y), where b is chosen so 
that p(b, f(y)) E a. This implies that p(b,f(a)) = 0, so f(u) is conjugate to 6. 
But then ~(4 Y> = p(f(4, Y). A s a result, a set of primes including a is 
cyclically permuted by q* if and only if a is periodic. The intersection of such 
a family of primes is precisely the ideal generated by qn(y). 

Therefore, to determine the prime ideals of A = (K[y])[x; ~1, it &ices to 
treat rings B of the form S[X; ~1, where S = k[y]/(q,(y)). Notice that the map 

~[YllMYN - fi f4YloJcf”w~ Y) 
i=l 

is an isomorphism, and that each factor ring K[y]/(p(f”(a), y) is a finite field 
extension Ki of K. The situation is a special case of that which we saw in 
Theorem 5.9, and we can conclude again that the Ki are all isomorphic to a 
field K, and that v acts on S by moving each Ki to KiP1 . Thus CJI induces 
a map q~ on K, and the fixed field F of K under this map is isomorphic to the 
fixed ring of S under v. Therefore the center B is isomorphic to F[xn]. Theorem 
4.4 now translates into the following result: 

THEOREM 8.2. The prime ideals of A ure: 

(0) if q3 is injective, 

(49 MY)) where a is f-periodic, 

(x7 P(h YN where b is arbitrary in K, and 

MYh 4x9 where a has period rz and h is an irreducible 
polynomial in F[x”] other than xn. 

COROLLARY 8.3. The non-zero primitive ideals of A aye maximal, and every 
non-faithful simple module of A is finite-dimensional over k. 

Proof. The ideal (x) is not primitive, since the factor ring A/(x) is commuta- 
tive but is not a field. Every other prime image of A is finite over its center, so 
cannot be primitive unless it is simple. 

The corollary says that every primitive factor ring of A with non-zero kernel 
is in fact a finite-dimensional simple algebra over k. By Wedderburn’s theorem, 
such a ring has the form M,(D), w h ere s is a unique positive integer and D a 
unique division algebra, finite-dimensional over k. Thus an explicit determina- 
tion of the simple images of A requires explicit information on the division 
algebras over k. It is not surprising then that we can determine s and D precisely 
if k is algebraically closed or real closed. The remainder of the section is devoted 
to this. 
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THEOREM 8.4. Suppose k is algebraically closed. Then the maximal ideals 
of A have the form 

(x9 Y - cl c arbitrary in k, 

MY), ) x” - b a has period n, b f 0, and 

G(Y) = (Y - 4 ... (Y -fYa>>. M oreover the factor ring of A by (qa(y), 
xfi - b) is isomorphic to M,(k), and an explicit map is given by 

a 

f(a) 

b 

f”-‘(a) 

Proof. Since k is algebraically closed, the fields Ki and F of 8.2 are all 
isomorphic to k. Therefore the maximal ideals are as claimed, by 8.2. 

The matrix T obviously has Pa(y) as minimal polynomial, and the equations 
xn = 6 and yx = xf (y) are satisfied. It remains to check that the image of A 
equals Mn(k). This follows directly from 5.3. 

If k is real closed, the possibilities for simple images of A are considerably 
more varied and interesting, but can still be surveyed. Frobenius’s Theorem 
says that the only finite-dimensional division algebras over k are k itself, the 
algebraic closure k = k(i), and the quaternion algebra Q. We will present Q 
with generators i and j over k, where i2 = j2 = - 1 and ij = -ji. Let a denote 
the conjugate of a in k. There are three types of periodic points: 

(I) f”(a) = a and a E k, 

(II) fn(a) = a, with a E k - k, and f”(a) # z for all i < n, 

(III) f2Tn(a) = a, and f”(a) = CT, where a E k - 12. 

Let us consider the results case-by-case. 

PROPOSITION 8.5. Let k be real closed and assume that a is a periodic point of 
type I. Then the maximal ideals of A not containing x have the form I = (qa( y), 
pb(xn), where p, is the irreducible polynomial of b over 12, the element b is any non- 
zero element of k, and Pa(y) = (y - a) ... (y - f “-l(a)). The algebra A/I is 
isomorphic to M%(k(b)) via the representation (1). 

Proof. In this situation, the fields Ki of 8.2 are all isomorphic to k, the 
integers n and m coincide, and the fixed field F is k. Thus we may apply 8.2 to 
conclude that the maximal ideals are as indicated. The ideal I is obviously 



PRIME IDEALS OF ORE EXTENSIONS 333 

contained in the kernel of the representation (l), and must be the entire kernel 
since it is maximal. Thus we need only check that the image of A is all of 
J&(&b)). By 5.3, this follows if the image contains K(b), and this is the case 
since P maps to b. 

PROPOSITION 8.6. Let k be real closed and assume that a is a periodic point of 
type II. The maximal ideals of A which do not contain x have the form I = (qa( y), 
pb(xn), where p, is the irreducible polynomial of b over k, with b f 0, and qn( y) = 

(y - a)( y - a) ... (y - f “-l(a))( y - f “-l(a)). The algebra A/I is isomorphic to 
MJk) via the representation (1). 

Proof. This time the fields I& are all isomorphic to k, the integers n and m 
still coincide, and F is E. Again 8.2 applies to show that the maximal ideals are 
as claimed. The kernel of the representation (1) is exactly I, and the matrices ff 
and 7 generate the full matrix ring over k, by 5.3. Hence it suffices to prove 
that the image of A contains h. The polynomial (y - a) ... (y - f “-l(a)) is 
not defined over k. Therefore, denoting by Si the ith symmetric polynomial 
in n variables, we see that there exists an i so that S,(a,..., f “-l(a)) is not in k. 
Let this scalar be d. Then the matrix Si(y,..., f “-l(y)) is a scalar matrix in A/I 
with the value d. As a result, A/I contains k(d), which equals 5. 

The third case is the most interesting, requiring some representations other 
than (1). We will state the result in several parts. 

PROPOSITION 8.7. Let k be real closed and assume that a is a periodic point 
of type III. The maximal ideals of A which do not contain x have the form I = 
(qa( y), pb(xn)), where p, is the irreducible polynomial of b over k, the element b is 
any non-zero element of 15, and 

qn(Y) = (Y - 4 *.* (y -f”-l(a))(y - 4 *.a (y -f”-l(a)). 

Proof. The fields Ki are isomorphic to .& but the integer n = 2m, and the 
fixed field F is k. The maximal ideals are as claimed by 8.2. 

PROPOSITION 8.8. Assume that k is real closed, a is periodic of type III, b is a 
non-real element of k, and I = (qa( y), pb(xn)). Then the algebra A/I is isomorphic 
to Mn(k) via the representation (1). 

Proof. The proof is identical to that given for 8.6. 

PROPOSITION 8.9. Assume that k is real closed, a is periodic of type III, and b 
is a negative element of k. Let I = (qa( y), pb(xn)). Then the algebra A/Iis isomorphic 
to i&,(Q), via the representation: 

481/56/2-4 
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Proof. Observe that LPI = (---b)l/” j, so P = yarn = -bja = b. To check 
that 7% = $(p), observe that 

a((-b)lj2 j) = ((-b)‘j2 j)H = ((-b)l12j)fm(a). 

The relation can now be verified by multiplying the matrices and using the 
preceding equations. Also, it is clear that qa( y) is the minimal polynomial of the 
matrix 9 over R. Therefore the ideal I is in the kernel of the representation 
above, and must be the entire kernel. It remains to show that A maps onto the 
full matrix ring over Q. 

The argument used in 8.6 applies again to show that k is contained in the 
image. The element VP maps to (-b)’ I2 j, so the image contains j. Since i and, j 
generate Q over k, the image contains Q as well. 

Thus the image of A/I is the subalgebra B of Mm(Q) generated over Q by the 
matrices LF and 7, and 5.3 once again applies to complete the proof. 

Before considering the final possibility, let us recall that R embeds in M,(k) 
via the regular representation. Explicitly, if c E 8, and c = r + si, then c is 
represented by the matrix (-: t) which we will denote c*. 

PROPOSITION 8.10. Assume that k is real closed, a is periodic of type III, and b 
is a positive element of k. Let b = ~2, and let I = (qa( y), pb(xn)). Then the algebra 
A/I is isomorphic to M,(k) via the representation 

y-+Y= ( .f(u)*. . .J 

t 

0* 0 c 
1* o* ( 1 c 0 

1* x-+X= 

-* i 

. . 
. . 

1* o* 

where the matrices are written in 2 x 2 blocks. 
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PYOO~. The minimal polynomial of 7 is q&y), since the minimal polynomial 

of the matrix fi(a)* is (y - fi(u))(y -f”(a)> Suppose a = r + si. Then the 
relation $5 = *f (7) follows from 

a* (; J = (‘, j(, ‘) = (, ‘)(i 5’) = (, “) a* = (, c)f”(4*. 
Also observe that 

and so %2f’z = P = c21d = bid. Therefore I is the kernel of the representation, 
and we need only check that it is onto. 

Let M be the 2 x 2 matrix 

Then M2 = Id, and given a matrix of the form t*, one can check that 

;l/lt*M = t i , 
( 1 

and M(f ij M = (“, ,“I. 

Let M be the matrix containing m copies of M along the diagonal. Then the 
above identities imply that, inside Mn(K), the conjugates of .% and 7 are 

and 

MyM 

MZM 

a 
a 

i..- 1 f”-‘(4 ’ 
f “-‘(4 

0" 
1* o* cc -3 

1 
. . 

. . 

1* 0” 
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We can apply 5.3 to deduce that these conjugates generate M,(k) over A, hence 
so do x and y. As a result, the set of matrices {%“yj / 0 6 i, j < n - l} is in- 
dependent over k, and also over k. Therefore x and y generate the full matrix 
ring over k, and the map is onto. 

9. PRIMITIVITY IN THE CASE R = k[y] 

The major question left unanswered about an Ore extension A is which of 
the prime ideals are primitive. In case R = k[y] and A is an Ore extension of R, 
the only prime ideal in doubt is (0), by 8.2 and 8.3, so the question becomes: 
is i3 primitive? Notice that there are really two questions here, primitivity on 
the right and on the left. In this section, we will obtain partial results for right 
primitivity and complete results for left primitivity. 

Let us first consider what happens when the endomorphism C+I is not injective, 
or equivalently, when the image f(y) of y under cp has degree 0. By 8.2, A is 
not even prime, so the issue of primitivity cannot arise. But let us see this in a 
more direct manner. Suppose f(y) = a, so that the defining relation of A is 
yx = ax. Substituting y - a for y, we can assume that A is generated over k 
by elements x and y, which satisfy the relation ye = 0. 

THEOREM 9.1. Let A = k(x, y}/(yx). Then the ideal generated by xy is 
nilpotent, and xy lies in the prime radical. Hence the prime and primitive ideal 
structure of A corresponds to that of the commutative ring k[x, y]/(yx). 

Proof. Just observe that for any a E A, xyaxy = 0. 
We turn now to the case that f(y) has degree 1, or equivalently, 91 is an 

automorphism. Let A = k(x, y)/(yx - xf (y)) and f (y) = uy + b, and assume 
that f(y) # y. There are two distinct possibilities: 

(1) p) has finite order. This occurs if and only if a is a primitive nth root 
of unity, and n > 1. For 

f’“(y) =-1 LP’y + b( 1 + a + ‘.. + P-1). 

In this case, A is a finite module over its center k[x”, y”]. Hence A is primitive 
only if A is simple, and this is not the case by 8.2. 

(2) y has infinite order. 

THEOREM 9.2. Let A = k{x, y}/(yx - x(uy + b)), where a is not a primitive 
nth root of unity, n > 1. Then A is left and right primitive. 

Proof. The periodic points off are those that satisfy 

c =fyc) = ca” + b(1 + a + ..* + an-‘), 
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or 

c = b/(1 - fz). 

If a = 1, there are no periodic points, and otherwise the periodic point c has 
period 1. Therefore 8.2 implies that every factor ring of A by a non-zero prime 
ideal contains x in the center. So every non-zero prime contains xy - yx. If 
A is not left or right primitive, xy - yx must lie in the Jacobson radical of A, 
which implies that 1 + xy - yx is invertible in A. But this is impossible, for 
no element in A of degree greater than 0 can be invertible. 

A direct construction of a faithful, simple, module for A can be easily 
described, after ,a change of variables. We assume that a # 1, and substitute 
y - b/(1 - u) for y, to obtain a ring of the form K{x, y}/(yx - axy). (If a = 1, 
so that yx - xy = bx, then A is isomorphic to the enveloping algebra of a non- 
abelian two-dimensional Lie algebra, and faithful, simple modules for A are 
well-known.) Let V be the infinite dimensional vector space with basis 
{ui : i E Z}. Make V into a left A-module by defining the action 

xvi = vi+l ) yvi = azvi-l . 

Then yxvi = ai+lvi , and (uxy)v, = a&vi = ai+iv, , so the module is well- 
defined. The basis of V consists of eigenvectors for the element yx, each having 
a distinct eigenvalue. Thus, as in the proof of 5.3, yx can be used to obtain a 
basis vector in A . v for any non-zero vector v. The action of x and y on the 
basis vector then generates all of V, so A . v = V. 

We now turn to the case that f(y) has degree greater than 1. 

THEOREM 9.3. Let A = K{x, y}/(yx - xf(y)), with the degree off(y) equal 
to d > 1. Then A is left primitive. 

Proof. We will construct an explicit infinite-dimensional simple A-module. 
By Corollary 8.3, it must be faithful. Let V be the k-vector space with basis 
vl , v2, v3 ,... . Let 

and 
Y * v?z = %+1 

x . v, = 0 if n<d, 

x . Vd = v, . 

The action of x on the rest of V is now automatically determined, if the relation 
yx = xf (y) is to hold. We see this inductively. 

For the relation to hold on vi , we require that 

yx . Vl = xf(y) . v,1. 
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Let f(y) = Cf=, a,yi. Since yx . q = 0, we find that 

d 
0 = xf(y) . Vl = c six . Vifl ) 

i=O 

so that 

d-l 

adx . v~+~ = -2 W . Vi+1 . 

Suppose inductively that x has been defined on vi for i < n + d and yx = xf (y) 

on vi for i < n. Then the condition that yx = xf (y) on v, forces the rule that 

d-l 

adx ' v,+~ = yx .v, - go w . v,+~ . 

This defines the A module structure of I’ completely. It follows that if n = rd+s 
for s < d and r > 0, then 

x ’ 0, = c,vr + (lower indexed vectors) 

for some scalar c, . Moreover, if n = rd, then c, # 0, as is easily proved by 
induction. 

The simplicity of V follows. For let v be a non-zero vector of V. We can 
choose an m such that 

Y m . v = f b,v, , 
i=O 

with b, # 0 and n = dt. Then 

xtym ’ v = cv1 ) 

where c = bncdt ..’ cd # 0. Thus A . v contains vi , and so A . v = I/: 
A companion result is 

THEOREM 9.4. Let A = k(x,y)/(yx - xf (y)), with f(y) a non-zero polyno- 

mial divisible by y2. Then A z’s right primitive. 

Proof. Let f(y) = a,yr + ... + asys, with Y > 1 and a, # 0 # a,. Let 
V be the k-vector space with basis vi , v2 ,... . We define 

v, . y = q-1 for n>l 

v’1 *y = 0. 
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We now choose, for each n 3 1, constants c(i, n) with i = I,..., m so that 

a, . x = ‘f c(i, n)v, . 
i=l 

We require also that c(m, n) # 0 and that yx = xf(y) is satisfied on V~ . This 
is done inductively on n. For n = 1, we may take zlr . x = v, , and yx = of 
holds on or . Assume we have fulfilled all our requirements below n. Then the 
choice of c(i, n) must be made so that a, . yx = en . xf(y). Thus we require 

w--T 

g c(i, n - l)v, = 0,-r . X = Un * xf(Y) = il W n)Vi) * (i njY’) 
j=r 

The constants c(;, n) for i < Y may be chosen arbitrarily, since the corresponding 
terms on the right are annihilated by the powers of y. This leaves in - Y 

constants to be chosen, and rn - Y equations for them. In fact, the v,.,+. term 
produces the equation 

c(m - I, n - 1) = c(m, $a,. 

Since a7 and c(m - Y, n - 1) are non-zero, we obtain a non-zero value for 
c(m, n). Each succeeding term, involving zlj , produces an equation involving 
c(i, n) for i > j, and may be solved for c( j, n) by substituting the already 
determined values for c(i, n) with i > j. Thus the constants are determined and 
I’ has a well-defined structure of right A-module. 

For simplicity, let v be any non-zero vector. Then for some t, the element 
v . yt equals co, with c # 0. So v . A contains vr , and it is clear that v * A = V. 
Faithfulness follows by 8.3. 

We would like to know precisely when A is right primitive. We can extend 
the family of right primitive rings slightly, by the following result: 

THEOREM 9.5. Let R be a dedekind domain and let v be an injective endo- 
morphism of R. Assume for some prime p of R that q?(p) C pt for some n and some 
t > 1. Then A = R[x; ~1 is right primitive. 

Remark. The assumption onp implies that v-“( pt) containsp, so q+(p) = p. 
Thus if n is chosen minimally, the ideal py-l(p) ... v-“+l(p) is a p-prime ideal 
of R. So if R = k[y], with k algebraically closed, and p(y) = f (y), the assump- 
tion is the following: there exists an f-periodic point a of period n, and t > 1, 
such that (y - u)~ divides f n(y) - a. Th eorem 9.4 is a special case with a = 0 
and n = 1. 

Before proving the theorem, we need an easy lemma. The p-order (or just 
the order) of an element x in R is the largest integer m for which x E pm. Equiv- 
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alently, this is the exponent of p in the prime decomposition of the ideal xR. 
We define similarly the p-order of any ideal in R. 

LEMMA 9.6. Let p be a prime of R such that 9-“(p) = p with n minimal. 
Suppose v”(p) has p-order t. Then for any r EP such that qn(r) has order t, the 
element @n(r) has order ti. 

Proof. By assumption, @(r)R = ptqlqz .a. qs with no qi equal to p. Then 

Each v”(qi) has order 0, for otherwise p = v+(p) 3 qi , contrary to hypothesis. 
Since @Q)” has order P, the ideal generated by V”“(Y) has order at most t2. But 
Gus EP~‘, so t2 is exactly the order. We continue by induction. 

Proof of 9.5. Let n be chosen minimally so that p-(p) = p. We wish to 
choose an element r in 

Pgr’( P> ‘. F-+Y PI 

such that p”(r) has p-order t. This can be done by choosing rr in p with vn(rr) 
of order t and r2 in 

Then rly2 = r is the desired element. For if v”(rl) I” is in pt+l, then ‘pn(r2) 

must be in p, since pt+r is primary. But then r2 lies in v-“(p) = p. 
Form the right ideal a = pA + (1 + %‘?)A. The theorem follows if we can 

prove that a is a proper right ideal. For let m be a maximal right ideal con- 
taining a. The module A/m is simple, with annihilator equal to the largest 
two-sided ideal I in m. Either I = (0) or, by Theorem 4.1, I contains x or a 
non-zero v-prime ideal of R. 

If x E I, then m contains XV, and so 1 E m. Alternatively, suppose I n R 
equals the ideal 

WY!?) *** grm+Yq) 

for some prime q such that v+(q) = q. If no p-i(q) equals@, thenp is comaximal 
with their product, and m contains 1. Otherwise some @(q) = p, and m = n. 
Then r is in the product and XV E I C m, so 1 E m. Thus we obtain a contradic- 
tion unless I = 0. 

It suffices, then, to prove that a is proper. Suppose not, and let 

1 = C riai + (1 + XV) 1 X$ , (4 
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where the ri are in p, the elements ai are in A, and the sj lie in R. We will obtain 
a contradiction by proving the 

CLAIM. The coejicient s, has order 0 and sj, has order &i ti. 

Proof. Recall that the p-order is a valuation, so that ord(c + d) > 
min{ord(c), ord(d)}, and equality holds if ord(c) # ord(d). Also 0 has infinite 
order. 

The 1 on the left side of (2) has order 0, while the constant term of C riai 
has order at least 1. By the previous comment, ss must have order 0. 

The coefficient of xn in C riai has order at least t, since rixn = x”@(Y~) and 
v”(ri) E p”(p) Cpt. On the other hand, rsO has order equal to 1, since r was 
chosen with order 1. Since the overall coefficient of xn must be 0, the coefficient 
s, is required to have order 1. 

We now continue inductively. The coefficient of xjn in C riai has order at 
least ti, since 

r.Xjn = Xjyjn(ri), z 

and q.@(~~) E #‘Q) C#. The term arising from 

has as coefficient $+l)n(r)stj-l)n . By induction, the order of s(+nn isC:Si ti. By 
Lemma 9.6, the order of qP1)“(r) is d-l. So their product has order C:I’, ti. 

This is less than tj, but the overall coefficient of xjn is 0, so Sj, must have the 
same order as p)(n-l)n(r)s~-l~n . This proves the claim, and the theorem. 

The condition of Theorem 9.5 can be interpreted geometrically as saying 
that there exists a periodic point x E Spec R of period n with respect to the map 
q~*: Spec R -+ Spec R such that the map d(v*“) on tangent spaces at x is 0. 
This raises the question of whether A is right primitive in the non-singular 
case. In particular, for R = k[y], we know A is always left primitive whenf(y) 
has degree >I. But if A is not always right primitive, we will have a left but not 
right primitive ring which is easy to describe. We admit that the only evidence 
that A need not be right primitive is the breakdown in the proofs of Theorems 
9.4 and 9.5 without the given assumptions. 

Note added in proof. We have proved the converse of Theorem 9.5, assuming that R 
has infinitely many v-periodic primes, thus settling the question raised in the final para- 
graph. Details will appear in an article entitled “On the primitivity of certain Ore ex- 
tensions.” 
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