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Abstract
The gas compressibility factor, also known as Z-factor, plays the determinative role for obtaining thermodynamic properties of gas reservoir.
Typically, empirical correlations have been applied to determine this important property. However, weak performance and some limitations of
these correlations have persuaded the researchers to use intelligent models instead. In this work, prediction of Z-factor is aimed using different
popular intelligent models in order to find the accurate one. The developed intelligent models are including Artificial Neural Network (ANN),
Fuzzy Interface System (FIS) and Adaptive Neuro-Fuzzy System (ANFIS). Also optimization of equation of state (EOS) by Genetic Algorithm
(GA) is done as well. The validity of developed intelligent models was tested using 1038 series of published data points in literature. It was
observed that the accuracy of intelligent predicting models for Z-factor is significantly better than conventional empirical models. Also, results
showed the improvement of optimized EOS predictions when coupled with GA optimization. Moreover, of the three intelligent models, ANN
model outperforms other models considering all data and 263 field data points of an Iranian offshore gas condensate with R2 of 0.9999, while the
R2 for best empirical correlation was about 0.8334.
© 2015 Sichuan Petroleum Administration. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Z-factor; Gas condensate; Empirical correlation; Intelligent models
1. Introduction

Obtaining fluid properties from gas and oil reservoirs has
been of great importance to many researchers and petroleum
engineers. The significance of this knowledge becomes more
brilliant when the oil and gas capacity of reservoirs, dissolved
gas, aquifer model and other reservoir properties depends
directly or indirectly on fluid properties [1]. For this purpose,
the pressure, volume and temperature (PVT) analysis should
be applied to find the aforementioned parameters. This can be
made in PVT laboratory or by using proper correlations [2].
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For the case of gas condensate and gas reservoir, estimation
of Z-factor plays a key role for determination of other prop-
erties. Obtaining the accurate Z-factor has been the subject of
controversy among researchers. High expenses and inacces-
sibility to some well-equipped laboratories are the reasons for
researchers to be reluctant to use the direct measurement of Z-
factor. The common ways for prediction of Z-factor are EOS
and empirical correlations. The EOS have been developed and
extended for vapor liquid equilibrium (VLE) calculations [3],
estimation of critical properties [4] and prediction of volu-
metric properties of gas mixture as well [5,6]. The point that
should be considered about EOS is that despite the accurate
results attained from developed and modified EOS in com-
parison to empirical correlations, a bit more difficulties are
involved in solution process and more involving parameters
are dealt with. On the other hand, the foible point of empirical
Elsevier B.V. This is an open access article under the CC BY-NC-ND license

https://core.ac.uk/display/82330448?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/4.�0/
mailto:reza.azin@pgu.ac.ir
www.sciencedirect.com/science/journal/23528540
http://dx.doi.org/10.1016/j.ngib.2015.09.001
http://dx.doi.org/10.1016/j.ngib.2015.09.001
http://www.elsevier.com/locate/ngib
http://dx.doi.org/10.1016/j.ngib.2015.09.001
http://creativecommons.org/licenses/by-nc-nd/4.�0/


284 Mohamadi-Baghmolaei M. et al. / Natural Gas Industry B 2 (2015) 283e294
correlations is that they are usually developed based on spe-
cific data set. A good illustration is Sanjari and Lay investi-
gation which concluded to an empirical correlation for Z-
factor using Khangiran Refinery data set [7]. Another example
is Heidarian et al. study on gas compressibility factor which
led to empirical correlation based on limited experimental
data [8]. Likewise, Azizi et al. [9]generated a correlation
using extracted data from Standing-Katz chart [10] or inves-
tigation of Farzaneh-Gord and Rahbari [11]who used
measurable real time properties for developing the empirical
correlation. An interesting example is Jarrahian and Heidarian
[12] study in which they proposed a new EOS for sour and
sweet natural gases when the composition is unknown. They
tried to lessen the input variables in compare to other
empirical correlations.

The fundamental tool for estimation of thermophysical
properties of hydrocarbon fluids is EOS. Overall, EOS have
their own mixing rules which cause complexity in solution
process. The EOS based on statistical-mechanical theory yield
more accurate results. On the other hand, empirical correla-
tions are widely used in petroleum engineering applications
simply as they are practical and easy to use. That is to say, the
chief reason which makes the petroleum engineers tend to deal
with these kind of correlations is that they are explicit in Z
with straight forward solution procedure [13].

The complexity of EOS makes them difficult to apply
especially for mixtures with large number of components.
Also, questionable and unreliable predictions of Z-factor using
empirical correlations at some pressures and temperatures
have led the researchers to seek for easier, more reliable and
valid prediction for z-factor. On the other hand, application of
intelligent models becomes important to compensate weakness
of conventional methods. The intelligent systems are widely
used as robust tools to predict the petroleum properties and
also other engineering parameters [14e16]. A good example
of using intelligent models in reservoir engineering is Saemi
et al. work [17], in which they predicted reservoir permeability
using linked Adaptive Neural Network and Genetic Algorithm
(GA). Other examples of intelligent models usage in reservoir
fluid properties are prediction of bubble point pressure by
ANN [18], minimum miscibility pressure (MMP) by least
square support vector machine (LSSVM) [19], dew point
pressure using Fuzzy Logic model [20], Z-factor of natural gas
[21] and sour gasusing Adaptive Neuro Fuzzy Inference Sys-
tem (ANFIS) and ANN model [22] and condensate to gas ratio
by LSSVM model [23]. In another study, Ganji-Azad et al.
applied the ANFIS model to predict reservoir fluid PVT
properties [24]. Moreover, Fayazi et al. [25] and Rafiee-
Taghanaki [26] proposed a robust model for prediction of
gas compressibility factor by application LSSVM.

In this study, experimental PVT data of gas condensate
reservoir are used to compare and analyze accuracy of
empirical correlations and EOS coupled with intelligent
models. In the following sections, the application of intelli-
gent models will be presented in two parts. The first part
includes improvement and optimization of Van Der Waals
and Redlich Kwong equation of state by implementation of
experimental data using Genetic Algorithm [27]. Second part
is allocated to employ the Fuzzy Logic (FIS), ANFIS and
ANN predicting models and suggest the best intelligent
model for predicting gas Z-factor. These intelligent models
are trained by share of experimental data, while the remain-
ing data are used for validation and test. Some of these
intelligent models are utilized to predict the gas Z-factor in
previous works, and their ability will be evaluated and
compared with empirical correlations comprehensively in the
current study.

2. Empirical correlations and equations of state
2.1. Empirical equations
Several empirical correlations have been developed yet to
predict Z-factor. These correlations relate the critical proper-
ties of mixture, temperate and pressure of reservoir to the Z-
factor.

The regression approach is frequently used to generate
empirical correlations such as that of Sanjari and Lay (SL) in
2012. They generated an empirical predicting correlation of
gas compressibility. They have developed their correlation
based on Virial equation of state. They proposed correlation as
a function of ppr and Tpr within the range of 0:01 � ppr � 15
and 1:01 � Tpr � 3 [7].

Z ¼ 1þA1ppr þA2ppr2 þ
A3pprA4

TprA5
þA6pprA4þ1

TprA7
þ A8pprA4þ2

TprðA7þ 1Þ
ð1Þ

Many empirical correlations are adjusted by pseudo
reduced temperature and pressure such as that of Shell Oil
Company (SOC) which was referenced by Kumar [28].

Z ¼ AþBppr þ ð1�AÞexpð�CÞ �D
�ppr
10

�4
ð2Þ
2.2. Equations of state
Generally, cubic EOS originated from Van Der Waals
equation of state are more applicable for industrial proposes
[29]. These EOS are commonly rewritten in cubic polynomial
form. Vander Waals (VdW) equation is the basic cubic EOS
which modified the ideal gas PVT relations [30]. The cubic
polynomial form of VdW EOS, equation (8), can be solved to
find the Z-factor:

Z3 � ð1þBÞZ2 þAZ �AB¼ 0 ð3Þ
where, A ¼ ap

R2T2 and B ¼ bp
RT. The coefficients a and b are

defined as follow:

a¼ 0:421875
R2T2

c

pc
ð4Þ



Fig. 1. Schematic of MLP structure.

Fig. 2. The structure of ANFIS model.
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b¼ 0:125
RTc

pc
ð5Þ

Redlich and Kwong (RK) in 1949 improved the VdW EOS
to predict more accurate compressibility of vapor phase. They
considered a generalized temperature dependence term as
modification of attraction pressure term in their correlation
[31].

Z3 � Z2 þ �A�B�B2
�
Z �AB¼ 0 ð6Þ

where, A ¼ ap
R2T2:5 and B ¼ bp

RT. The coefficients a and b are
obtained by equations 12 and 13:

a¼ 0:42747
R2T2:5

c

pc
ð7Þ

b¼ 0:08664
RTc

pc
ð8Þ

The evolutionary path of VdW type EOS has reached to
Soave-Redlich-Kwong (SRK) equation of state in 1972 and
Peng-Robinson (PR) equation in 1976 [32,33]. For the cases in
which the composition of gas mixture is unknown (like this
study), the use of SRK and PR equation of state is impossible.

3. Intelligent models

The chief purpose of an intelligent software is to bridge sets
of input and output variables to each other considering the
system specifications [34]. Application of intelligent-based
models is more efficient in such cases which are time
consuming and involve non-linear mathematical modeling,
adaptive learning and when there is not any meaningful rela-
tion between input and output of a system. The intelligent
models developed in this study include ANN, ANFIS
(including FIS) and GA.
3.1. Artificial Neural Network
Table 1

Statistical information of data points.

Property Max. Min. Avg. SDa

Temperature/R 681.03 515.07 615.653 56.133

Pressure/psia 9104.536 1175.69 5391.07 1390.637

Z-factor 1.374 0.71 0.9896 0.1159

Tpc/R 427.2004 385.4219 4.09Eþ02 1.03Eþ01

ppc/psia 663.6487 650.0807 6.67Eþ02 1.56Eþ00

MW 2.62Eþ01 2.06Eþ01 2.21Eþ01 9.74E-01

Specific volume/m3 kg�1 1.46E-02 2.34E-03 3.81E-03 1.65E-03

Gas gravity 9.06E-01 7.11E-01 7.63E-01 3.38E-02

a denotes Standard deviation.
An ANN is a network of interconnected nodes exhibiting
the process of biological neurons in a brain. The artificial
neurons lie in constitutive layers of the network. Each layer is
linked to the next by specific weights (w) [35]. One of the most
practical structures of ANN is Multi-Layer Perceptron (MLP)
in which the input and output layers are connected to each
other by an additional layer called hidden layer. The hidden
layers do the processing step and output layer gathers the
signals and distributes [36]. A MLP network may have one or
more hidden layers; however, it is seen that a network with one
hidden layer can predict the performance of a system as well
[15]. The network adopts the weights of neurons based on
error between outputs and targets in training steps. Moreover,
for constructing robust design, some of unused data in training
step are used for validation, which makes the model more
accurate. The structure of ANN is illustrated in Fig. 1.

It is seen from figure that the networks consist of three
layers i, j and k where the weights between layers is desig-
nated by wij and wjk. The initial weighted values are modified
during training process by the comparison made between
predicted and real values [37]. Among various training algo-
rithm Levenberg-Marquart (LM) is commonly used for
training system due to its stability and swift convergence [38].
In the current study, the LM algorithm will be utilized where
the weights are computed by:

Wkþ1 ¼Wk �
h
JTWk

JWk
þ mkI

i�1

*JTWkVWk
ð9Þ

where the weighted matrix are symbolized by Wkþ1 and WK

during K þ 1th and Kth repetitions, J is the Jacobian matrix, V
is the accumulated errors vector, I is the identity matrix, and mk
is the parameter to express the ability of LM algorithm for
altering the searching method. In the present study, the input



Table 2

Calculated errors of empirical correlations considering all experimental data.

R2 ARE % AARE % RMSE RSS MSE

BB 0.833467 1.855974 3.670279 0.001201 0.612853 0.002403

DA 0.7476682 0.2914712 3.9412058 0.0015169 0.7736368 0.0030338

HY 0.830662 2.992630 4.030546 0.001338 0.682459 0.002676

HD 0.8330268 3.0963429 3.9694283 0.0012782 0.6519107 0.0025565

PP 0.379220 17.39785 18.12433 0.038935 19.85726 0.077871

SL 0.7956868 3.1706066 4.2371119 0.0016540 0.8435509 0.00330804

SOC 0.7903665 0.7361394 5.1792569 0.0023512 1.1991327 0.0047024
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layer L is consist of three variables which are Tpr, ppr and gg
also output layer K is allocated to target value, i.e. Z-factor.
3.2. Adaptive Neuro-Fuzzy Inference System (ANFIS)
Table 3

Modification of EOS coefficients using GA.

a b Modified a Modified b
The ANFIS is the combination of neural networks and
fuzzy modeling in training step in order to improve the ability
of learning [39]. The ANFIS applies the beneficial features of
ANN and fuzzy model by a hybrid structure and modifies the
inappropriate properties. In other words, ANFIS combines the
low level calculation of ANN and the powerful reasoning
ability of a fuzzy logic system. Based on ANFIS modeling for
non-linear systems, the input space is divided into many local
areas. In this regard, the modest local is developed by linear
functions or adjustable coefficients; next the ANFIS uses the
membership function (MF) to determine the dimension of
each input. Hence, the MFs and the hidden layers play a key
role in estimation of ANFIS model ability. The five layers of
ANFIS modeling is shown in Fig. 2 [39].

The adaptive nodes of the first layers are equated as:

mAiðxÞ ¼ exp
�

�
x�x*

s2

�
ð10Þ

where x* and ơ* are premise parameters which are adapted by
a hybrid algorithm and x is the input variable. In the present
study, the three input variables are Tpr, ppr and gg.
Fig. 3. Comparison between the best empirical correlation and experimental

data.
The firing strength of each rule is determined in the second
layer by quantifying the extent of each rule's input data. The
output of a layer is the algebraic product of input signals:

O2;i ¼ ui ¼ mAiðx1Þ �…� mCiðxnÞ ð11Þ
The third layer is responsible of normalization by calcu-

lating ratio of ith rule's firing strength to the summation result
of all rule's firing strength:

O3;i ¼ ui ¼ ui

ðui þ…þunÞ ð12Þ

The calculation of output is done by the fourth layer:

O4;i ¼
X

uifi ð13Þ

where the total output is obtained as the summation of all input
signals in the fifth layer by calculation of wave height as
follow [40]:

O5;i ¼
Pn

i¼1uifiPn
i¼1ui

ð14Þ

O5,i is Z-factor in this study.
VdW 0.421875 0.125 0.3619423 0.1016583

RK 0.42747 0.08664 0.4995234 0.0897378

Fig. 4. Z-factor variation versus pressure at 667.67 R for all 263 data points.



Table 4

The statistical errors of EOSs and Modified EOSs using GA.

R2 ARE % AARE % RMSE RSS MSE

VdW 0.4181896 14.381814 15.160368 0.0159576 8.1383792 0.0319152

Modified VdW 0.8038455 �0.659714 4.8360067 0.0017642 0.8997736 0.0035285

RK 0.7717325 4.0203441 4.7016636 0.0015935 0.8127042 0.0031870

Modified RK 0.8669765 3.3925143 3.3925143 0.0010056 0.5127304 0.0020103
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The adaptive layers are first and the fourth. Ai, Ci and ơi are
premise parameters of input fuzzy MFs in first layer. It is
worth mentioning that the Gaussian MFs are used in this work.
3.3. Genetic Algorithm (GA)
Table 5
Relying on Darwin's theory, it is claimed that species of
organisms have evolved over a long period of time through
natural selection while all of them share a common ancestor
[41]. The key observation is that there are limited resources for
the population of all organisms existing in nature, and this
leads to competition between individuals of different species.
Those fitter individuals to the environment have more chances
for survival and reproduction. Consequently, the process of
natural selection along with random modifications cause a rise
in the fitness of the population and the developments of spe-
cies. Genetic Algorithm (GA) is a search heuristic in computer
science which first introduced by J. Holland [42] to solve
optimization problems. Inspiring from the biological evolu-
tion, the main idea of GA is based on the survival of the fittest
among individuals where each one represents a possible so-
lution to a given problem. In order to optimize the given
problem, GA starts from an initial population of randomly
generated individuals and proceeds in an iterative process
resembling the genome evolution. Each iteration of the algo-
rithm generates a new population by first performing crossover
operator on elder populations and second applying mutation
on new generation which called offspring. Note that a fitness
proportionate selection is applied to recombination phase
where the more fit individuals are stochastically selected from
the current population as parents. To this end, the value of the
objective function should be determined to measure the fitness
Fig. 5. Learning process of ANFIS model considering training and checking

errors.
of each individual in the population. The iterative routine of
optimization stops when GA converges to a good enough in-
dividual or visits the maximum number of generations.

4. Results and discussion

In order to compare empirical correlations, EOS, modified
EOS and application of intelligent models including FIS,
ANFIS and ANN, 263 experimental data points were used.
These data were extracted from gas condensate reservoir. The
statistical properties of data points are given in Table 1. For the
comparison purposes, various types of errors are employed to
determine the best predicting model. The applied errors are:
Coefficient of determination (R2), Average relative error
(ARE), Average absolute relative error (AARE), Root mean
square error (RMSE), Residual sum of square (RMSE) and
Mean squared error (MSE). These statistical errors are pre-
sented in Appendix B. It should be mentioned the limitations
of empirical correlations if there were any, are considered in
calculation of Z-factor.

Quantitative comparison between correlations is summa-
rized in Table 2 for all experimental data. It is observed that
BB correlation has the highest value of R2 (0.8334) and least
MSE (0.002.40). On the other hand, PP has the least R2

(0.3792) and maximum MSE (0.0778). According to Table 2,
deviation of PP [43] and DA [44] correlations from experi-
mental data are more than other correlations, while BB [45],
HD [8] and HY [46] correlations give more accurate pre-
dictions. However, although these correlations show a good
Statistical errors reported for developed FUZZY model.

Data point RMSE MSE R2

Train 185 4.585782E-3 2.102940E-5 9.983545E-1

Validation 39 9.599466E-2 9.214976E-3 6.661773E-1

Test 39 2.132217E-2 4.546349E-4 9.666858E-1

Total 263 3.773630E-2 1.424029E-3 9.051515E-1

Table 6

Statistical errors reported for developed ANFIS model.

Data point RMSE MSE R2

Train 185 6.398754E-3 4.094405E-5 9.967936E-1

Validation 39 1.015981E-2 1.032216E-4 9.938876E-1

Test 39 9.142918E-3 8.359295E-5 9.931449E-1

Total 263 7.538195E-3 5.682438E-5 9.957756E-1



Fig. 6. Variation MSE values versus training Epoches.
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agreement with experimental data, they do not convince the
petroleum engineering needs for predicting the accurate and
reliable Z-factor.

Comparison of experimental data and BB model as the best
predicting correlation for all 263 data points is shown in Fig. 3
by scatter diagram. The BB model shows the closest agree-
ment with experimental data; however, predicted results are
still far from the set point data.

As the gas mixture components and their acentric factors
are not available, the VdW and RK EOS were optimized using
GA. To do this, results of VdW and RK EOS were chosen as
fitness functions. The fitness functions have been compared
with experimental data to reach the optimum results. The
objective functions were function of four variables, i.e. tem-
perature, pressure, pseudo critical temperature and pressure. It
Fig. 7. Comparison of output and target values related to training, validation

and test.
is worth noting that 50 generations were used to find the op-
timum results which are two coefficients of EOS. The Modi-
fied coefficients are summarized in Table 3. Effects of
modification on VdW and RK EOS are shown in Fig. 4, where
the variations of Z-factor versus pressure are displayed.

The statistical errors are reported in Table 4. As seen, the
R2 improved from 0.4181 to 0.8038 and from 0.7717 to 0.8669
for VdW and RK EOS, respectively as a result of GA opti-
mization. Accordingly, the least values of AARE and MSE
errors belong to Modified RK, which are 3.3925 and 0.002
respectively. On the other hand, the VdW EOS allocates the
maximum AARE and MSE errors 15.1603 and 0.0319. It is
clear from Fig. 5 and Table 4 that the accuracy of results from
VdW EOS is much less than those of RK equation. The
considerable difference between concluded results from two
methods still remains even after the modification.
4.1. Development of ANFIS
The developed ANFIS is used to present an intelligent
predicting model for Z-factor. In fact, the ANFIS system is a
combination of FIS and ANN model. In other words, the
Fuzzy model parameters are being optimized by Neural
Network. The ANFIS model compensates some weaknesses of
FIS system. The Sugeno-type Fuzzy Inference System settles
down to present a predicting model using training data without
any check and testing. Therefore, it is common to tune the
model with the least error in training step, but unusual errors in
tests and validation steps which results in error propagation. In
other words, if there is any checking step, it will prevent over
fitting the model on training data.

The Sugeno-type Fuzzy Interface System generates clusters
for introducing its rules. Therefore, determining the radius of
clusters, which specifies the number of clusters, is essential in
obtaining the number of rules and developing the Fuzzy
model. The less radius results more clusters and also more
rules. In other words, the larger the radius, the less is the
number of clusters.

For this study, all 263 series of data points were first
randomly divided in three parts where 70% of whole data used
for training, 15% for validation and 15% for test. Next, the
Sugeno-type Fuzzy system was generated using 70% of whole
data which were trained. For this purpose, the initial radius of
input data, which are temperature, pressure and specific gas
gravity, should be determined. The applied initial input vari-
ables were 5, 0.5, 0.05 for temperature, pressure and specific
gas gravity respectively and also 0.05 for Z-factor which is
output variable. The statistical errors related to Fuzzy
Table 7

Statistical errors reported for developed ANN model.

Data point MSE R2

Train 185 0.11031E-10 0.99999

Validation 39 9.12044E-10 0.99999

Test 39 5.26094E-08 0.99999

Total 263 8.75017E-09 0.99999



Fig. 8. Comparison of experimental data and ANN results.

Table 8

Comparison of statistical errors corresponded to three intelligent models.

R2 ARE/% AARE/% RMSE RSS MSE

FIS 0.90183886 �0.1846262 0.71927844 7.458890E-4 0.380403403 0.001491778

ANFIS 0.99577559 �0.0395657 0.42042680 2.841218E-5 0.014490215 5.6824372E-5

ANN 0.99999999 7.6890E-04 0.00223901 1.92894E-09 9.83761E-07 8.75017E-09

Table 9

Properties of other data base extracted from literature.

Ref. Data points No. Gas mixtures P/psia T/R MW Z

[48] 47 5 97.02e1106.90 558.36e646.92 51.56e16.60 0.86e0.99

[49] 165 5 1039.29e7120.68 559.67e619.66 23.67e18.17 0.67e1.14
[50] 100 4 3238.41e1747.83 545.76e753.48 17.05e20.51 1.28e2.04

[51] 84 3 145.53e2207.94 455.67e581.67 16.31e17.85 0.59e0.94

[52] 234 2 1470.00e17125.50 563.76e795.24 17.09e16.35 0.92e1.42

[53] 241 3 132.20e2950.29 432.00e720.12 18.43e17.24 0.64e1.91
[54] 105 5 1039.29e7120.68 560.77e620.76 20.85e18.80 0.71e1.14

[55] 61 6 98.49e1265.67 509.65e599.70 29.92e31.30 0.66e0.99

Total 1038 33

289Mohamadi-Baghmolaei M. et al. / Natural Gas Industry B 2 (2015) 283e294
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predicting model is reported in Table 5. As seen, the maximum
R2 belongs to training section as expected, and the least value
for validation. It is worth noting that the most important type
of reported error is that of check or test which determine the
ability of model for new unused data while the validity error
shows the generality of proposed model. The R2 value of
0.9051 obtained from Fuzzy model is more than that of best
empirical correlation and modified RK EOS; however, pre-
dicted values do not match the target values with high
accuracy.

In order to improve the ability of FIS predicting model, the
generated Fuzzy model parameters were optimized by ANN.
The ANFIS model considers 70% of data for training and the
15% for validation and the remains for test. It should be
mentioned that the three parts of implemented data were
completely explicit and there was not any mutual node in three
parts. The learning process of ANFIS model along with
considering training and checking errors is shown in Fig. 5
which indicates that the values of errors in training and
checking steps are close to each other at the end of process.

The statistical errors of output ANFIS model are reported in
Table 6. It is seen that total R2 value (0.99577) is more than
that of FIS model where the MSE value of Fuzzy model
(1.42E-3) was reduced to 5.683E-5. Results of Table 6 indicate
that the proposed model works better in comparison to other
methods for prediction of Z-factor.
Table 10

Comparison of AARE of intelligent system with other predicting model using rep

Ref. AARE/%

PP SL DA HD

[48] 0.87 0.32 14.71 0.55

[49] 5.40 1.52 9.69 2.36

[50] 85.62 6.04 5.52 35.57

[51] 32.10 1.28 20.12 1.33

[52] 24.78 1.58 1.56 2.41

[53] 1.46 0.94 13.14 2.09

[54] 7.32 2.00 8.96 2.47

[55] 2.044 1.28 33.42 0.9116

Total 159.59 14.96 107.12 47.69

Table 11

Comparison of MSE of intelligent system with other predicting model using repo

Ref. MSE

PP SL DA HD

[48] 9.97E-05 2.14E-05 0.0202 4.29E-05

[49] 0.0088 3.33E-04 0.0098 5.89E-04

[50] 2.5694 0.0191 0.0214 0.4589

[51] 0.1175 2.84E-04 0.0329 1.39E-04

[52] 0.1936 4.82E-04 5.02E-04 9.65E-04

[53] 0.0042 0.004 0.0209 0.0043

[54] 0.0144 5.90E-04 0.0091 8.52E-04

[55] 5.88E-04 3.44E-04 0.1353 3.50E-04

Total 2.91 2.52E-02 0.25 0.466
4.2. Development of ANN
For developing the ANN model, all 263 series of data point
were normalized between 0 and 1. The input variables are
pressure, temperature and specific gas gravity, and Z-factor is
considered as a function of these parameters:

Z ¼ f
�
T ;p;gg

� ð17Þ
It is worth mentioning that selection of input variables af-

fects the reliability and performance of any predicting model;
hence, it should reflect the physical properties and the nature
of system. The network consists of two layers, i.e. input layer
and hidden layers. The input layer included three nods
regarding temperature, pressure and gas gravity. These nodes
are bridged to the hidden layer by specific weights. This layer
is responsible for the main data processing. On the other hand,
the output of this network has one nod corresponding to
normalized Z-factor. For the training purpose, 70% of 263
series of data points were chosen randomly. In addition, half of
the remaining data was used for test and half for the validation
of constructed model. It should be noted that the number of
hidden layer neurons should be determined to lessen the de-
viation of output network and validation data. The adjusted
number for this study was 20 neurons. Several training algo-
rithms were applied, including Levenberg-Marquardt algo-
rithm (LM), Scaled Conjugate Gradient, Gradient Descent
orted data in Table 9.

HY FIS ANFIS ANN

1.32 0.894 0.76 0.0045

2.79 2.89 3.44 0.0986

5.12 0.343 0.742 0.0042

1.40 1.65 2.028 0.0730

2.43 1.11 0.998 0.0060

2.14 0.815 0.694 2.3E-04

2.77 1.81 1.38 0.0164

1.09 0.880 0.976 0.1274

19.06 10.39 11.018 0.329

rted data in Table 9.

HY FIS ANFIS ANN

3.78E-04 2.81E-04 1.34E-04 1.74E-08

7.54E-04 9.98E-04 1.190E-3 1.52E-06

0.017 6.843E-4 1.21E-03 9.41E-08

1.38E-04 3.22E-04 3.71E-04 1.07E-06

9.67E-04 7.43E-04 5.46E-04 3.40E-06

0.0043 1.33E-03 8.16E-05 5.68E-12

9.51E-04 8.81E-03 3.43E-04 1.05E-06

3.65E-04 2.95E-04 3.12E-04 1.16E-05

2.49E-02 1.34E-02 4.18E-03 1.88E-05
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with Momentum, adaptive learning rate Back-propagation and
Resilient Back-propagation [15,47]. The best model was pre-
sented by LM algorithm, so this algorithm was utilized for the
last network training. Fig. 6 shows the performance of ANN
model by means of MSE values related to training, validation
and test. As seen, the training stopped after 35 epoches where
the MSE value of validation started to rise. The output of ANN
model including three sets of data (train, validation and test)
are shown in Fig. 7. For comparison, corresponding experi-
mental data of ANN predicting model are shown in the same
figure.

The MSE and R2 values of output results and target data
which consist of training, validation and test are reported in
Table 7. The high values of R2 errors and the least values of
MSE (8.7501E-09) confirm that the output track the target
well enough.

The scattered diagrams plotted in Fig. 8 show comparison
between intelligent models. According to this figure, accuracy
of models increases as the nodes become more concentrated.
The evolutionary trend of improvement is clearly under-
standable by comparing the scattered diagrams of FIS and
ANFIS model. Also, there are some poorly predicted nodes
that approach their corresponding experimental values by
modifications applied by ANFIS. Fig. 8 clarifies the robustness
of ANN developed model, since the target and output values
cover each other completely. The points are placed on nearly
45� which proves the accuracy of predicting ANN model.

Among three intelligent systems used for prediction of Z-
factor, the ANN model is the most accurate model. As realized
from Table 8 the maximum R2 value belongs to ANN
(0.9999), while the FIS model has the least R2 (0.9018). It
should be considered that improvement of Fuzzy model by
application of ANFIS is significant when the MSE value re-
duces from 0.00149 (FIS) to 5.6824E-5 (ANFIS).

To confirm the advantage of intelligent systems over con-
ventional predicting correlations, 1038 data points of different
gas mixtures were used to obtain Z-factor. The thermophysical
properties of gas samples are listed in Table 9. The sum of
AARE and MSE values given in Tables 10 and 11 prove the
accuracy of intelligent systems for predicting Z-factor. How-
ever, one should note that the number of data bank directly
affects the accuracy of intelligent systems. Precision of ANN
model is highly significant among all three types of predicting
methods, even those with fewer data points [48e55].

5. Conclusion

In this study, the application of several intelligent systems
was investigated to find the most powerful model for predic-
tion of Z-factor. The applied intelligent systems were GA, FIS,
ANFIS and ANN model. Several statistical errors were
calculated to determine the accuracy of each one. The devel-
oped intelligent models show high accuracy over empirical
correlations. In addition, ANN model showed the most accu-
rate prediction in comparison with other intelligent models for
all data. Also, GA was used to optimize the parameters of
VdW and RK EOS. Results shows that RK EOS responses
better to parametric optimization compared to VdW EOS and
its modified parameters resulted in better Z-factor predictions.
Nomenclature

I identity matrix
J Jacobian matrix
O ith layer output
P gas pressure, psi
T gas temperature, R
T reciprocal of the pseudo-reduced temperature
V vector of accumulated errors
X Fuzzy linguistic variables
W matrix of weights
Y Fuzzy linguistic variables

Greek symbols

S Fuzzy ordered parameter
М model Specification
u firing Strength
Р density

Subscripts

A Fuzzy set
B Fuzzy set
Pc pseudo critical
Pr pseudo reduced
Tc pseudo critical
Tr pseudo reduced
R reduced
I input

Abbreviations

AARE average absolute error
ARE average relative error
ANFIS Adaptive Neuro-Fuzzy Inference System
ANN Artificial Neural Network
FIS Fuzzy interface system
LM Levenberg-Marquardt
MSE mean squared error
MF membership function
MLP multi-layer perceptron
NN neural network
R2 squared correlation coefficient
RMSE root mean squared error
RSS residual sum of square
RSS residual sum of square



Table (A-2)

Parameters A7 A8 A9 A10 A11

DA �0.7361 0.1844 0.1056 0.6134 0.721

HD(0.2 < ppr<3) 0.190387 0.620009 1.838479 0.405237 1.073574

HD(0.3 < ppr<15) 0.066006 0.612078 2.317431 0.163222 0.56606

SL (0.01 < ppr<3) 7.138305 0.08344 e e e
SL(3 < ppr<15) 3.543614 0.134041 e e e
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Appendix A. Empirical correlations

Hall-Yarborough's (HY) proposed an empirical correlation
in 1973 [46].

Z ¼
�
0:06125tppr

Y

	
exp

� 1:2ð1� tÞ2� ðA� 1Þ

The required parameters of Hall-Yarborough's Method are
shown in equations (A-3)e(A-6), where the Y parameter
should be obtained by solving equation (A-2).

FðYÞ ¼ X1 þ Y þ Y2 þ Y3 � Y4

1� Y
� ðX2ÞY2 þ ðX3ÞYX4 ðA� 2Þ

X1 ¼�0:06125Pprtexp

� 1:2ð1� tÞ2� ðA� 3Þ

X2 ¼
�
14:76t� 9:76t2 þ 4:58t3

� ðA� 4Þ

X3 ¼
�
90:7t� 242:2t2 þ 42:4t3

� ðA� 5Þ

X4 ¼ ð2:18þ 2:82tÞ ðA� 6Þ

Also, Dranchuk and Abu-Kassem (DA) correlated Z-factor
in 1975 [44]. This correlation is used for determination of gas
compressibility of dry gas.

Z ¼
"
A1 þ A2

Tpr

þ A3

T3
pr

þ A4

T4
pr

þ A5

T5
pr

#
rr þ

"
A6 þ A7

Tpr

þ A8

T2
pr

#
r2r

�A9

"
A7

Tpr

þ A8

T2
pr

#
r5r þA10

�
1þA11r

2
r

� r2r
T3
pr

exp

�A11r

2
r

�þ 1

ðA� 7Þ
The empirical correlation can also be obtained by regres-

sion methods and use of several experimental data. Take
Heidarian (HD) et al. correlation as an example which is
determined by multiple regression analysis. They used 1220
data points in specific range of 0:2 � ppr � 15 and
1:2 � Tpr � 3 [8].

Z ¼ ln

2
4A1 þA3 ln

�
ppr
�þ A5

Tpr
þA7

�
ln ppr

�2 þ A9

T2
pr
þ A11

Tpr
ln
�
ppr
�

1þA2 ln
�
ppr
�þ A4

Tpr
þA6

�
ln ppr

�2 þ A8

T2
pr
þ A10

Tpr
ln
�
ppr
�
3
5

ðA� 8Þ
The required coefficients of Dranchuk-Abukassem [44],

Heidarian et al. [8] and Sanjari and Lay [7] are listed in Table
(A-1) and (A-2):
Table (A-1)

Parameters A1 A2 A3

DA 0.3265 �1.07 �0.5

HD (0.2 < ppr < 3) 2.827793 �0.46882 �1.2

HD(0.3 < ppr < 15) 3.252838 �0.13064 �0.6

SL(0.01 < ppr < 3) 0.007698 0.003839 �0.4

SL(3 < ppr < 15) 0.015642 0.000701 2.3
The related parameters of Shell oil company correlation are
shown by equations (A-9)e(A-15):

A¼�0:101� 0:36Tpr þ 1:3868
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tpr � 0:919

p ðA� 9Þ

B¼ 0:021þ 0:04275

Tpr � 0:65
ðA� 10Þ

C ¼ ppr

�
EþFppr þGp4pr

�
ðA� 11Þ

D¼ 0:122exp

� 11:3

�
Tpr � 1

�� ðA� 12Þ

E ¼�0:6222� 0:224Tpr ðA� 13Þ

F ¼ 0:0657

Tpr � 0:85
� 0:037 ðA� 14Þ

G¼ 0:32exp

� 19:53

�
Tpr � 1

�� ðA� 15Þ
A similar empirical equation was introduced by Beggs and

Brill (BB) to predict gas Z-factor as function of pseudo critical
pressure and temperature [45]. Their method is not appropriate
for the pseudo pressure less than 0.92.

Z ¼ Aþ ð1�AÞexpð�BÞ þCpDpr ðA� 16Þ

A¼ 1:39
�
Tpr � 0:92

�0:5 � 0:36Tpr � 0:101 ðA� 17Þ

B¼ �0:62� 0:23Tpr

�
ppr þ

�
0:066

Tpr � 0:86
� 0:037

�
p2pr

þ
�

0:32

10ð9ðTpr�1ÞÞ
�
p6pr

ðA� 18Þ

C ¼ 0:132� 0:32log
�
Tpr

� ðA� 19Þ
A4 A5 A6

339 0.01569 �0.0517 0.5475

6229 �1.53652 �4.53505 0.068951

4492 �1.51803 �5.39102 �0.0138

6721 1.018801 3.805723 �0.08736

41511 �0.6579 8.902112 �1.136
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D¼ 10ð0:3106�0:49Tprþ0:1824T2
prÞ ðA� 20Þ

Papay (PP) proposed simple correlation for estimation of
gas compressibility factor [43]. The correlation was adopted as
a function of pseudo reduced pressure and temperature.

Z ¼ 1� 3:53ppr
100:9813Tpr

þ 0:274p2pr
100:8157Tpr

ðA� 21Þ
Appendix B. Types of errors

Coefficient of determination

R2 ¼ 1�
PN

i¼1

�
ZPred
i � Zexp

i

�2PN
i¼1

�
ZPred
i � averageðZexp

i Þ�2 ðB� 1Þ

Average relative error

ARE%¼ 100

N

XN
i¼1

�
ZPred
i � Zexp

i

Zexp
i

�
ðB� 2Þ

Average absolute relative error

AARE%¼ 100

N

XN
i¼1

�ZPred
i � Zexp

i

Zexp
i


�

ðB� 3Þ

Root mean square error

RMSE ¼
 PN

i¼1

�
ZPred
i � Zexp

i

�2
N

!1
2

ðB� 4Þ

Residual sum of square

RSS¼
XN
i¼1

�
ZPred
i � Zexp

i

�2 ðB� 5Þ

Mean squared error

MSE ¼ 1

N

XN
i¼1

�
ZPred
i � Zexp

i

�2 ðB� 6Þ
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