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Abstract Spinal muscular atrophy (SMA) is a lethal hereditary disease caused by homozygous
absence of the survival of the motor neuron (SMN) 1 gene (SMN1), and it is the leading genetic
cause of infant mortality. The severity of SMA is directly correlated with SMN protein levels in
affected patients; however, the cellular regulatory mechanisms for SMN protein expression are
not completely understood. In this study, we investigated the regulatory effects between SMN
expression and miR-9a, a downstream noncoding small RNA. Using an inducible SMN short
hairpin RNA interference (shRNAi) system in NSC 34 and human skin fibroblast cells, cellular
miR-9 levels and SMN protein repression were time-dependently upregulated. Conversely,
cellular miR-9 levels decreased when HeLa cells were transfected with SMN protein fused with
green fluorescent protein. In SMA-like mice spinal cords and human primary skin fibroblasts iso-
lated from patients with different degrees of SMA, human SMN exhibited a disease severity-
dependent decrease, whereas cellular miR-9 levels increased. These results clearly suggested
that cellular SMN proteins regulated miR-9 expression and that miR-9 expression was related to
SMA severity. Thus, miR-9 may be a marker for SMA prognosis.
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Introduction

Proximal spinal muscular atrophy (SMA) is an autosomal
recessive disease that is characterized by degeneration of
the anterior horn cells. SMA is subdivided into the following
four clinical types on the basis of age at onset and the level
of motor function: (1) severe type I; (2) intermediate type
II; (3) mild type III; and (4) adult-onset type IV [1e3]. Two
survival of motor neuron (SMN ) genes, SMN1 and SMN2, are
located on chromosome 5q13. Loss-of-function mutations
of both copies of the telomeric gene SMN1 are correlated
with the development of SMA [4].

The nearly identical centromeric gene SMN2, which is
typically not mutated in SMA, appears to modify the disease
severity based on the amount of full-length SMN protein
that it produces. The SMN protein levels are correlated with
disease severity in both patients with SMA and an SMA-like
mouse model [4e7]. Major issues in SMA treatment are how
to increase the level of the full-length SMN protein and
improve disease severity that is regulated by a downstream
effect in patients with SMA. No curative therapy for SMA is
currently available.

MicroRNAs (miRNAs) are a newly identified group of
small RNAs. These are short, noncoding sequences that
control gene-expression profiles through translational
regulation modifications [8]. Through their interactions
with the 30-untranslated regions of messenger RNAs
(mRNAs), miRNAs can trigger translational repression and
play a key role in several developmental timing pathways
[8,9]. Furthermore, many miRNAs have been shown to
regulate various processes during early embryonic devel-
opment and in human diseases, such as neurogenesis,
tumorigenesis, angiogenesis, and metastasis [10]. These
links highlight the importance of miRNA research to un-
derstand human disease development and devise novel
therapies. However, although there is increasing informa-
tion on miRNA function in developmental systems and some
disease entities, such as cancer [11,12], there is very little
information on how miRNAs may function during the path-
ogenesis of neurodegenerative diseases, such as SMA [2].

Recently, many studies have proposed that miRNAs may
also play important regulatory roles in neurodegenerative
diseases. New discoveries of miRNAs have changed some of
our understanding of disease mechanisms and have intro-
duced an entirely novel level of regulatory control over
gene expression [13]. In the nervous system, many miRNAs
are essential for developmental timing, cell proliferation,
cell death, and patterning as well as for the function and
identity of neural cell populations, such as miR-9 and miR-
124 [14e16]. The mature products of miR-9, which are
highly expressed in the brain, are considered to have reg-
ulatory roles because of their complementarity to
messenger RNA [17,18]. A number of specific miR-9 targets
have been proposed, including the RE-1-silencing tran-
scription factor (REST) and its partner corepressor for
element-1-silencing transcription factor (CoREST) [19].

In this study, we aimed to identify downstream mole-
cules in patients with SMA. We found that miR-9 was an
important downstream molecule of SMN protein. Its SMA
disease severity type-related expression pattern suggested
that miR-9 may be a marker for determining SMA prognosis.
Materials and methods

Cloning of human SMN

The human SMN (hSMN) protein was cloned from a human
placenta complementary DNA (cDNA) library as previously
described [20]. Scrambled siRNA and siRNAs against SMN (siR
NA1: 50-UAAAGUCAAU GGACGUAAUAGUAGC-30; siRNA2: 50-UA
CUAUUAGCUACUUCACAGGUCGG-30; siRNA3: 50-AAAUGUCAGA
AUCAUCACUCUGGCC-30; siRNA4: 50-UGGCUAAGUGGU GUCG
UCAUCAGCA-30) were purchased from Invitrogen. Cellular
miR-9-expression levels were determined using the following
primer pairs: primer 1 (TCTTTGGTTATCTAGCTGT ATGA) and
primer 2 (TCATACAGCTAGAGATAACCAAAGA).

Cell culture for mouse spinal cord and human SMA
skin fibroblasts and knockdown assay

An inducible SMN knockdown system in NSC 34 and human
skin fibroblast cells was provided by Dr Ting (Academia
Sinica, Taiwan) [21,22]. The hSMN protein was cloned from
a human placenta cDNA library as previously described [20].
The NSC 34 cells and human skin fibroblasts from patients
with SMA were cultured in high-glucose Dulbecco’s modified
Eagle’s medium with L-glutamine and sodium pyruvate
(Gibco), penicillin and streptomycin (Gibco), and 10% fetal
bovine serum (HyClone) at 37�C in a 5% CO2 incubator. For
the knockdown assay, 1 � 105 cells were cultured in a six-
well plate. After culturing overnight, scrambled siRNA and
siRNA against SMN were transfected using Lipofectamine
transfection kit (GIBCO/BRL). Cells were knocked down
for48 hours and then treated by doxycycline (1 mg/mL) to
decrease SMN expression [23].

Western blot analysis and immunohistochemical
staining

Western blot analysis and immunohistochemical staining
were performed as previously described [23e25]. The pri-
mary antibodies used were against b-actin (1:2000; Santa
Cruz, I-19), SMN (1:1000; Santa Cruz, SC-32313), and hem-
agglutinin tag (1:2000; Sigma).

Quantitative real-time reverse transcription
polymerase chain reaction

Total RNA was extracted from cells with TRIzol (Invi-
trogen) and cDNA was generated using 1 mg of DNase-
treated RNA with oligo-dT primers and TermoScript (Invi-
trogen) following the manufacturer’s instruction. Quan-
titative real-time reverse transcription polymerase chain
reaction (qRT-PCR) was performed using premade
primers/probes [glyceraldehyde 3-phosphate dehydroge-
nase (GAPDH) Mm99999915 and miR-9 MIMAT0000441].
GAPDH was used as the internal standard. Gene expres-
sion was normalized and analyzed using the DCt method
with 7500 System Software (Applied Biosystems). Results
were presented as fold difference of the mean compared
with the control (DDCt). All reactions were performed at
least in triplicate.



Figure 1. Downregulation of survival of motor neuron (SMN) protein expression upregulates miR-9 noncoding RNA expression. (A)
Cellular SMN protein expression was knocked down with an inducible shRNAi system in NSC 34 cells [doxycycline (Dox), 1 mg/mL].
(B) miR-9 levels increased in SMN-shRNAi cells (mean � standard deviation; n Z 3; )))p < 0.001). GAPDH Z glyceraldehyde 3-
phosphate dehydrogenase.
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Northern blot analysis

Total RNA was extracted from cells and mouse spinal cord
with TRIzol reagent (Life Technologies). The total RNA
(20 mg/sample) was loaded and separated on a 4% agarose/
formaldehyde gel and then transferred to nylon membranes
(Amersham Pharmacia Biotech). Blots were hybridized to a
radiolabeled miR-9 cDNA probe (1e178 bp) and subse-
quently hybridized with a GAPDH control probe to ensure
integrity and equal loading of RNA samples.

Mice

SMA-like mice in this study were obtained from Dr. Jong
(Graduate Institute of Medicine, KMU) and the related
generation and housing methods were followed as
described previously [7].

Patients

This study assessed a total of 16 patients with different types
of SMA fromKaohsiungMedical University Hospital (KMUH-IRB-
980125).Clinical informationabout thepatientswithdifferent
types of SMA was obtained as described previously [26].
Figure 2. Downregulation of survival ofmotor neuron (SMN) protein
skin fibroblast cells. (A) Cellular SMNprotein expressionwas knocked d
[doxycycline (Dox), 1 mg/mL]. (B) miR-9 levels increased in SMN-shRN
Statistical analyses

All experiments were performed at least three times. Re-
sults for RT-PCR are given as means � standard deviations.
Means were compared by the two-tailed Student test. A p
value < 0.05 was considered statistically significant.

Results

Reduced SMN protein expression induces miR-9
expression in NSC 34 and human skin fibroblast
cells

To examine a possible regulatory role for miRNAs in patients
with SMA, associations between SMN protein and miR-9
expression were first evaluated using NSC 34 neuroblastoma
cells [21]. Cellular SMN protein levels showed a time-
dependent decrease after treatment with doxycycline
(1 mg/mL) using an inducible SMN shRNAi system. Of inter-
est, cellular miR-9 expression increased over time (Fig. 1A
and B). This was also found in normal human skin fibroblast
cells. As shown in Fig. 2, cellular miR-9 levels showed a
time-dependent increase when cellular SMN protein levels
were knocked down using gene-specific shRNAi. These
expressionupregulatesmiR-9 noncodingRNAexpression in human
ownwith an inducible shRNAi system in human skinfibroblast cells
Ai skin fibroblast cells. miR-9 was detected by Northern blotting.



Figure 3. Forced survival of motor neuron (SMN) protein
expression downregulates cellular miR-9 expression
(mean � standard deviation; n Z 3; * p < 0.001).
Dox Z doxycycline; GFP Z green fluorescent protein;
hSMN Z human SMN.
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results showed that cellular miR-9 expression was regulated
by SMN protein in NSC 34 and human skin fibroblast cells.
hSMN protein overexpression reduces miR-9
expression in HeLa cells

The regulatory effect of SMN protein on cellular miR-9 was
further characterized by forcing the hSMN expression fused
with green fluorescent protein (GFP) in HeLa cells, which
had a high endogenous miR-9 expression. As shown in Fig. 3,
using an anti-GFP antibody, hSMN protein fused with GFP
was detected in HeLa cells in a time-dependent manner.
Concomitantly, cellular miR-9 levels decreased over time.
This showed that SMN protein indeed regulated cellular
miR-9 expression.
Figure 4. Cellular miR-9 expression exhibits disease severity-dep
patients with SMA. (A) miR-9 expression exhibits disease severity-re
disease severity-related increases in skin fibroblast cells of patien
hSMN Z human SMN; mRNA Z messenger RNA.
Cellular miR-9 levels exhibit disease severity-
dependent upregulation in SMA-like mice and
patients with SMA

The miR-9 expression has also been determined in SMA-like
mice [7]. Total proteins and total RNA from the spinal cords
of SMA-like mice with different levels of disease progression
were prepared to determine hSMN and miR-9 expressions.
The hSMN-expression level exhibited a disease severity-
dependent decrease in the total proteins that were iso-
lated from SMA-like mice spinal cords. However, cellular
miR-9 levels increased with disease severity (Fig. 4A). This
severity-dependent phenomenon was also investigated in
primary skin fibroblast cells established from patients with
SMA. As shown in Fig. 4B, cellular miR-9 expression, as
determined by semiquantitative RT-PCR, also showed a
significant disease severity-dependent increase in patients
with SMA.

Discussion

Proximal SMA is an autosomal recessive neurodegenerative
disease that is characterized by degeneration of anterior
horn cells. No effective therapy is currently available for
this disease. In this study, we aimed to determine a possible
regulatory effect between SMN proteins and miR-9, a newly
proposed small noncoding RNA molecule, in patients with
SMA. Our results showed that SMN protein downregulated
miR-9 expression under normal conditions. However,
cellular miR-9 levels showed an SMA disease severity-
dependent increase that was concomitant with decreased
cellular SMN protein levels in the cells of patients with SMA.
This suggested that miR-9 was an important regulator
related to SMA severity and that it could be a target for
improving SMA prognosis.

In this study, we first showed that miR-9 expression
negatively correlated with SMN protein expression in skin
endent increases in spinal muscular atrophy (SMA)-like mice and
lated increases in SMA-like mice. (B) miR-9 expression exhibits
ts with SMA (mean � SD; N Z 4; * p < 0.05 and ** p < 0.001).
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fibroblast cells of patients with SMA. miR-9, a brain-
enriched noncoding small RNA, was first cloned in 2001
[17]. Most research on miR-9 has focused on cancer-related
studies, and its possibility as a tumor suppressor miRNA was
suggested [27e29]. Packer et al. first reported that the
miR-9 levels with upstream RE1 sites significantly decreased
in the cortices of patients with Huntington’s disease (HD)
compared with those of healthy controls [19]. The miR-9
expression decreased in patients with early HD onset, and
it was found that it was processed from the same primary
transcript from the following three genomic loci: miR-9-1,
miR-9-2, and miR-9-3. Both miR-9-1 and miR-9-3 have up-
stream RE1 sequences that can be occupied by REST.

miR-9 targets two components of the REST complex,
namely, REST and CoREST. These data provided evidence for
a double-negative feedback loop between REST complexes
andmiR-9 [19]. REST factor, also knownas neuron-restrictive
silencer factor, contains eight Cys2His2 zinc fingers and acts
as a silencer to repress neural genes in non-neuronal cells
[30e32]. In undifferentiated neuronal progenitor cells, REST
acts as a master negative regulator of neurogenesis [31,33].
The pathological function of REST in human disease remains
controversial despite the repression effects of REST that
were found in many tumorigenesis studies.

In this study, we found that miR-9 expression negatively
correlated with SMN protein expression in the primary
fibroblast and exhibited disease severity-dependent
expression in patients with SMA. By detecting SMN protein
expression in primary fibroblasts with SMN1 homologous
mutants, the severity of SMAmaybepredictable in the future
and provide for amore suitable therapeutic approach. These
results suggest that miR-9may be amarker for SMA prognosis
and, thus, it warrants further investigation.
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