Radiation inactivation analysis of kidney microvillar peptidases

Ian S. Fulcher, Jean Ingram and A. John Kenny*

MRC Membrane Peptidase Research Group, Department of Biochemistry, University of Leeds, Leeds LS2 9JT, England

Received 23 July 1986

Five membrane peptidases were studied by radiation inactivation analysis of pig kidney microvillar membranes. One heterodimeric enzyme, γ-glutamyl transferase, presented a target size corresponding to the dimeric M_r. The other enzymes are known to be homodimers. Three of these, aminopeptidase A, aminopeptidase N and dipeptidyl peptidase IV, gave results clearly indicating the monomer to be the target and, hence, in this group the association of the subunits was not essential for activity. The target size for endopeptidase-24.11 was intermediate between those for monomer and dimer and its functional state was not resolved by the experiments.

1. INTRODUCTION

All of the brush border peptidases that have been purified from pig kidney or intestine have been found to be dimeric in structure and this characteristic was not affected by the agent (proteinase or detergent) used to release the enzymes from the membrane (review [1]). The association of the two subunits of these enzymes does not therefore depend upon the hydrophobic anchor or transmembrane domains that are lost by the proteinase treatment. The assumption is usually made that the oligomeric state of the isolated protein reflects that existing in the membrane. This assumption has been supported by electron microscopy of a few enzymes that have been reconstituted into liposomes, e.g. aminopeptidase N (EC 3.4.11.2) [2], endopeptidase-24.11 (EC 3.4.24.11) [3] and dipeptidyl peptidase IV (EC 3.4.14.5) [4]. However, we know very little about the functional significance of the oligomeric state for these enzymes. One of them, γ-glutamyl transferase (EC 2.3.2.2), is a heterodimer, requiring both subunits for activity [5]. The other microvillar peptidases that have been studied are homodimers and for these enzymes no such information is available. Radiation inactivation analysis provides an independent approach to the question. The dose-dependent inactivation of an enzyme is related to the target size it offers to the high-energy beam (review [6]). If each subunit functions independently of the other the target size should approximate to the subunit size; if association is a prerequisite for activity the target should relate to the dimeric M_r. Here, we have tried to answer this question in regard to five peptidases in pig kidney microvilli (four homodimeric and one heterodimeric).

2. EXPERIMENTAL

2.1. Preparation of microvillar membranes

Microvillar membranes were prepared from fresh pig or rabbit kidneys as described in [7] and resuspended in 1 mM K$_2$CO$_3$/HCl, pH 7.4, at 10 mg protein/ml.

* To whom correspondence should be addressed
2.2. **Irradiation of membranes**

Aliquots containing 2 mg microvillar protein were freeze-dried in 1 ml plastic auto-analyser cups (base area 0.8 cm²). Capped samples were irradiated in triplicate at room temperature with electrons from a Van der Graaf accelerator at the Radiation Research Centre, Cookridge Hospital, Leeds, operating at 2.9 MeV to give a dose rate of 20 krad/s. Electron flux was monitored continuously by measuring the current induced in a brass plate (230 cm²) located beneath the samples and the dose rate integrated with respect to time to determine the exact dose delivered. The intensity of the electron beam has a Gaussian distribution over the target area where \(\sigma = 6.5 \) cm. In the circle (1.4 cm radius) in which the sample cups were irradiated the predicted radiation dose varied by only 2% from the centre to the circumference. No significant rise in temperature of the samples was detected over the dose range used. Non-irradiated controls were handled in an identical way. After irradiation samples were rehydrated in 1 ml of 10 mM Tris-HCl, pH 7.4, 2% (w/v) Triton X-100, at 20°C for 1 h, and any insoluble material removed by centrifugation. In one experiment the recovery of freeze-dried protein from the cups was monitored by including \(^{125}\text{I}\)-labelled protein A with the membranes.

2.3. **Enzyme assays**

Aminopeptidase N, aminopeptidase A (EC 3.4.11.7), \(\gamma \)-glutamyl transferase, dipeptidyl peptide IV and endopeptidase-24.11 were assayed in duplicate as described [8]. Protein was determined by the Lowry method.

2.4. **Calculation of target size**

Apparent molecular target sizes were calculated from the empirically established relationship [9] that \(M_t = 6.4 \times 10^5 / D_{37} \), where \(D_{37} \) is the radiation dose expressed in Mrad required to reduce the specific activity of the enzyme to 37% (i.e. \(1/e \)) of its original value.

3. **RESULTS**

3.1. **Sample preparation and recovery of protein from the cups**

In these experiments the freeze-dried samples of membranes were irradiated in air. A preliminary experiment was performed to determine if samples irradiated in this way yielded different results from those presented, more conventionally, in sealed evacuated glass vials. In this experiment triplicate samples were irradiated at four dose levels: 0, 2, 5 and 10 Mrad. The results for two enzymes, aminopeptidase N and endopeptidase-24.11, are shown in table 1. Since only 4 points were used to compute the first-order decay, the \(D_{37} \) values are less reliable than those shown in fig.1 where 15 points were used. However, it is apparent that the coefficient of determination (\(r^2 \)) is slightly higher for the enzymes irradiated in air. More importantly, the variance among the data from the samples in cups was significantly lower than those in vials. We conclude that in spite of the possible

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Vials in vacuo</th>
<th>Cups in air</th>
<th>(F) statistic ((V_{vials} / V_{cups}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endopeptidase-24.11</td>
<td>4.93 (0.912)</td>
<td>4.58 (0.983)</td>
<td>79 ((p < 0.01))</td>
</tr>
<tr>
<td>Aminopeptidase N</td>
<td>3.61 (0.915)</td>
<td>4.63 (0.974)</td>
<td>17 ((p < 0.05))</td>
</tr>
</tbody>
</table>

See section 2 for details. The data are from triplicate samples irradiated at 0, 2, 5, 10 Mrad, with assays of two enzymes in duplicate. The variances (\(V \)) of the means for vials and cups were computed and the means of these were used to generate the \(F \) statistic.
Fig. 1. Radiation inactivation decay curves of kidney microvillar enzymes. See section 2 for details. Each point is the mean of two irradiation experiments. Enzymes: A (○) γ-glutamyl transferase; B (●) dipeptidyl peptidase IV; C (■) aminopeptidase A; D (□) endopeptidase-24.11; E (▲) aminopeptidase N. D_{57} values and coefficients of determination are shown in Table 2.

Table 2
Radiation inactivation analysis of pig and rabbit kidney microvillar proteins

<table>
<thead>
<tr>
<th>Enzyme</th>
<th>Membrane activity</th>
<th>Purified enzyme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D_{57} dose (Mrad)</td>
<td>ρ^2</td>
</tr>
<tr>
<td>Endopeptidase-24.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(pig)</td>
<td>4.96</td>
<td>0.990</td>
</tr>
<tr>
<td>(rabbit)</td>
<td>4.78</td>
<td>0.974</td>
</tr>
<tr>
<td>Aminopeptidase N</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(pig)</td>
<td>4.57</td>
<td>0.991</td>
</tr>
<tr>
<td>(rabbit)</td>
<td>4.64</td>
<td>0.983</td>
</tr>
<tr>
<td>Aminopeptidase A</td>
<td>5.20</td>
<td>0.996</td>
</tr>
<tr>
<td>Dipeptidyl peptidase IV</td>
<td>6.40</td>
<td>0.990</td>
</tr>
<tr>
<td>γ-Glutamyl transferase</td>
<td>7.53</td>
<td>0.999</td>
</tr>
</tbody>
</table>

The D_{57} dose is the mean of 3, 6 or 9 determinations (assayed in duplicate), as is the coefficient of determination (ρ^2). The values given for the target $M_r (\times 10^{-3})$ are means where more than one irradiation was performed. Information from SDS-polyacrylamide gel electrophoresis and other techniques has been used to indicate what is known of subunit size and oligomeric state of these enzymes when purified in their detergent forms (except for rabbit kidney endopeptidase-24.11 and aminopeptidase N, which were the proteinase forms). The values for γ-glutamyl transferase refer to rat kidney; in pig they are 59 ± 33 (Hughey, R., personal communication).
theoretical disadvantages of irradiation in air, the
use of cups was not only simpler, but gave more
precise estimates of inactivation.

Recovery of enzyme activity after freeze-drying
in cups was satisfactory for the five enzymes
studied, the change in specific activity (units/mg
protein) being -1.6% (range 5.8 to -4.8%).
Recovery of radioactivity in the experiment in
which 125I-protein A was added before irradiation
was equally efficient, all values were in the range
92–98% of the added radioactivity.

3.2. Inactivation analyses

Linear, first-order inactivation plots were ob-
tained for each of the five enzymes studied (fig.1),
each plot being the mean of two irradiation ex-
periments. In another irradiation experiment,
membranes prepared from rabbit kidneys were
compared with those from pig. Linear regressions
for endopeptidase-24.11 and aminopeptidase N
were computed. Table 2 shows the D37 doses, r²
values and the independent estimates from these
experiments, of the target Mᵦ values. Information
on the apparent subunit Mᵦ values of the detergent
forms of the enzymes derived from SDS-
polyacrylamide gel electrophoresis and the
oligomeric state are included for comparison with
the experimental data.

4. DISCUSSION

The enzymes studied are all known to be dimeric
when purified from pig kidney, but endo-
peptidase-24.11 and aminopeptidase N are
monomeric when isolated from rabbit. They are
glycoproteins and a relatively small part of their
mass is embedded in the lipid bilayer of the mem-
brane. The target Mᵦ values in table 2 are generally
lower than the subunit Mᵦ values for the purified
peptidases, with one exception - endopeptidase-24.11. Here the values were consistently
45% higher and there was no difference between
the pig enzyme (known to be dimeric) and that
from rabbit (known to be monomeric). Since all
these ectoenzymes are glycoproteins, one may en-
quire whether the carbohydrate moiety contributed
to the target size. This point has been addressed in
respect of yeast invertase [16], where it was found
that removal of carbohydrate by treatment with
endoglycosidase H did not alter the target size. We
have some information on the deglycosylated Mᵦ
values for four of the peptidases obtained by
endoglycosidase-H treatment of their labelled
precursor forms [13]. These Mᵦ values were:
endopeptidase-24.11, 77000 (confirmed by chemical
deglycosylation [17]); aminopeptidase N,
115000; aminopeptidase A, 120000; and dipep-
tidyl peptidase IV, 89000. The target Mᵦ values for
the three exopeptidases were therefore inter-
mediate between those for the glycosylated and
deglycosylated forms. Endopeptidase-24.11 gave
values that were higher than the glycosylated
subunit Mᵦ. In this instance it is difficult to say
whether the target is likely to be the dimer or the
monomer, but since the rabbit endopeptidase is
monomeric dimerization does not appear to be
mandatory for activity. A similar conclusion can
be made in respect of rabbit aminopeptidase N.

The three exopeptidases, all homodimers in pig,
clearly present a target that approximates to the
subunit size. γ-Glutamyl transferase, the only
heterodimer in the group, gave a target very close
to the dimeric Mᵦ, including the contribution of
carbohydrate chains. Our value agrees well with
that observed by irradiation of rat kidney
microvillar membranes [18].

The question posed at the outset concerning the
relationship of dimeric structure to enzyme activity
has been satisfactorily answered for four of the en-
zymes. We confirm that γ-glutamyl transferase ac-
tivity depends on the association of large and small
subunits. However, the three exopeptidases,
aminopeptidases N, A and dipeptidyl peptidase IV
offer target sizes that relate to the Mᵦ of the
deglycosylated subunit. For endopeptidase-24.11
the question was not clearly resolved by this ap-
proach.

ACKNOWLEDGEMENTS

We thank Dr G.A. Salmon, Dr F. Wilkinson,
Mr C.A. Kilner and Ms M. Medley for advice and
help with the irradiations and the Medical
Research Council for financial support.

REFERENCES

62, 91–128.

