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SUMMARY

Apolipoprotein A1 (APOA1) is the major protein com-
ponent of high-density lipoprotein (HDL) in plasma.
We have identified an endogenously expressed long
noncoding natural antisense transcript, APOA1-AS,
which acts as a negative transcriptional regulator of
APOA1 both in vitro and in vivo. Inhibition of
APOA1-AS in cultured cells resulted in the increased
expression of APOA1 and two neighboring genes in
the APO cluster. Chromatin immunoprecipitation
(ChIP) analyses of a�50 kb chromatin region flanking
the APOA1 gene demonstrated that APOA1-AS can
modulate distinct histone methylation patterns that
mark active and/or inactive gene expression through
the recruitment of histone-modifying enzymes. Tar-
geting APOA1-AS with short antisense oligonucleo-
tides also enhanced APOA1 expression in both hu-
man and monkey liver cells and induced an increase
in hepatic RNA and protein expression in African
green monkeys. Furthermore, the results presented
here highlight the significant local modulatory effects
of long noncoding antisense RNAs and demonstrate
the therapeutic potential of manipulating the expres-
sion of these transcripts both in vitro and in vivo.
INTRODUCTION

In recent years, long noncoding RNAs (lncRNAs) have been

shown to play important functional roles as regulators of gene

expression (Ansari, 2009; Faghihi et al., 2010; Huarte et al.,

2010; Katayama et al., 2005; Martinho et al., 2004; Modarresi

et al., 2012), through the recruitment of the complex epigenetic

machinery that dictates distinctive chromatin signatures

involved in active transcription (Kaikkonen et al., 2011; Magistri

et al., 2012; Rinn et al., 2007; Tsai et al., 2010; Wang et al.,

2011b). One such group of lncRNAs is the natural antisense tran-
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scripts (NATs), which are transcribed from the opposite DNA

strand to their specific partner protein-coding (or noncoding)

genes. The most common example of antisense transcription

is the pairing of a NATwith an overlapping protein-coding (sense)

transcript, whereby NAT expression can lead to an increase

(concordant) or decrease (discordant) in sense expression

(Faghihi and Wahlestedt, 2009). Modulatory effects of antisense

ncRNAs on neighboring genes have also been reported in yeast

(Camblong et al., 2007) and mammalian imprinting (Nagano

et al., 2008; Sleutels et al., 2002), suggesting that the regulatory

role of NATs can extend beyond their sense partners to the

overlapping chromatin region.

The observation that more than 70% of mammalian transcrip-

tional units show evidence of antisense transcription not only

indicates the biological importance of NATs but could also have

various therapeutic implications (Katayama et al., 2005; Lehner

et al., 2002; Wahlestedt, 2006). For example, identifying and

inactivating a discordantly acting NAT, using various RNAi ap-

proaches, could lead to derepression and subsequent ‘‘switch-

ing on’’ of a gene of interest (Wahlestedt, 2006). Very recently,

our grouphas successfully used this approach to substantially in-

crease the expression of the therapeutic target brain-derived

neurotrophic factor (BDNF), through inhibition of endogenous

noncoding antisense transcripts that repressBDNF transcription

(Modarresi et al., 2012).We have now identified aNAT for another

therapeutically relevant gene, the Apolipoprotein A1 (APOA1).

APOA1 is the major protein component of high-density lipo-

protein (HDL) in plasma (Barbaras et al., 1987) and is synthesized

primarily in the liver (80%) and small intestine (10%) (Elshourbagy

et al., 1985). It plays a key role in reverse cholesterol transport,

promoting cholesterol efflux from tissues by acting as a cofactor

for the lecithin cholesterol acyltransferase (Glomset, 1968). A low

HDL cholesterol concentration reflects increased susceptibility

to atherosclerosis and raising HDL pharmacologically remains

a proposed strategy to reduce the occurrence of cardiovascular

diseases (Green et al., 1979;Livshits et al., 1997; Rader, 2002).

The genes encoding human APOA1, as well as apolipoproteins

C3, A4, and A5, are clustered on chromosome 11q23.3

(Figure 1A), with APOA1, APOA4, and APOA5 transcribed

50 to 30, and APOC3 transcribed in the opposite direction
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Figure 1. APO Gene Cluster and APOA1-

AS NAT Organization on Human Chromo-

some 11

The direction of transcription is indicated by

arrows.

(A) The antisense transcript APOA1-AS (EST

DA327409) has two exons; the first exon is partially

overlapping with the forth exon of APOA1, and the

second exon is overlapping with the intronic region

of QSK gene.

(B) The splice variants obtained from 30 and 50

RACE using primers based on the DA327409

sequence.
(Antonarakis et al., 1988). Although previous studies have shown

that transcription at the human apolipoprotein gene cluster

(A1/C3/A4/A5) is dependent on specific chromatin structures,

such as the CTCF/cohesion chromatin insulators (Mishiro et al.,

2009), relatively little is known about the epigenetic factors influ-

encing APOA1 expression. Here, we report a NAT-mediated

mechanism of APOA1 transcriptional regulation that involves

the recruitment of multiple chromatin-modifying complexes to

the APO gene cluster. We demonstrate that targeting this NAT,

using both small interfering RNAs (siRNAs) and antisense oligo-

nucleotides (ASOs), can induce an increase in APOA1 expres-

sion both in vitro and in vivo, respectively.

RESULTS

Characterizing an Overlapping Antisense Transcript
at the APO Gene Cluster
APOA1mRNA is transcribed from the negative strand of chromo-

some 11 and contains four exons. A potential APOA1-
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natural antisense EST (EST sequence

DA327409) was identified, using UCSC

genome browser (http://genome.ucsc.

edu) (Figure S1), that is transcribed from

the positive strand of the APOA1 locus

and has two exons, positioned �20 kb

apart (Figure 1A). This APOA1 antisense

transcript (APOA1-AS) shares a 123-

nucleotide-long region overlapping with

the fourth exon of APOA1 mRNA (Fig-

ure 1A). In order to find the complete

sequence (e.g., transcription start site

[TSS]), alternative splicing, and 30 end of

APOA1-AS transcript, RACE (rapid ampli-

fication of the 30 or 50 cDNA ends), exper-

iments were performed with primers

designed based on the EST sequence.

RACE expanded the EST sequence from

both 30 and 50 ends and determined splice

variants with additional 30 exons (Fig-

ure 1B). We next examined a panel of

RNAs from human tissues for the pres-

ence of APOA1 and APOA1-AS tran-

scripts by quantitative RT-PCR, using
specifically designed probes. Both APOA1 and APOA1-AS tran-

scripts were expressed in all tissues examined; however, there

were significant differences in their expression levels (Figure 2A).

APOA1mRNAwas highest in the liver, an order ofmagnitude less

in small intestine, and two orders of magnitude less in colon.

APOA1-AS was highly expressed in ovary, cervix, testis, and

thyroid. The ratio of APOA1/APOA1-AS was also seen to vary

for many of the tissues examined (Figure 2B). Liver, small intes-

tine, and colon showed 103-fold higher expression levels of

APOA1 mRNA compared to APOA1-AS, whereas testis, heart,

and 12-week embryo showed a 102-fold difference. The

APOA1/APOA1-AS ratios were one or less than 10-fold in

thymus, ovary, spleen, kidney, esophagus, thyroid, adipose tis-

sue, skeletalmuscle, placenta, lung, prostate, trachea, andbrain.

APOA1-AS Transcript Acts as a ‘‘Temporal Switch’’ to
Regulate APOA1 Expression
The liver expresses large amounts of APOA1, accounting for

more than 70% of circulating APOA1 protein in the blood
, January 16, 2014 ª2014 The Authors 223
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Figure 2. Characterization of the Expression Profiles of APOA1 and

APOA1-AS

(A) Quantitative RT-PCR analysis of APOA1 and APOA1-AS in RNA samples

from a panel of different human tissues; each transcript was normalized to the

value of the same transcript in 12-week embryo.

(B) The ratio of APOA1-to-APOA1-AS transcripts was measured in com-

mercial RNAs obtained from various tissues. Graphs represent mean relative

expression values ± SEM.

Figure 3. siRNA-Mediated Downregulation of APOA1-AS

(A) HepG2 cells were transfected with APOA1-AS siRNA and control siRNA for

48 hr, and the levels of APOA1 and APOA1-AS genes were measured with

quantitative RT-PCR. See also Figures S1, S2, and S3.

(B) HepG2 cells were transfected with APOA1-AS siRNA, total RNA was

collected after 5, 24, 48, and 72 hr, and the transcript levels of APOA1 and

APOA1-AS were measured with quantitative RT-PCR.

(C) HepG2 cells were transfected with APOA1-AS siRNA and control siRNA for

48 hr. Quantitative RT-PCR was used to measure the expression of the genes

belonging to theAPO gene cluster. Graphs represent mean relative expression

values ± SEM.

See also Figure S2.
(Eisenberg, 1984). In order to identify any direct link between the

sense-antisense expression levels of APOA1 and APOA1-AS

transcripts, we next treated liver HepG2 cells with specific

siRNAs designed against APOA1-AS. The sequences of all three

siRNAs and the areas of the APOA1-AS transcript targeted by

each are presented in Figure S1. Although all three siRNAs

tested showed significant knockdown of APOA1-AS (Figure S2),

siRNA 1 showed the highest efficiency (�65%), leading to

�3-fold upregulation of the APOA1 transcript (Figures 3A and

S3) and was thus used in all subsequent experiments. A time

course experiment was performed, whereby total RNA was ex-

tracted at 5, 12, 24, 48, and 72 hr after transient transfection

with the APOA1-AS siRNA. APOA1-AS transcript levels were

significantly reduced after 5 hr (up to 90%) (Figure 3B) and re-

turned to �60% compared to negative control siRNA treatment

after 24 hr. APOA1mRNA concentration was increased over the

time course from 12 hr and reached plateau at 72 hr (Figure 3B).
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The upregulation pattern of APOA1 mRNA over 72 hr indicates

that transient reduction of APOA1-AS expression is sufficient

for initiating the transcriptional upregulation of APOA1 gene,

achieving 3-fold elevation at 48 and 72 hr. These results indicate

a functional role of endogenous APOA1-AS, whereby it can act

analogous to a molecular switch to dictate the expression levels

of the APOA1 sense gene.

APOA1-AS Modulates Multiple Genes in the APO Gene
Cluster
We hypothesized that APOA1-AS may modulate transcriptional

regulation not only of APOA1 but also other members of the

APO gene cluster (C3/A4/A5) located in close proximity on the

chromatin. Quantitative PCR (qPCR) analysis of APOA1/

APOC3/APOA4/APOA5 transcripts in HepG2 cells transfected

with the APOA1-AS siRNA showed that APOC3 and APOA4

were upregulated �3- and �4-fold, respectively, but APOA5



Figure 4. ChIP Analysis for Histone Modifications on the 50 kb Chromatin Region of APO Gene Cluster

Upper panel: Schematic representation of the ChIP Ps covering �50 kb chromatin region of APO gene locus. See also Table S1.

Lower panel: HepG2 cells were transfected with APOA1-AS siRNA and control siRNA for 48 hr.

(A–E) Cells were lysed, and chromatin was collected for ChIP analysis of (A) H3K4-met3, (B) H3K27-met3, (C) H3K9 met3, (D) LSD1, and (E) SUZ12 levels along

the �50 kb chromatin region. IP, immunoprecipitated.

(F) Background ChIP observed with a control IgG antibody (n = 3).

Graphs represent mean values ± SEM. *p < 0.05, **p < 0.01, and ***p < 0.001, two-tailed Student’s t test. See also Table S1.
mRNA concentration was unchanged (Figure 3C). To further test

the extent of APOA1-AS-mediated transcriptional regulation, we

measured the expression of the neighboring inosine-guanosine

kinase (QSK), a serine kinase located 6 kb upstream of APOA1

gene, which has intronic overlap with the second exon of

APOA1-AS (Figure 1A). Interestingly, QSK concentration was

not affected by the APOA1-AS knockdown, indicating a degree

of locus specificity and a possible chromatin boundary region

relating toAPOA1-AS activity. To evaluate the trans-acting prop-

erties of the APOA1-AS, Apolipoprotein B (APOB), another

member of the APO gene family that is transcribed from chromo-

some 22 and is also involved in cholesterol pathway, was also

examined (Figure 3C). We did not observe any change in

APOB mRNA concentration after knockdown of APOA1-AS,

suggesting that this regulation of the APO gene cluster by

APOA1-AS occurs locally (i.e., in cis). Together, these findings

highlight the significant role played by a cis-acting NAT in local

chromatin regulation.
C

The APO Gene Cluster Is Epigenetically Regulated by
APOA1-AS

We next hypothesized that APOA1-AS could function as a

mediator of suppressive epigenetic markers, through the recruit-

ment of chromatin-modifying complexes. To examine APOA1-

AS-associated chromatin modifications at theAPO gene cluster,

we performed chromatin immunoprecipitation (ChIP) experi-

ments to measure the levels of trimethylated lysines 4, 9, and

27 on histone H3 following siRNA-mediated APOA1-AS knock-

down. H3K4-met3 marks transcriptionally active chromatin,

whereas, H3K9-met3 and H3K27-met3 are considered to be

repressive chromatin marks (Kouzarides, 2002; Strahl and Allis,

2000). Eight primer sets (Ps) were designed to span a 50 kb

region encompassing APOA1, APOC3, APOA4, and APOA5

(Figure 4A; Table S1).

ChIP, followed by qPCR analysis, showed distinctive changes

in H3K4-met3 and H3K27-met3 levels, whereas no significant

changes were observed in H3K9-met3. The amplicons amplified
ell Reports 6, 222–230, January 16, 2014 ª2014 The Authors 225



by P1–P5 demonstrated significantly elevated levels of the active

marker H3K4-met 3 in HepG2 cells treated with the APOA1-AS

siRNA (Figure 4A). In addition, levels of the repressive mark

H3K27-met3 for the P1–P6 region, which also included the pro-

moters for APOC3 and APOA4, were significantly reduced (Fig-

ure 4C), whereas H3K9-met3, another mark associated with

gene silencing, was unchanged (Figure 4D). These amplicons

spanned the promoter of APOA1, as well as a specific enhancer

element involved in the regulation of APOA1/APOC3/APOA4,

thus indicating increased transcriptional activity. It is interesting

to note that P6, which represented the amplicon at the promoter

of APOA4, demonstrated no change in H3K4 trimethylation

(Figure 4B) but a rather pronounced reduction in the levels of

repressive chromatin marker H3K27-met3 (Figure 4C).

It has previously been shown that ncRNAs act as scaffold for

the locus-specific recruitment of functionally related chro-

matin-modifying enzymes (Guttman et al., 2011; Tsai et al.,

2010). In order to explain the observed changes in histone mod-

ifications, further ChIP experiments were performed using anti-

bodies for (1) the lysine (K)-specific demethylase 1 (LSD1), a

nuclear protein that is known to induce gene silencing through

the removal of active methyl marks, primarily from H3K4 (Shi

et al., 2004), and (2) the Suppressor of Zeste 12 homolog

(SUZ12), a key component of the polycomb recessive complex

2 (PRC2), which has been shown to mediate chromatin silencing

through H3K27 trimethylation (Cao et al., 2002; Kuzmichev et al.,

2002). In addition to the increase in active H3K4me3 at the

APOA1 promoter (P1–P5) following siRNA treatment, these am-

plicons (P1–P4) also exhibited significantly reduced LSD1 occu-

pancy (Figure 4E), indicating that APOA1-AS, at least in part, in-

duces the transcriptional silencing of the APOA1 gene through

LSD1 recruitment. Furthermore, the decrease in repressive

H3K27me3 marks on the amplicons for P1–P6 following siRNA

treatment also coincided with a marked reduction of SUZ12 oc-

cupancy for this region, suggesting that the observed increase in

APOA4 and APOC3 gene expression is due to a disruption of

APOA1-AS-mediated PRC2 interaction. ChIP experiments

were also carried out for the same samples using an IgG control

antibody, to confirm that all chromatin immunoprecipitated was

specific to LSD1 or SUZ12 and could not be attributed to back-

ground, nonspecific binding (Figure 4F).

ASOs Targeting APOA1-AS Induce APOA1 Upregulation
In Vitro and In Vivo
Given the clear therapeutic potential for the treatment of athero-

sclerosis, we further tested our hypothesis by examining

whether targeting APOA1-AS could promote hepatic APOA1

expression in vivo. Over 80 phosphorothioate-backbone ASOs

were designed to cover the full APOA1-AS sequence. To test

their potency to upregulate APOA1 transcript levels, these oligo-

nucleotides (termed AntagoNATs) were first tested in HepG2

cells. Forty-eight hours after transfection, total RNA was isolated

from these cells, and APOA1 mRNA concentration was

measured by quantitative RT-PCR. A number of AntagoNATs

induced a significant increase of APOA1mRNA expression (Fig-

ure S4). These active AntagoNATs appeared to cluster into two

major ‘‘hot spots’’ on the APOA1-AS sequence. To confirm the

existence of the hot spots, we then chose two regions for a
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more detailed survey in single nucleotide steps: one around a

hot spot (CUR-0461 to CUR-0284), the other around a mostly

inactive area (CUR-0279 to CUR-0473). AntagoNATs designed

around the hot spot produced on average a 1.7-fold upregulation

of APOA1mRNA, whereas oligonucleotides designed around an

inactive area produced an upregulation of 1.05-fold on average,

which supported the hot spot hypothesis (Figure S4). We then

mapped active oligonucleotides to the secondary structure of

APOA1-AS (Figure S4). Active AntagoNATs were associated

almost exclusively with one arm of the molecule. The two ‘‘hot

spots,’’ which are separated by about 200 bases in the linear

NAT sequence, mapped close to each other in the secondary

structure and were associated with a system of stable hairpin

loops. These results indicate that differences in AntagoNAT ac-

tivity may be due to their interactions with secondary and conse-

quently tertiary structure of NATs. Finally, AntagoNATs invoking

the largest upregulation were selected and chemically modified

to increase their stability. They were then tested in vitro, in

both human (HepG2) and African green monkey cells, to identify

the combination of sequence and chemical modifications that

produced the highest upregulation of APOA1 in both species.

For this transition between human and monkey cells, the

AntagoNATs were specifically designed based on regions for

which the human and rhesus genome sequences were identical.

Figure 5 demonstrates the increase in APOA1 expression

observed in HepG2 cells following treatment with two such Anta-

goNATs, the most active of which (CUR-1906) induced a 2- to 4-

fold upregulation of APOA1 mRNA and protein levels (see also

Figure S5). Figure 6A demonstrates APOA1 mRNA expression

in primary monkey hepatocytes treated with active AntagoNATs

relative to a same-chemistry control oligonucleotide (dashed

line). The sequences and modifications of these AntagoNATs,

as well as the regions targeted by each, are presented in Fig-

ure S6. The majority of the chemically modified AntagoNATs

screened induced no cytotoxicity at concentrations up to

4000 nM, as determined by the MTS test. From this pool

of active AntagoNATs, CUR-962, a 12-mer single-stranded

oligonucleotide with phosphorothioate backbone and five LNA

modifications in gapmer configuration (LLXXXXXXXLLL, where

‘‘L’’ indicates LNA), was selected and manufactured on a larger

scale for in vivo testing.

African green monkeys (n = 4/group) received three 10 mg/kg

intravenous injections of the AntagoNAT (CUR-962), or a chem-

ically matched inactive control AntagoNAT (CUR-963), over a

5-day period (days 1, 3, and 5). The CUR-963 control had no

effect on APOA1 mRNA or protein expression compared to

baseline values during in vitro testing. RT-PCR analyses of liver

biopsies taken 3 months prior to injection and 72 hr after final

injection revealed an increase in APOA1 mRNA expression for

all four monkeys that received the active AntagoNAT, CUR-

962, compared to those receiving the control CUR-963. On

average, liver biopsies from the AntagoNAT-treated cohort

demonstrated a �1.7-fold intraindividual increase of APOA1

mRNA compared to pretreatment biopsy samples (p = 0.04; Fig-

ure 6B), whereas expression levels in the control CUR-963-

treated group were unchanged. Furthermore, circulating

APOA1 protein concentrations in the AntagoNAT-treated ani-

mals were elevated by �10–15 mg/dl on days 6, 15, and 20



Figure 6. ASOs Targeting APOA1-AS Can Increase APOA1 mRNA

and Protein Expression In Vivo

(A) Primary African green monkey hepatocytes were transiently transfected

with AntagoNATs against APOA1-AS and induced a 2- to 4-fold upregulation

of APOA1 mRNA.

(B) Liver biopsies of monkeys (n = 4) treated with CUR-962 showed �1.7-

fold increase in APOA1 mRNA concentration compared to baseline biopsy

samples (p = 0.04). All four active AntagoNAT-treated monkeys showed

elevated liver APOA1 mRNA concentration.

(C) Measurement of APOA1 protein in African green monkey blood (n = 4). We

observed a significant increase in circulating APOA1 protein by an average

of 10 mg/dl and up to 15 mg/dl.

All graphs represent mean values ± SEM. *p < 0.05, **p < 0.01, and

***p < 0.001. See also Figure S6.

Figure 5. ASOs Targeting APOA1-AS Can Increase APOA1 mRNA

and Protein Expression In Vitro

HepG2 cells were transiently transfected with AntagoNATs against APOA1-

AS. CUR-1906 induced a 2- to 4-fold upregulation of APOA1 mRNA (A) and

protein (B) levels (3 < n < 6; *p < 0.05). Graphs represent mean relative

expression values ± SEM. See also Figure S5.
postinjection, compared to their matched pretreatment biopsies

(p < 0.01; Figure 6C).

DISCUSSION

Within the last decade, ncRNAs have come to represent an

exciting avenue for the treatment of diseases (Calin and Croce,

2006; McDermott et al., 2011; Miller and Wahlestedt, 2010;

Pastori and Wahlestedt, 2012; Taft et al., 2010; van Rooij and

Olson, 2007). By identifying and characterizing regulatory

antisense transcripts, it may be possible to manipulate the

expression of a therapeutic gene for a range of indications. In

this regard, siRNAs, which direct selective mRNA degradation

using the multicomponent RNA-induced silencing complex

(Zamore et al., 2000), offer a fast and robust approach to study

RNA-mediated gene regulatory mechanisms in vitro. Alterna-

tively, short ASOs can be specifically modified for increased sta-

bility, high specificity, and potency, and are a powerful tool to

attain direct gene silencing in vivo (Dias and Stein, 2002; Veedu

and Wengel, 2009). Here, we have identified a mechanism by

which an endogenous, long noncoding antisense RNA can

modulate the expression of APOA1 and multiple neighboring

genes, by facilitating the interaction of histone-modifying com-

plexes with a specific target locus. ChIP analyses of H3K4,
C

H3K9, and H3K27 trimethylation status following APOA1-AS

knockdown demonstrated that the interplay between H3K27

methylation and H3K4 demethylation within the same chromatin

region is critical to maintaining an active chromatin state for

APOA1, APOC3, and APOA4 expression.

LSD1 is known to remove methyl marks primarily from H3K4,

which are associated with transcriptionally active promoters,

and pharmacological LSD1 inhibitors have also been shown to

enhance H3K4 methylation, leading to the derepression of

epigenetically suppressed genes (Wang et al., 2011a). Although

it has been reported that LSD1 is only effective at removing

methyl groups from mono- or dimethylated H3K4 (Shi et al.,

2004), it is capable of binding H3 peptides with trimethylated

K4 residues (Stavropoulos et al., 2006), and knockdown of

LSD1 has previously also been shown to increase levels of

H3K4 trimethylation at target genes (Adamo et al., 2011).

As such, whereas LSD1 may not be directly affecting the
ell Reports 6, 222–230, January 16, 2014 ª2014 The Authors 227



trimethylated form of H3K4 under normal conditions, it is

possible that its removal may provide a more optimum environ-

ment for histone methylation. The long intergenic RNA (lincRNA)

HOTAIR has previously been shown to act as a modular scaffold

by binding to and recruiting LSD1 to its chromatin targets and

thus silencing gene expression (Tsai et al., 2010). Our data

suggest that the APOA1-AS transcript identified here induces

epigenetic regulation ofAPOA1 in a similar manner, bymediating

LSD1 occupancy across this locus. Treatment with our APOA1-

AS siRNAs led to the disruption of this interaction, which

coincided with an increase in H3K4 trimethylation within the re-

gion encompassing APOA1 (P1–P4), thus resulting in enhanced

gene expression. This would appear to be H3K4 specific

because the APOA1-AS siRNA was not seen to affect the trime-

thylation state of H3K9, which is in line with previous reports that

LSD1 demonstrates an extremely high affinity for H3K4 over

H3K9 (Shi et al., 2004).

Similarly, various other lncRNAs have also recently been

reported to physically interact with the PRC2 component

SUZ12. For example, theNATANRILmediates the silencing of tu-

mor suppressor gene p15INK4B through physical recruitment of

SUZ12, which in turn induces repressive H3K27 trimethylation

(Kotake et al., 2011). Indeed, in addition to binding LSD1,

HOTAIR has also been shown to repress the transcription of the

human HOXD locus through its direct interaction with SUZ12

and, thus, the PRC2 complex (Tsai et al., 2010). Here, we demon-

strate that knockdown of APOA1-AS leads to disruption of

SUZ12 binding across the majority of the APO gene cluster and

coincides with a reduction of H3K27 trimethylation marks along

the promoter regions of APOA1, APOA4, and APOC3. Although

this is likely to also promote APOA1 gene expression, along

with decreases in LSD1, a reduced occupancy of SUZ12 would

also explain the observed increase in APOA4 and APOC3 ex-

pression in liver cells following APOA1-AS siRNA treatment.

Interestingly, no trans effect was indicated for the APOA1-AS

on APOA5, which is located 28 kb downstream of the other three

affected genes, nor was there any effect on the neighboring

upstream gene QSK, which may indicate a boundary for the

NAT’s regulatory effect on the chromatin or the presence of

insulator elements (Kim et al., 2007). Indeed, a previous study

has shown that APOA1/APOC3/APOA4 genes are organized

into complex chromatin loops (Mishiro et al., 2009).

The locus-specific recruitment of histone-modifying com-

plexes by NATs, observed here and in our other published report

(Modarresi et al., 2012), suggests that approaches to modify

these antisense transcripts may offer more control over target

sense gene upregulation than compounds, such as LSD1 or

PRC2 inhibitors, which could have a number of off-target effects.

It should be noted that the use of ASOs tomediate RNA silencing

can also be associated with off-target activity; however, the fact

that the same effect of APOA1 upregulation was observed

following treatment with both siRNAs and modified AntagoNATs

supports the specificity of the mechanism proposed here.

Furthermore, the upregulation of APOA1 observed during

AntagoNAT screening and in vivo testing is unlikely attributed

to general toxicity, as indicated by MTS toxicity assays, nor

could it be an artifact of PS/2OMe/LNA/DNA chemistry load

because much higher concentrations of the relevant control
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AntagoNATs were seen to have no effects. The present data

show the effectiveness of a relatively low dose of CUR-962 in

increasing APOA1 mRNA and protein concentration in vivo in a

primatemodel and highlight the potential applicability of Antago-

NAT strategies for inducing therapeutic gene upregulation in a

clinical setting. Although still in its infancy, further optimizing

this approach could have advantages over current drug-based

or viral gene therapy approaches due to the high specificity,

stability, and potency of ASOs.

EXPERIMENTAL PROCEDURES

Cell Culture

All cell lines were maintained at 37�C and 5% CO2 and passaged every

3–4 days. FBS fromMediatech (catalog #MT35-011-CV) was used in all cases.

518A2 and Vero76 cells were grown in DMEM plus 5% FBS. HepG2 cells were

grown in EMEM (ATCC, catalog #2003) plus 10% FBS. African green monkey

primary hepatocytes were grown in DMEMand isolated as previously reported

by LeCluyse et al. (2005). All media contained penicillin/streptomycin

(Mediatech, catalog #MT30-002-CI).

RACE

RACE was conducted using the firstChoice RLM-RACE Kit (Life Technologies,

catalog #AM1700) as described by the manufacturer, followed by two succes-

sive nested PCRs of the cDNA copies. The PCR products were cloned and

sequenced by Davis Sequencing.

Transient Transfections

For each transfection of active siRNA and negative control siRNA, 400 ml of

OptiMEM was mixed gently with 4 ml of Lipofectamine 2000 (Invitrogen), and

20 ng of active/negative siRNAwas added to the above mixture and incubated

for 20min at room temperature. After 20 min, 400 ml of OptiMEM plus Lipofect-

amine plus siRNA mixture was added to the HepG2 cells (2 3 105 cells/well)

that were seeded into 6-well plates (35 mm) in EMEM plus 10% FBS. Cells

were maintained at 37�C and 5% CO2. After 24 hr, media were replaced

with fresh EMEM plus 10% FBS. At 48 hr after transfection, cells were

collected, and the RNA was extracted using QIAGEN RNA extraction column

according to the manufacturer’s protocol.

RNA Extraction

Total RNAwas isolated using QIAGENMidi RNA Extraction kit or SV Total RNA

Isolation System from Promega (catalog #Z3105) following the manufacturers’

instructions.

Reverse Transcription and qPCR

Reverse-transcription reaction was performed using the High-Capacity cDNA

Kit from Applied Biosystems (catalog #4368813) as described in the manu-

facturer’s protocol. Real-time PCR was conducted using ABI TaqMan Gene

Expression Mix (catalog #4369510), and probes were designed by ABI (assay

ID #Hs00202021_m1 for APOA1) on the StepOnePlus Real-Time PCR System

(Applied Biosystems). The data were normalized to 18S expression (ABI;

catalog #4319413E).

ChIP Assay

HepG2 cells were grown in EMEM (ATCC; catalog #2003) plus10% FBS and

transiently transfected with 20 ng of control and APOA1-AS siRNAs according

to the transient transfection protocol explained above. For H3K4me3,

H3K9me3, and H3K27me3 experiments, at 48 hr after transfection, �2 3

107 cells were trypsinized, collected, and washed with ice-cold PBS three

times, and the cell pellet was resuspended in cell lysis buffer (85 mM KCl,

0.5% Nonidet P-40, and 5 mM HEPES [pH 8.0]) supplemented with protease

inhibitor cocktail (Roche), incubated on ice for 15 min, and centrifuged at

3,5003 g for 5 min to pellet the nuclei. The pellet was resuspended in nuclear

lysis buffer (50 mM HEPES-KOH [pH 7.5], 140 mMNaCl, 1 mM EDTA [pH 8.0],

1% Triton X-100, 0.1% sodium deoxycholate, and 0.1% SDS) at a ratio of 2:1



(v/v) relative to the initial cell pellet volume and incubated on ice for 10min. The

solution was sonicated to obtain chromatin fragments of 100–1,000 bp using

bioruptor for 10 min with 30 s on and 30 s off cycles. The sonicated lysate

was centrifuged at 13,000 rpm for 5 min at 4�C, and the supernatant was

aliquoted for each ChIP reaction including one aliquot as input.

Each aliquot was diluted to ten times with RIPA buffer (50 mM Tris-HCl

[pH 8.0], 150 mMNaCl, 2 mM EDTA [pH 8.0], 1% NP-40, 0.5% sodium deoxy-

cholate, and 0.1%SDS) supplementedwith protease inhibitor cocktail (Roche)

andPMSF. Fivemicrograms of antibody, including IgGas a control, was added

to each ChIP and incubated at 4�C for 4 hr with rotation. Twenty microliters of

protein A/G beadmixture (preadsorbed with sonicated single-stranded herring

spermDNA andBSA for 30min at room temperature) was added to all samples

and immunoprecipitated for 2 hr at 4�C with rotation.

The beads were collected using a magnetic rack (Invitrogen), and the super-

natant was discarded. The beads were washed with 1 ml of the buffer in the

following order: 33 with low-salt buffer (0.1% SDS, 1% Triton X-100, 2 mM

EDTA [pH 8.0], 150 mM NaCl, and 20 mM Tris-HCl [pH 8.0]), 13 with high-

salt buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA [pH 8.0], 500 mM

NaCl, and 20 mM Tris-HCl [pH 8.0]), and 23with TE buffer, each time washing

the beads with rotation for 5 min at 4�C and discarding the supernatant. The

beads were then incubated with 200 ml of DNA elution buffer (1% SDS and

100 mM NaHCO3) at room temperature, and the supernatant was collected.

DNA was purified from the eluate using QIAGEN DNA Mini Kit following the

manufacturer’s protocol.

For SUZ12 and LSD1 experiments, prior to cell lysis, the transfected cells

were collected and crosslinked by adding 1% formaldehyde for 10 min at

room temperature. The reaction was quenched by adding 125 mM glycine for

5 min at room temperature. Washing, lysis, resuspension, sonication, and

immunoprecipitation aliquotingwere performedas above. A total of 8 mgof anti-

body, including IgGasa control,was incubatedwith50mlDynabeadsProteinG

(Life Technologies) for 30 min at room temperature. This antibody/Dynabeads

mixture was added to all samples and incubated overnight at 4�Cwith rotation.

The beads were collected and washed as above. To reverse the crosslinking

and elute DNA, the beads/antibody/antigen complexes were suspended in

elution buffer (1% SDS, 100 mM NcHCO3, 200 mM NaCl, 50 mM Tris-HCL

[pH 8.0], 10 mM EDTA [pH 8.0], and 2.5% proteinase K) at 65�C for 4 hr, with

shaking. Purification of DNA from the eluates was performed as above.

APOA1 ELISA Analysis

ELISA plates were coated overnight with mAb HDL110 (Mabtech APOA1

ELISA kit, catalog # 3710-11-6, 1,000 mg/ml) diluted 1:500 in Coating buffer

(Immunochemistry Technologies; catalog #644), washed with TBST, and

blocked with Blocker BSA (Pierce; catalog #37520)/0.5% Tween 20 for

30 min at room temperature. APOA1 standard from the Mabtech APOA1

ELISA kit was used to generate standard curve. Samples were loaded on a

plate and incubated for 2 hr at room temperature, then washed and incubated

with detection antibody (mAb HDL44biotin) from the kit diluted in block

(1:2,000), washed and incubated with streptavidin from the kit in block

(1:1,000) for 1 hr at room temperature, and washed again. Then substrate

(LabVision, TMB Fisher, catalog # TA060TMB) was added and incubated for

10–20 min at room temperature. Plates were read at 650 nm.

Primate Studies

In vivo studies were conducted at the St. Kitts Biomedical Research Founda-

tion, in full compliance with the NIH Guide for the Care and Use of Animals.

Baseline clinical exams, including clinical chemistries, were conducted on

eight adult female African green monkeys to confirm good health and suit-

ability for study enrollment. Monkeys were fed approximately 120 g standard

monkey chow (Teklad) per day. The monkeys were assigned to two treatment

groups of four animals each and dosed once daily between 7:00 and 10:00

a.m. on study days 1, 3, and 5 by intravenous saphenous vein infusion over

�15–20 min at a rate of 24 ml/kg/hr. The animals were sedated with ketamine

and xylazine intramuscularly (5.0 mg/kg ketamine/1.0 mg/kg xylazine) prior to

and during the dosing procedure. Blood samples were obtained via superficial

venipuncture from all animals at three baseline time points prior to treatment.

Additional blood samples were collected at intervals postdosing, and plasma

APOA1 protein concentrations were assessed by immunoturbidimetric assay.
C

The animals did not have access to food for 12 hr prior to collecting all

samples, in order to ensure that any observed changes in APOA1 measure-

ments were not due to dietary reasons. They were then fed again immediately

after the samples were taken. A percutaneous liver biopsy was performed on

all study monkeys, under ketamine and xylazine sedation, at the first baseline

sampling time point and on study day 7. An INRAD 14G biopsy needle was

employed to obtain four core biopsies (�1.5 cm in length) from the right lobe

of the liver. Biopsies were immediately immersed in a labeled cryotube con-

taining 2 ml of RNAlater (QIAGEN) and incubated at 4�C overnight, following

which the RNAlater was aspirated and the sample tube flash frozen in liquid

nitrogen for transportation prior to total RNA isolation for real-time qPCR.
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