View metadata, citation and similar papers at core.ac.uk brought to you by .{ CORE

provided by Elsevier - Publisher Connector
vid [}

Transcendental infinite sums

by S.D. Adhikari', N. Saradha?, T.N. Shorey? and R. Tijdeman®

' Mehta Research Institute, Chhatnag Road, Jhusi, Allahabad 211019, India,

e-mail: adhikari@mri.ernet.in

*Tate Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India,
e-mail: saradha@math. tifr.res.in/shorey @math.tifr.res.in

3Mathematical Institute, Leiden University, P.O. Box 9512, 2300 RA Leiden, the Netherlands,
e-mail: tijdeman@math.leidenuniv.nl

Communicated at the meeting of January 29, 2001

ABSTRACT

We show that it follows from results on linear forms in logarithms of algebraic numbers that num-
bers such as .
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where x is any non-principal Dirichlet character and (F,)7 , the Fibonacci sequence, are trans-
cendental.

1. INTRODUCTION

In the mathematical literature the transcendency of infinite sums like
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where x is a non-principal Dirichlet character and (F,),-, the Fibonacci se-
quence, has received little attention. In this paper, we show that these numbers
are transcendental and we give approximation measures for them.

By a computable number, we mean a number which can be explicitly de-
termined as a function of its defining parameters. The proofs of our results de-
pend on Baker’s theory on linear forms in logarithms. By this approach most
results say that the considered infinite sum has either a computable algebraic
value (which is often 0 or some rational number) or is transcendental. In prac-
tice, it will be often easy to exclude the former option. We write Z for the set of
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integers. Further we denote by Q the field of rational numbers and by Q the
field of algebraic numbers. For an algebraic number o we denote the degree
[@Q(e) : Q] by d, and the absolute logarithmic height (cf. Section 2) by A,
or h(a). For a function f:Z — @ which is periodic mod g we denote
[Q(f(0), £(1),--, /(g = 1)) : @] by dy and /23 h(f(})) by hy. At several
places in the paper the rearrangement of terms in the infinite series requires
justification which is left to the reader. We begin with the statement of Theorem
1 which deals with the case when the denominator is #. This will be followed by
a corollary and corollaries of Theorems 2-4. We refer to sections 4-6 for the
full statements of Theorems 2-4.

Theorem 1. Let f : Z — Q be periodic mod q and such that
x f(n
m  s=3®
n=1 N

converges. Then S = 0 or S¢ Q. In the latter case we have
log | S —a|> —ciq*(dads)?™* max (ha,hs)

for any algebraic number o, where c is some computable absolute constant.

The example

1 _§+l+l+1_§_+l+l+... =0
2 3 4 5 6 7 8

with ¢ = 4 shows that the case S = 0 cannot be excluded. In many instances it is
simple to check that S # 0. It may be cumbersome to give a general criterion.
The question whether S = 0 can be excluded under certain general conditions
has been the subject of conjectures of Chowla [6] and Erdos, see [10]. In this
connection we refer to Baker, Birch and Wirsing [3], Okada [11] and Tijdeman
[12]. In the former paper the theory of linear forms in logarithms has been ap-
plied to answer a question of Chowla, see Lemma 3. On combining Theorem 1
with Dirichlet’s result that L(1, x) # 0 for an arbitrary non-principal Dirichlet
character y, we immediately obtain the following:

Corollary 1.1. Let g > 2 be an integer and x a non-principal Dirichlet character
mod q. Then L(1, x) is transcendental.

In particular, if x(n) = (4) where d is the discriminant of a quadratic field and
(2) denotes the Kronecker symbol, then
x d 1
2 G
is transcendental. This is a well known fact by the class number formula for
quadratic fields. Since we do not know whether 3o, n~* is transcendental for
any odd integer k, it will be difficult to replace the denominator in (1) by the
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value at n of an arbitrary polynomial. However, by using partial fractions, we
can deal with the case that the denominator is Q(n) where Q(X) € Q[X] has
only simple rational zeros. We call the polynomial @(X) reduced if Q(X) €
Q[X] and it has only simple rational zeros which are all in the interval [—1,0).
The following consequence of Theorem 2 is an extension of Theorem 1.

Corollary 2.1. Let f : Z — Q be periodic mod q. Let Q(X) € Q[X] have simple
rational zeros. If

s=%, Q((:)

converges, then S equals a computable algebraic number or S ¢ Q In the latter
case we have

log | S—a|>—c¢0d? " hy

for any algebraic number o, where ¢ g is a computable number depending only on

f and Q.

Suppose S is algebraic. It follows from the proof of Corollary 2.1 that S € Qif f
assumes only rational values. Moreover it follows from Theorem 2 that S = 0 if
Q is reduced. We now state a similar result if f in Theorem 1 is replaced by a
polynomial. It follows from Theorem 3.

Corollary 3.1. Let P(X) € Q[X]. Let Q(X) € Q[X] have simple rational zeros. If
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converges, then S equals a computable algebraic number or S¢ Q . In the latter
case we have

log | S—~a |Z —Cp’Qd:Qha

Jfor any algebraic number o, where cp, g is a computable number depending only on
P and Q and cg a computable number depending only on Q.

Suppose S is algebraic. Then it follows from the proof of Corollary 3.1 that
S € Q if P assumes only rational values. Moreover it follows from Theorem 3
that § = 0if Q is reduced. Thus

& 1

n=o 3n+1)(3n+2)(3n + 3)

is transcendental, but not a Liouville number. Finally, we state a result in which
the f in Theorem 1 is replaced by an exponential polynomial. It follows from
Theorem 4.



Corollary 4.1. Let Pi(X),---,Pi(X) € QX],a1,---,00 € Q. Put g(X)=
Zf\:l Pr(X)af. Let Q(X) € Q[X] have simple rational zeros. If

= gn)
S =
S 0)
converges, then S is a computable algebraic number or S¢ Q. In the latter case we
have

log |S—al|> —cg,lechha

for any algebraic number o, where c; g is a computable number depending only on
g and Q, and cg a computable number depending only on Q.

Suppose S isalgebraic. Then S € Qif P1(X), -+, Po(X) € Q[X]anday,---,ap €
Q and S = 0 if Q is reduced. It therefore follows from Corollary 4.1 that the
positive number
o0 Fn

2

n=1 n2n

is transcendental in view of F, = (1/v5){(} +1v5)" — 4 —1v/5)"}. On the
other hand, it is well known that >, (F,/2") = 2. There are several results on
the arithmetic nature of sums involving Fibonacci numbers in the literature, see
[11,[4], [5] and [8], but they concern sums where F, appears in the denominator.

2. AUXILIARY RESULTS

One of the earliest resuits of Baker on linear forms in logarithms reads as fol-
lows.

Lemma 1. (Baker [2)). If ay,--,0, € Q—{0},81,---,8,€Q and A=
Bilogag + - - - + B, log o, then

A =0 or Ais transcendental.
Here and later we shall read log as the principal value of the logarithm with the
argument in (—m, 7]. Baker’s method is effective and several lower bounds for
non-zero /A have been given. We shall use an estimate due to Waldschmidt in

simplified form. For an algebraic number « with minimal polynomial over 7
given by ag Hf.): 1 (X — a;), we define the Mahler measure of a by

D
M(a) =ap[] max (1] )
j=1
and the absolute logarithmic height by

h(c) =% log M(a).

We have
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() h(aB) < h(a) + k()

and

(3) hlag + -+ an) < h(ay) + - - + h(ay) +log n,
see [13,(2.1),(2.3)].

Lemma 2. (Waldschmidt [13]). Let n > 1. Let K be a number field of degree D
over Q. Let ay,---,a, be non-zero elements of K. Let By, 01, -+ ,0s € K. Put
A= By+ Bilogay + - -+ + By log ay,. Let the real numbers Vi, - - -, V,, W satisfy

Dl'<< - <V Vuor 21,
V; > max {h(ey),| log a; | /D} for 1< j <n,
W > lrsnjagnh(ﬁj)-

If A # 0, then
log| A|> ~C(n)D"*2V; - Vo(W + log (eDV,)) log(eDV,_;)
with C(n) = 28n+512n,

The next lemma provides a possibility to exclude the case A = 0.

Lemma 3. (Baker, Birch, Wirsing [3]). Let f : Z — Q,f # 0 be periodic mod q
such that

converges. If

(i) f(r) =0 for 1 < ged (g,r) < g
and

(ii) the cyclotomic polynomial d, isirreducible over Q(f(0),f(1),---,f(g—1)),
then S # 0.

A crucial link between infinite sums and linear forms in logarithms is given by
the following lemma.

Lemma 4. Let q be a positive integer. Let ¢ denote a primitive q th root of unity
and (3 any algebraic number with | 5 |< 1, 39 # 1. Then we have, for0 <r < g

00 ﬁm lq—l . X
X ——=—=3 ¢ log (1-5¢).
qj=0

m=1 m
m=r(mod q)

Proof. Note that by Dirichlet’s convergence criterion and 3¢ # 1, we have that

& gm & (89
mzzzl m—ﬂngonq_*_)‘
m=A(mod gq)



converges for 0 < A < ¢. On the one hand, using 3¢ # 1 for 0 < j < ¢, we have

= -5 ¢ log (1 - ).
ji=0

On the other hand,
-1 g—1 -1 —1
qz qz C(/\—rli i ?_'fz qz § ﬂ_m qz C(/\ i
j=0 x=0 m=1 m =0 = m ;=
m=A(mod gq) m= A(mod q)
00 IB”’
=g ¥ —. U

m=1 m
m=r(mod gq)

In case 3 1is a ¢ th root of unity we use the following substitute for Lemma 4.

Lemma 5. Let q be a positive integer. Let c|,---,cn € C. Let ki, kp,
r,c - Im be integers with 0 <r, <k, for u=1,--- ,m If the double sum on the
left hand side converges, then

o0 m m u_ .
4 ~ u (1-¢ _f’“ log (1-¢/
@ Y= e ) log (1~ ¢})
where (,, is some primitive k,—th root of unity for u=1,--- m.

Proof. Since the double sum on the left hand side of (4) converges we have
m ___Ii _
6 X =0

We follow the arguments of Lehmer [9]. We have

nZO ,‘ZI kun+ru_#§=: C”E k n+ru
_ log (k,N) moc, log k,
-§ {an+ru W O TETE,
by (5). Note that
1 log (k,N)
Wi k) - ‘;Jlinw{,,zo i, ke )

exists. According to Theorem 1 of [9], for any 0 < r < k,

k-1 . .
ky(rk) =1~ T 7" log (1= )
J:



where ( is a primitive kth root of unity and + is Euler’s constant. Note that the
above equation is valid for 0 < r < k. We prefer to work with r in this range. We
obtain

x M _ 7 ¢y log ky
zz:,,zz: #n+r” #E;lc,;y(ru, ”)+Z k,
m moe kasl m ¢, log k
B2l R SR AR v e
p= u=1 ku 23 7

Using (5), ]'[']c —11 (1- (1) = k,, and that Z] ] log (1- (1 ) is real we obtain

k=1 o

Y Y s i & 20— g (1-¢)). O

3. THE PERIODIC CASE WITH DENOMINATOR N

Proof of Theorem 1. By applying Lemma 5 withm =k, = ¢,7, = pi, ¢, = f ()
foru=1,---,q, we obtain

00 n o g q-1 .
s=£ W8 £ LW 5 biogi -
= j=
where the algebraic number £ is given by

© = ilf(”% L= M) forj=1, g 1.

pu=1

The above expression for S is given in [3} and [9]. By Lemma 1 we have either
S =0 or § is transcendental. We apply Lemma 2 to the linear form rep-
resentation for S.Wetaken =g — 1,05 = 1 — C{l'for 1<j<g—-1;6)=—aand
B for 1<j<g-1 as in (6). Then D < gqdsd, and for 1<j<g-1,
h(aj) < log 2, V; = 4. Further, by (2) and (3),

q-1 .

h(G;) < log g+ 21 {h(f (W) + hlg) + h(1 — ¢7*)}
p=
<log g+hsr+q log g+ ¢ log 2.

Thus W < max (h,, hy + 3qlog gq). Hence we obtain

log|S—al|> —28‘”Slqz"(4qdadf)q+2{max (hayhs + 3q loggq)
+ log (d4eqd.ds)}log(deqd dy)
> —c9939(dod;)? ™ max(hg, hy). O
By combining Theorem 1 and Lemma 3, the following result is immediate.

Corollary 1.2. Letf : Z — Q with f # 0be a periodic function mod q. Suppose f
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satisfies conditions (i) and (ii) of Lemma 3 and ¥, , ﬁ-l is convergent. Then
S J—l is transcendental.

Theorem 3 of [3] states that if S = 0 and (7) holds, then f is an odd function. It
follows that in Corollary 1.2 we can replace condition (i) by (if)* : f is not odd.
Theorem 2 of [3] provides a simple characterisation of all odd functions
f:Z — Q, periodic mod ¢, for which S = 0.

Corollary 2.1 is a consequence of the following result.

Theorem 2. Letf : Z — Q be periodic mod q. Let Q(X) € Q[X] be reduced. If

convefges, then S = 0 or S¢ Q. Further, in the latter case we have
log| S —a|>—dd%h,
Jfor any algebraic number o. where c} , is a computable number depending only on
7 dYQ 7.0
and Q.

Proof. We may write

. O(X) = ao [T (kX +r,) with ap € Q,k,,r, € Z,
p=1

ged(ky,r,) =1,0<r, <k, forl <u<m
and

1 m

—Q_(—X’_): k—;;%—;«withc,,é@forlﬁuﬁm.
p=1 fu H

Then

cuQ(X)

1=
:L:‘l k”X-’rru

from which it follows that E -1 k = 0, by comparing the coefficients of X7 ~!
on both the sides. Thus

L= S &) flg ) il
=X <n)‘k§0§og<kq+x) pIAS ;;quw
ij ZZ: Zz:lkkq-l-k )\+ru

Each of the inner infinite sums is convergent since } " = 0. Now we have

by Lemma 5,

ulk
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m ku-—1

S = Zf(A)E E — ¢ty log(1 - (1)

p=1 j=
where (,, is a primitive k,g-th root of unity for 1 < u < m. Hence
k-1

$= % 5 fulostl =)

where the algebraic number S, ; is given by
= C}t il A —jk A+r,)
=2 S - )-
kug x=o
It follows from Lemma 1 that S =0 or S¢ Q. Asin the proof of Theorem 1, we
find by applying Lemma 2, that

|S—a|>exp(—di®h,). OO

Proof of Corollary 2.1. Let ¢/ ¢1,¢r,02, and ¢r,03 be computable numbers de-
pending only on f and Q. Without loss of generality we may assume that

® Q(X)—aon (kX +5,) with ag € Q, k,,s, € Z,
Pete

ged(ky,sy) =1for 1 < p<m.
Put

1 = Cu
Q(X) p=1 k#X‘l"Su

with ¢, € Qfor 1 < p < m. Then

x fln) &) flkg+N) D 1
S N A —_
2 00~ & o R - SO, g
q—l 00
=A=0 {3 E kkq+k At
Choose r, such that 0 < r, < k,,r, = s,(mod k,q). Put
A 0
Zof( )kZOMZI z kq+k T
Then
O  s-s=SrmEs
—)\=0 u=1 k k,,kq+k,1/\+r,,

where the summation Z,(c’\’“ ) extends over | ry —su | /kuq terms. Hence S — S*
is an algebraic number, 3 say, of degree at most dy and absolute logarithmic
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height at most ¢ o ;. We apply Theorem 2 to $* to find that either S* is 0 or S* is
transcendental. Hence by (9), we see that either S is a computable algebraic
number or § is transcendental. In the latter case, by (9) and Theorem 2, we see
by (3) that
|S—a|=|S-8"+S8"—a|=|S"-a+3]|
> exp(—d; %} ha - p)
> exp(—dd %’he). O

5. THE CASE OF RATIONAL FUNCTIONS
Corollary 3.1is a consequence of the following result. Let @(X) be given by (7).
Weputkg =30, k.

Theorem 3. Let P(X) € Q|X]. Let Q(X) € Q[X] be reduced. If

& Pn)
S=2 O

converges, then S = Qor S¢ Q Further, we have

v

log | S — a |> cppdret3n,

for every algebraic number o where cp g is a computable number depending only
@
on Pand Q.

Proof. Since Y, g%’% converges, we may write
PX) _ 5
ox) kX + ry

p=1

withc, €eQfor 1 <p<m

such that 37, £ = 0. We have, by Lemma 5,

Lk, ™
00 o m k,—1
:ngo SE ; g Zl ﬁﬁ?a_uzl 12 ﬁujl‘)g(l _CJ)

where
C —ir
Buj = k—’;(l =¢.7™).

The above expression for S is given in Lehmer [9]. By Lemma 1, we see that
S = 0 or S is transcendental. The number of logarithms in the linear form rep-
resentation of S is at most ky. Now we apply Lemma 2 as in the proof of
Theorem 2 to get the approximation measure for S. [

Proof of Corollary 3.1. Let Q(X) be given by (8). We put
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PX) = Cu
—_ = <upu<L
o) ZlkX+s,i withc, € Qfor 1 < p<m.

Then choosing r,, such that r, = s,(mod k,) and 0 < r, < k,, we get

m (1)
2=: z,,: kun + r,
where the summation 3" extends over | r, — s, | /k, values of n. Now we
apply Theorem 3 to

s=% 5

n=0p=1 k#n+r#

Then S* = 0 or S*¢ Q and in the latter case
log | $* — a|> —cpod¥eth,

for any algebraic number o where cp g and the subsequent cp g are comput-
able numbers depending only on P and Q. On the other hand, S — S* is an al-
gebraic number of degree and absolute logarithmic height bounded by cp g 1.
Now the result follows as in the proof of Corollary 2.1.

6. THE CASE OF EXPONENTIAL POLYNOMIALS

Corollary 4.1 is a consequence of the following result. Let Q be given by (7) and
we define kg as in section 5.

Theorem 4. Let Py(X),---,Py(X) € Q[X] and a1, ---,0¢ € Q. Put g(X) =
i, Py(X)af. Let Q(X) € Q[X] be reduced. If

S ig(n

n=90
converges, then S = 0 or S¢ Q. Further we have
log | S —a|> —cgpd*e3n,
Sor any algebraic number a where cg g is a computable number depending only on g
and Q.
Proof. We may assume without loss of generality that «,’s are distinct. Let
Q(X) be given by (7). For 1 < A < ¢, we put

Pi(X)
00X)

with P}(X) € Q[X],cr, € Qfor 1 <y < m. Then

€
=R+ E k Xfliru

Jas.

_ g _ & & o
_ngo Q(”)_ngo /\gl PA(n * z k + Ty
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Let U be the set of A with 1 <A< ¢ such that P} #0 and |a, |> 1.
Let{Ar,---, A} C U be the set of all j such that

loy | = mf.x{la,\| : Py #0} =: 4 and
deg P; = max{degP,: |a)|= A4} =:B.

Let ay, be the leading coefficient of P} for 1 < A < £. Then

é (Px(n +Z
A=l

!
”.Mh

B _n B 4n
kon+r, n+ru J an a>‘j+0(n 4%)

as n — oo. Since Q((")) — 0asn — oo, we have
s
>, a0, =o0(4") as n — oco.
j=1

Let
+1 +1_
ayoy +oo+ aon T =gt

a/\la)r‘l+s + 4 a/\sa)r‘ls+s=en+s

Then €, ; = 0(A4"*") as n — oo and by Cramer’s rule

1 €nt1 1
Q) oo €y Ll Q)
-1 -1
1 aj; coe Ens ae. QF
ay, =
J n+1
) 1 1 1
[25¥ a,\]. Q)
s—1 s—1 s—1
aAl . a}\ aA

The determinant in the numerator is bounded from above by

8]
lrgax | €nsi | Carrimsan,

where CQ(R,...,% is a computable number depending only on a, - - -, . The
determinant in the denominator is a van der Monde determinant whose abso-
lute value is bounded from below by a positive number Cafl - a, depending
only on ay,,- -+, a,. We have | oy, [7""!'= 47"~ < 1. Thus

=o(4%) asn — o0

which implies that a), = 0for 1 < j < 5. Thus Py = 0 for every A with | oy |> 1.
It follows that
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1) £ 3 Piaf

n=0A=1

is absolutely convergent. We write

t

PiX) =3 be(X +1)-- (X + k).

Thus
[ 4 £ 15\
(1) X X Pimay=3 X kZ (n+1)--(n+kay.
n=0Xx=1 A=1k=1 n=0
Since
o0 00 o xk
X 41+l = (3 x50, = =il

represents an algebraic number when | a) |< 1, we obtain from (11) that (10) is
an algebraic number ¢. Thus we conclude that

v £ 9 m Cx #a;
+ BT
n2=:0 Az=:1 };1 kun+r,
It follows that |a A} < 1 when ¢, , # 0 for some u. For A with o, # 1 we choose
B, such that ,BA" = a). By Lemma 4 we get, for such },

£ owed _Soow R B
- r
n=0pu=1 kﬂn+ru n=1 ﬂ)\ly‘,u n=1 h
n=rp(modk)

__ ow G 10g(1 - BruCh )

i1 kuBy, /=0
m k,—1

= E Z Bjaulog(l _ﬁ/\,#ci“)
p=1 j=0

with §;,, = ﬁ,\ “C k”“ where (i, is a primitive k,-th root of unity. If
ay =1, we apply Lemma 5 to obtain

m k,—1

53wl _ & 5 Biaulos(l —C4,)

n=0p= lkun+ru p=1 j=

where 3;, Ay = (exu/ku)(1 — ¢’ "‘) Thus S — ¢ can be written as a linear form in
atmost Y.i_, " pt ku = lka logarithms of algebraic numbers with algebraic
coefficients. By Lemma 1 we see that S = 0 or S¢ Q. We apply Lemma 2 as
earlier to obtain the approximation measure for S. [

Proof of Corollary 4.1. The proof is similar to the proof of Corollaries 2.1
and3.l. O
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