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ABSTRACT 

We show that it follows from results on linear forms in logarithms of algebraic numbers that num- 
bers such as 

m x(n) 
n!o (3n+ 1)(3nY2)(3n+3) #?I 7’ “El 2 

where x is any non-principal Dirichlet character and (F,),wS0 the Fibonacci sequence, are trans- 
cendental. 

1. INTRODUCTION 

In the mathematical literature the transcendency of infinite sums like 

O” x(n) 
g (3n+1)(3n:2)(3n+3)’ ngl -7’ f! -% n=l I’ 

where x is a non-principal Dirichlet character and (F,),CC=s the Fibonacci se- 
quence, has received little attention. In this paper, we show that these numbers 
are transcendental and we give approximation measures for them. 

By a computable number, we mean a number which can be explicitly de- 
termined as a function of its defining parameters. The proofs of our results de- 
pend on Baker’s theory on linear forms in logarithms. By this approach most 
results say that the considered infinite sum has either a computable algebraic 
value (which is often 0 or some rational number) or is transcendental. In prac- 
tice, it will be often easy to exclude the former option. We write E for the set of 
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integers. Further we denote by Q the field of rational numbers and by a the 
field of algebraic numbers. For an algebraic number o we denote the degree 

[Q(Q) : Ql by 4 and the absolute logarithmic height (cf. Section 2) by h, 
or h(a). For a function f : Z -+ a which is periodic mod q we denote 

P(f(O)7f(l)7... ,f(q - 1)) : Cl!] by df and cy:,’ h(f(j)) by hp At several 
places in the paper the rearrangement of terms in the infinite series requires 
justification which is left to the reader. We begin with the statement of Theorem 
1 which deals with the case when the denominator is 12. This will be followed by 
a corollary and corollaries of Theorems 2-4. We refer to sections 4-6 for the 
full statements of Theorems 2-4. 

Theorem 1. Let f : 22 + a be periodic mod q and such that 

(1) ,=g-f(n) 
d n 

converges. Then S = 0 or S$ a. In the latter case we have 

log 1 S - cx I> -c4q3q(d,df)q+3 max (h,, h,-) 

for any algebraic number a, where c is some computable absolute constant. 

The example 

with q = 4 shows that the case S = 0 cannot be excluded. In many instances it is 
simple to check that S # 0. It may be cumbersome to give a general criterion. 
The question whether S = 0 can be excluded under certain general conditions 
has been the subject of conjectures of Chowla [6] and Erdos, see [lo]. In this 
connection we refer to Baker, Birch and Wirsing [3], Okada [ll] and Tijdeman 
[12]. In the former paper the theory of linear forms in logarithms has been ap- 
plied to answer a question of Chowla, see Lemma 3. On combining Theorem 1 
with Dirichlet’s result that L( 1, x) # 0 for an arbitrary non-principal Dirichlet 
character x, we immediately obtain the following: 

Corollary 1.1. Let q 2 2 be an integer and x a non-principal Dirichlet character 
mod q. Then L( 1, x) is transcendental. 

In particular, if x(n) = (i) w h ere d is the discriminant of a quadratic field and 
(i) denotes the Kronecker symbol, then 

is transcendental. This is a well known fact by the class number formula for 
quadratic fields. Since we do not know whether C,” 1 nPk is transcendental for 
any odd integer k, it will be difficult to replace the denominator in (1) by the 
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value at n of an arbitrary polynomial. However, by using partial fractions, we 
can deal with the case that the denominator is Q(n) where Q(X) E C&X] has 
only simple rational zeros. We call the polynomial Q(X) reduced if Q(X) E 
CJ[X] and it has only simple rational zeros which are all in the interval [- 1,O). 
The following consequence of Theorem 2 is an extension of Theorem 1. 

Corollary 2.1. Let f : Z + ;ai be periodic mod q. Let Q(X) E Q[X] have simple 

rational zeros. If 

converges, then S equals a computable algebraic number or S$a In the latter 

case we have 

log ] S - (Y 12 -cf,Qdz+3h, 

for any algebraic number cy, where cf)Q is a computable number depending only on 

f and Q. 

Suppose S is algebraic. It follows from the proof of Corollary 2.1 that S E CJ iff 
assumes only rational values. Moreover it follows from Theorem 2 that S = 0 if 
Q is reduced. We now state a similar result if f in Theorem 1 is replaced by a 
polynomial. It follows from Theorem 3. 

Corollary 3.1. Let P(X) E a[X]. Let Q(X) E C&Y] have simple rationalzeros. Zf 

m p(n) 
’ %, Q(n) 

converges, then S equals a computable algebraic number or S$ a. In the latter 

case we have 

log ] S - cx 1.2 -cp,Qd,ah, 

for any algebraic number a; where cp,Q is a computable number depending only on 

P and Q and c~ a computable number depending only on Q. 

Suppose S is algebraic. Then it follows from the proof of Corollary 3.1 that 
S E Q if P assumes only rational values. Moreover it follows from Theorem 3 
that S = 0 if Q is reduced. Thus 

is transcendental, but not a Liouville number. Finally, we state a result in which 
the f in Theorem 1 is replaced by an exponential polynomial. It follows from 
Theorem 4. 
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Corollary 4.1. Let PI(X),...,P~(X) E 72&Y], ckq;.., Cke E abm Put g(X) = 
C”,= 1 P~(X)crf. Let Q(X) E O[X] have simpIe rational zeros. Zf 

S=n$O $+ n 

converges, then S is a computable algebraic number or S$ a. In the latter case we 
have 

log ] S - (Y I> -cg,ed,e’ah, 

for any algebraic number ol where Cg,Q is a computable number depending only on 
g and Q, and cp a computable number depending only on Q. 

Suppose S is algebraic.Then S E Qif PI (X), . . . , Pe(X) E O[X] and cq , . . . , ae E 

Q and S = 0 if Q is reduced. It therefore follows from Corollary 4.1 that the 
positive number 

is transcendental in view of F,, = (l/d){ (1 + $6)” - (i - id)“}. On the 
other hand, it is well known that C,“= 1 (F,,/2”) = 2. There are several results on 
the arithmetic nature of sums involving Fibonacci numbers in the literature, see 
[ 1],[4], [5] and [8], but they concern sums where F, appears in the denominator. 

2. AUXILIARY RESULTS 

One of the earliest results of Baker on linear forms in logarithms reads as fol- 
lows. 

Lemma 1. (Baker [2]). Zf al,. . . ,a, Ea-{O},p1;..,/3~ l a and A= 
PI log a1 + . . . + ,B,, log a,, then 

A = 0 or A is transcendental. 

Here and later we shall read log as the principal value of the logarithm with the 
argument in (-X, ~1. Baker’s method is effective and several lower bounds for 
non-zero A have been given. We shall use an estimate due to Waldschmidt in 
simplified form. For an algebraic number Q with minimal polynomial over Z 
given by a0 nyz, (X - q), we define the Mahler measure of a by 

M(a) =aoi)I max (l,( q 1) 
j=l 

and the absolute logarithmic height by 

h(cr) =; log M(a). 

We have 
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(2) h(d) I h(a) + h(P) 

and 

(3) h(Cq +. . . + a,) I h(o,) + . . . + h(a,) + log n, 

see [13,(2.1),(2.3)]. 

Lemma 2. (Waldschmidt [13]). Let n > 1. Let K be a numberfield of degree D 

over Q Let al,..., CY, be non-zero elements of K. Let p0, /?I, . . - , &, E K. Put 

A = PO + p1 logo1 + . . . + pn log a,. Let the real numbers VI,. . . , V,,, W satisfy 

D-’ 1. VI 5 ... 5 V,, V,,_l > 1, 

f’j 2 max {h(aj), ( log oj 1 /D} for 1 5 j 5 n, 

IfA#O, then 

log 1 A I> -C(n)D”+2Vl . . . Vn( W + log (eDVn)) log(eDV,,-1) 

with C(n) = 28n+51n2n. 

The next lemma provides a possibility to exclude the case A = 0. 

Lemma 3. (Baker, Birch, Wirsing [3]). Let f : if + @f # 0 be periodic mod q 

such that 

converges. If 

(i) f(r) = 0 for 1 < gcd (q, r) < q 

and 

(ii) thecyclotomicpolynomial~Pqisirreducibleover&P(f(O),f(l),~~~,f(q-1)), 

then S # 0. 

A crucial link between infinite sums and linear forms in logarithms is given by 
the following lemma. 

Lemma 4. Let q be a positive integer. Let C denote a primitive q th root of unity 

and p any algebraic number with I p I< l,pq # 1. Then we have, for 0 < r 5 q 

z E+ 
m=l 

_;&; c-j’ log (1 - PQ,. 

msr(mod q) 

Proof. Note that by Dirichlet’s convergence criterion and pq # 1, we have that 
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converges for 0 < X 5 q. On the one hand, using ,B$ # 1 for 0 5 j < q, we have 

q-l q-l 

q-l 
= -jg- c-j’ log (1 - ppj>. 

On the other hand, 

m=X(mod q) 

=4 

m=r(mod q) 

m=X(mod q) 

In case ,B is a q th root of unity we use the following substitute for Lemma 4. 

Lemma 5. Let q be a positive integer. Let ~1,. . . , c,,, E C. Let kl,. . . ,k,, 
rl,‘.. , r,,, be integers with 0 < rP I: k, for p = 1, e ’ . , m Zf the double sum on the 
left hand side converges, then 

where cP is some primitive k, - th root of unity for p = 1, . . . , m. 

Proof. Since the double sum on the left hand side of (4) converges we have 

(5) E $0. 
p=l c1 

We follow the arguments of Lehmer [9]. We have 

by (5). Note that 

exists. According to Theorem 1 of [9], for any 0 5 r < k, 

k-l 

k$r,k) = y - C <-” log (1 - e) 
j=l 



where 5 is a primitive kth root of unity and y is Euler’s constant. Note that the 
above equation is valid for 0 < r 5 k. We prefer to work with r in this range. We 
obtain 

3. THE PERIODIC CASE WITH DENOMINATOR N 

Proof of Theorem 1. By applying Lemma 5 with m = k, = q, rP = p, c,, =f(p) 

forp= l,...,q,weobtain 

s = E f(n) = E 5 A& = g pilog@ _ p) 
n=l n ?t=Op=l V+P j=l 

where the algebraic number & is given by 

(6) pi = E1 f(P) -(l-&+) forj= l,...,q- 1. 
u=l 4 

The above expression for S is given in [3] and [9]. By Lemma 1 we have either 
S = 0 or S is transcendental. We apply Lemma 2 to the linear form rep- 
resentationforS.Wetaken=q-l,ori=l-Ci,forlIjIq-l;po=-aand 
& for llj<q-1 as in (6). Then DLqdfd, and for l<jLq-1, 
h(aj) 5 log 2, 5 = 4. Further, by (2) and (3), 

q-1 
h(Pj) 5 log 4 + X, {h(f (P)) + h(q) + h(l - CL’“)) 

Ilog q+hy+q log q+q log 2. 

Thus W 5 max (II,, hf + 3q log q). Hence we obtain 

logIS-a[>-2 8q+5’q2q(4qd,df)q+2{max (h,,h~ + 3q logq) 

+ log (4eqd=df)) log(deqd,df) 

> -cqq3q(d,df)q+3 max(h,, /zf). Cl 

By combining Theorem 1 and Lemma 3, the following result is immediate. 

Corollary 1.2. Letf : Z --$ a with f # 0 beaperiodicfunction mod q. Supposef 
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satisfies conditions (i) and (ii) of Lemma 3 and C,“= 1 f$ is convergent. Then 

zxp,,$ is transcendental. 

Theorem 3 of [3] states that if S = 0 and (i) holds, then f is an odd function. It 
follows that in Corollary 1.2 we can replace condition (ii) by (ii)* : f is not odd. 
Theorem 2 of [3] provides a simple characterisation of all odd functions 
f : Z + a, periodic mod q, for which S = 0. 

4. THE GENERAL PERIODIC CASE 

Corollary 2.1 is a consequence of the following result. 

Theorem 2. Letf : Z -+ a be periodic mod q. Let Q(X) E U.&X] be reduced. If 

- 
converges, then S = 0 or S$ Q Further, in the latter case we have 

log 1 S - cx 12 -dziQh,, 

for any algebraic number Q where clVe is a computable number depending only on 
f and Q. 

Proof. We may write 

m 

(7) 
Q(X) = a0 I-I (k,X + rP) with a0 E Q, k,, rP E Z, 

p=l 

and 

gcd(k,, r,J = 1,0 < rfi < k, for 1 5 p 5 m 

with cP E Q for 1 2 p < m. 

Then 

1= 5 +Q(W 

p=l k,X+r, 

from which it follows that CF= 1 4 = 0, by comparing the coefficients of Xm- ’ k 
on both the sides. Thus 

IL 

Each of the inner infinite sums is convergent since Cr= 1 4 = 0. Now we have 
by Lemma 5, 
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where cp is a primitive k,q-th root of unity for 1 5 p 5 m. Hence 

m k,-1 
s = C C Pp,jlOfdl - Ci,> 

p=l j=l 

where the algebraic number pF,j is given by 

It follows from Lemma 1 that S = 0 or S $ a. As in the proof of Theorem 1, we 
find by applying Lemma 2, that 

1 S - Q 12 exp(-d$Qh,). 0 

Proof of COrOhry 2.1. Let cf,Q,l , cf,Q,Z, and cf,Q,3 be computable numbers de- 
pending only onf and Q. Without loss of generality we may assume that 

m 

(8) 
Q(X) = a~ n (k,X + s,J with as E Q, k,, sp E H, 

p=l 

gcd(k,,s,) = 1 for 1 < p 5 m. 

Put 

1 

m=5 
cp 

M=i kJ+s, 

with cc1 E &p for 1 5 1-15 m. Then 

k=Op=l k,kq+kJ+s,’ 

Choose r,, such that 0 < rp 5 k,, rp E s,(mod k,q). Put 

Then 

(9) 
q-1 m (W 

S - s’ = &f(4El F 
c/l 

k,kq + k,X + rp 

where the summation xi;““’ extends over 1 rp - s,, 1 /k,q terms. Hence S - S* 
is an algebraic number, ,!? say, of degree at most df and absolute logarithmic 
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height at most cf,Q,I . We apply Theorem 2 to S* to find that either S* is 0 or S* is 
transcendental. Hence by (9), we see that either S is a computable algebraic 
number or S is transcendental. In the latter case, by (9) and Theorem 2, we see 
by (3) that 

)S-aI=(S-S*+S*-a(=IS*-a+pI 

2 exp(-dz!,h,-p) 

> exp(-&~Q~3h,J. Cl 

5. THE CASE OF RATIONAL FUNCTIONS 

Corollary 3.1 is a consequence of the following result. Let Q(X) be given by (7). 
We put kQ = CT= 1 k,. 

Theorem 3. Let P(X) E a[X]. Let Q(X) E CJ[X] be reduced. If 

converges, then S = 0 or S$ a. Further, we have 

log ) S - (Y 12 cp,QdtQ+3hol 

for every algebraic number a where cp,Q is a computable number depending only 

on P and Q. 

Proof. Since C,“=s # converges, we may write 

P(X) M 
ecx, = ,gl kp?t rcl 

with c,, E 0 for 1 5 p I m 

such that C,“= i % = 0. We have, by Lem’ma 5, 
c 

where 

The above expression for S is given in Lehmer [9]. By Lemma 1, we see that 
S = 0 or S is transcendental. The number of logarithms in the linear form rep- 
resentation of S is at most kQ. Now we apply Lemma 2 as in the proof of 
Theorem 2 to get the approximation measure for S. 0 

Proof of Corollary 3.1. Let Q(X) be given by (8). We put 
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P(X) m CP 
e(x)== /‘xl k,X+s, 

with cfi E a for 1 5 p 5 m. 

Then choosing TV such that rp G s,(mod k,) and 0 < r,, 5 k,, we get 

where the summation Et’ extends over 1 rp - sp 1 /k, values of n. Now we 
apply Theorem 3 to 

Then S* = 0 or S* $ a and in the latter case 

log 1 S’ - a I> -Cp,Qdakp+%, 

for any algebraic number CY where cp,Q and the subsequent cp,QJ are comput- 
able numbers depending only on P and Q. On the other hand, S - S* is an al- 
gebraic number of degree and absolute logarithmic height bounded by cp,QJ. 

Now the result follows as in the proof of Corollary 2.1. 

6. THE CASE OF EXPONENTIAL POLYNOMIALS 

Corollary 4.1 is a consequence of the following result. Let Q be given by (7) and 
we define kQ as in section 5. 

Theorem 4. Let PI(X),.. . , Pe(X) E a[X] and ~1,. . . , q E a. Put g(X) = 
C:=, Px(X)af. Let Q(X) E O[X] be reduced. If 

converges, then S = 0 or S$ a Further we have 

log 1 s - a 12 -cg,Qd;ekQ+3ha 

for any algebraic number cr where c&Q is a computable number depending onIy on g 
and Q. 

Proof. We may assume without loss of generality that (YA’S are distinct. Let 
Q(X) be given by (7). For 1 5 X 5 C, we put 

with Pi(X) E a[X], CA+ E a for 1 5 p 5 m. Then 
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Let U be the set of X with 15 X 5 C such that Pi #O and 1 (YA I> 1. 
Let{&, . . . , A,} C U be the set of all j such that 

I~jI=mfxIlQAI :PA #O} =:A and 

deg Pj = max{degPx : 1 ax I= A} =: B. 

Let a~+ be the leading coefficient of Pi for 1 5 X 5 e. Then 

asn+oo.Since#+Oasn-+co,wehave 

s 

C a~,aJ, = o(A”) as n + 00. 
j=l 

Let 

Then E, + i = o(A*+‘) as n --+ 00 and by Cramer’s rule 

1 
ax, = - iZfl 

cy% 

1 . . . En+1 ..’ 1 
CYX, . . . %+2 *.. ax, 

S-l CYA, s-l s-l . . . (YX/ ... “A, 

The determinant in the numerator is bounded from above by 

S-l ax, S-l . . . Gz+s ... Qx s 

where C~$,,, is a computable number depending only on ax,, . . . , a~~. The 
determinant in the denominator is a van der Monde determinant whose abso- 
lute value is bounded from below by a positive number C$~,...,~,, depending 
onlyonax,,... , cq,. We have I crxj Ien-l= A-“-’ < 1. Thus 

uxj = o(F) as n -i cm 

which implies that ax, = 0 for 1 5 j 5 s. Thus P; = 0 for every A with I cry I> 1. 
It follows that 
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is absolutely convergent. We write 

P;(X) = 2 b/&V + 1). . . (X+ k). 
k=l 

Thus 

(11) 5 5 Pi(n = b 2 bkngo (n + 1). . . (n + k)a,“. 
n=O x=1 X=1 k=l 

Since 

E (n + 1). . . (n + k)a; = (ngo xnfk)fiar = (&):I,, 
n=O 

represents an algebraic number when 1 a~, )< 1, we obtain from (11) that (10) is 
an algebraic number c. Thus we conclude that 

It follows that laxI 5 1 when Q, # 0 for some p. For X with CQ # 1 we choose 
,6x,, such that ,!I$ = a,+ By Lemma 4 we get, for such A, 

,,go $, k;‘: P 

m S-1 

with fij,x,p = - p /? i,F<,‘irP where Ck,, is a primitive k,-th root of unity. If 
ox = 1, we apply@Lemma 5 to obtain 

where pj,x,p = (q,Jk,) (1 - <CT“). Thus S - s can be written as a linear form in 
at most Cl= 1 c,“=, kp = ekQ logarithms of algebraic numbers with algebraic 
coefficients. By Lemma 1 we see that S = 0 or S$ a. We apply Lemma 2 as 
earlier to obtain the approximation measure for S. Cl 

Proof of Corollary 4.1. The proof is similar to the proof of Corollaries 2.1 
and 3.1. Cl 
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