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Abstract

A method for solving enumeration problems is suggested. We consider the enumeration prob-
lems which are reducible to estimation of the sums of type T (X; f) =

∑
A f(A) where f is so

called boundary functional (BF) on X , and the summation is over all subsets of X (or over some
special subfamily of 2X ). An evolution of the n-cube, the percolation problem, the problem of
computation of the matchings number and the independent sets number, the monotone Boolean
functions number, the binary codes number and so on are among such problems. We show how
to obtain asymptotics for T (X; f). In conclusion we give an example of application of the BF
method to �nding the number of independent sets in the bipartite graphs, induced by neighboring
levels of the n-cube. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Main notions results and examples

We consider the enumeration problems which are reducible to estimate sums of
the type T (X; f) =

∑
A f(A) where f is the so-called boundary functional on X and

the summation is over all subsets of X or over some subfamily of 2X . An evolution
of the n-cube [1], the percolation problem [2], the problem of computation of the
matchings number and the independent sets number, the monotone Boolean functions
number, the binary codes number and so on (see [4,5] and examples below) are among
such problems. The goal of the paper is to obtain asymptotics for T (X; f). In conclu-
sion, we give an example of the application of the BF method in �nding the number
of independent sets in special bipartite graphs.
Let X be a �nite set. A mapping f : 2X → (0; 1], is called a boundary functional

(abbreviated, BF) if the following properties hold:
(i) f(A) = 1 if and only if A=?,
(ii) f(A ∪ B)¿f(A)f(B),
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(iii) f(A ∪ B)¿f(A)f(B)⇒ ∃u ∈ A ∃v ∈ B f({u; v})¿f({u})f({v}).

Example 1. Let G = (X; Y ;E) be a bipartite graph without isolated vertices in the
part X . A boundary #(A) of A⊂X is de�ned by #(A) = {v ∈ Y :∃u ∈ A(u; v) ∈ E}.
Then f such that f(A)=2−|#(A)| is a BF, and 2|X |·T (X; f) is the number of independent
sets of G (see [4], and also Lemma 3 below).

Example 2. Let Bn be the n-cube and r the Hamming distance. An edge boundary
e(A) of A⊆Bn is de�ned as follows:

e(A) = {(u; v) ∈ Bn: v ∈ A; u ∈ Bn \ A; r(u; v) = 1}:
Then f such that f(A)=p|e(A)| with 0¡p¡ 1 is a boundary functional, and

∑
A f(A)

where the summation is over all connected sets A⊆Bn is the expectation of the number
of components in a random subgraph of the n-cube under random choice of edges with
the probability p (see [1]).

Example 3. Let P be the plane integer grid and A some set of vertices of P. Denote
by g(A) the set {v ∈ P: r(v; A) = 1}. For any 0¡p¡ 1, a mapping f s.t. f(A) =
p|A|(1 − p)|g(A)| for each A⊆P is a BF. Note that 1 −∑

f(A), where summation is
over all connected sets A with (0; 0) ∈ A, is the probability of the percolation in the
Boolean model (see [2]).

Example 4. Let Bn be the n-cube and Bnk = {(a1; : : : ; an) ∈ Bn: a1 + · · · + an = k}
the kth level of Bn. Given A⊆Bn, the set Sk(A) = {v ∈ Bnk : ∃u ∈ A u¡v or ∃u ∈
A v6u} will be called a k-shadow of A. We consider Bn as a poset with the usual
order: (a1; : : : ; an)6(b1; : : : ; bn) i� ai6bi; for i = 1; : : : ; n. A set A⊆Bn is called an
antichain if u 
 v and v 
 u (i.e. u and v are incomparable) for any two distinct
elements u and v from A. For B ∈ Bnk let Q−

K (B) (Q
+
K (B)) be the number of antichains

A⊆⋃
j6k B

n
k (A⊆

⋃
j¿k B

n
k) with Sk(A)=B. Let n be even and k=n=2. Then f

−
k−1(C)=

Q−
k−1(C)2

−|Sk (C)| andf+k+1(C) = Q
+
k+1(C)2

−|Sk (C)| are BFs and

2(
n
k )exp

{ ∑
A⊆ Bnk−1 ; B⊆ Bnk+1 ; r(A;B)¿2

f−
k−1(A)f

+
k+1(B)

}

is the number of monotone Boolean functions depending on n variables (see [4,5]).

The main idea of evaluating sums of the type T (X; f) is to reduce the problem to the
computation of some simpler sums of the same type with summation over the family of
connected sets A⊆X . For this purpose, we �rst introduce a notion of connectivity. Then
we obtain some approximate formulas for T (X; f) through the sums over connected
sets. These approximate formulas turn out to give asymptotics if some convergency
condition holds. The convergency condition consists of the assertion that the sums over
the subfamily of connected sets of big size is small enough. This condition is proved
only for special type of BFs. At the same time, the above-mentioned approximate
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formulas for T (X; f) are valid for arbitrary BF f. The proof of the convergency
condition is the hardest part of the method. It requires upper bounds for the number
of the sets with a given size of the boundary. These upper bounds are obtained with
the help of good coding connected sets (see [3]) and using assertions of the type of
the well-known Kruskal–Katona theorem.
Now we introduce some relevant notions. A pair I = (X; f), where X is a �nite set

and f is a BF of the type 2X → (0; 1], is called a functional pair. First, we introduce
a notion of connectivity. We say that elements u and v of X are adjacent (denotation
u]v) i� f({u; v})¿f({u})f({v}). Otherwise, i.e. if f({u; v}) = f({u})f({v}), we
say that u and v are nonadjacent. For an arbitrary functional pair I =(X; f), we de�ne
graph G = (V; E) of a functional pair I by putting V = X and E = {(u; v): u]v}. We
say that a set A is connected if the subgraph HG(I)(A) of the graph G(I) induced by
A is connected. We say that B⊆A is a component of A (denotation B ` A), if B is
connected and whereas every C, such that B⊂C ⊆A, is not connected. Let A= A(I)
be the family of all connected subsets A⊆X . Note that from the de�nition it follows
that

f(A) =
∏
B`A

f(B):

we denote

Ak = {A ∈ A: |A|= k}; Ak̂ =
⋃
i6k

Ai ; A �k = A \ Ak̂ ;

and for any B⊆A and a positive integer � we put

��(B) =
∑
A∈B

f�(A):

Our purpose is to represent T (X; f) by means of sums of type ��(B).
Given B⊆A, we denote by C(B) the family of all A⊆X representable as a union

of components belonging to B, that is

C(B) = {A⊆X : all the components of A are in B}:

We put

S(B) =
∑

A∈C(B)
f(A):

Immediately from the de�nitions, it follows that for any B⊆A(I)

S(B)6T (I) = S(A(I))6S(B)S(A(I)\B): (1)

Lemma 1. For any B⊆A(I)

S(B)6 exp{�1(B)}: (2)
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Proof. Using the inequality ln(1 + x)6x and the denotation 2B for the family of all
subsets of B, we have

S(B) =
∑

A∈C(B)

∏
D`A

f(D)6
∑
F∈2B

∏
D∈F

f(D)

=
∏
A∈B
(1 + f(A)) = exp

{∑
A∈B

ln(1 + f(A))

}
6 exp{�1(B)};

which proves the Lemma.

De�nition. A functional pair I = (X; f) is called (�; �; q; c)-ordinary if the following
properties hold:
(1) f({v})62−�,
(2) |X |62(�+1)�−log22 �,
(3) f(A ∪ {v})6f(A)f({v})2|A|q,
(4) |{A⊆X : |A|= m and f(A ∪ {v})¿f(A)f({v})}|6�cm.
A sequence of functional pairs {In = (Xn; fn)} is called �-convergent, if

lim
n→∞

∑
A∈A ��(In)

fn(A) = 0: (3)

Lemma 2. Let {In=(Xn; fn)} be a sequence of �-convergent functional pairs. Then 1

T (In) ∼ S(A�̂(In)) (4)

as n→ ∞.

Proof. The assertion follows from (1) to (3) with B = A�̂(I).

Proofs of the following two theorems are contained in [4]. We prove the �rst one
here because the proof is short and gives a notion about the used technique.

Theorem 1. Let a sequence of (1; �n; q; c)-ordinary pairs {In=(Xn; fn)} be 1-convergent
and limn→∞ �n =∞. Then;

T (In) ∼ exp{�1(A1(In))}= exp




∑
B∈A1(In)

fn(B)


 (5)

as n→ ∞.

Proof. Upper bound follows from (2) and (4).
Lower bound: Note that∏

A∈A1
(1 + f(A))6

∑
B∈C(A1)

f(B)
∑

D∈C(A �1)

∏
v∈D

f(v):

1 a(n) ∼ b(n) denotes that a(n)=b(n)→ 1 as n→ ∞.
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From this by using (2) and (3) with �= 1, and property (ii) of BF, we have∏
A∈A1

(1 + f(A))6S(A1)S(A �1)6S(A1) exp �
1(A �1)6S(A1)(1 + o(1)): (6)

On the other hand, with the help of the inequality ln(1 + x)¿x − x2=2, we have
∏
A∈A1

(1 + f(A))¿ exp
{
�1(A1)− 1

2
�2(A1)

}
: (7)

By properties (1) and (2) of (1; �n; q; c)-ordinary pair, we obtain that

�2(A1) =
∑
v∈X

f2(v)6|X |2−2�n62−log22 �n : (8)

Now the lower bound follows from (6) to (8).

Theorem 2. Let a sequence of (2; �n; q; c)-ordinary pairs {In=(Xn; fn)} be 2-convergent
and limn→∞ �n =∞. Then; for n→ ∞.

T (In) ∼ exp{�(In)};
where

�(I) = �1(A1) + �1(A2)− �2(A1)=2 + �1(A2)
and

��(Ak) =
∑
A∈Ak

f�(A); �1(A2) =
∑
A∈A2

∏
u∈A
f({v}):

2. Estimation of the number of independent sets in a special bipartite graph

In this section we demonstrate the application of Theorems 1 and 2 to some concrete
enumeration problem. Namely, we obtain the asymptotics for the number of indepen-
dent sets in the bipartite graph induced by two neighbouring levels of the n-cube.
Let Bn be the n-cube, and Gn; k = (Bnk ; B

n
k+1;E) the bipartite subgraph of the n-cube,

induced by two of its levels Bnk and B
n
k+1. From now we assume that k ¡ (n −

1)=2. Denote by N (G) the number of independent sets in a graph G. We shall �nd
the asymptotics of N (Gn; k) as n → ∞. For this purpose we de�ne a functional pair
In; k = (Xn; k ; f) with Xn; k = Bnk , and with f(A) = 2

−|#(A)| where v(A) = {v ∈ Bnn+1:
∃u ∈ A (u; v) ∈ E}.

Lemma 3. Let G(X; Z ;E) be a bipartite graph. Then;

N (G) = 2|Z|
∑
A⊆ X

2−|#(A)|: (9)
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Proof. To generate an independent set A⊆X ∪ Z we choose an arbitrary C ⊆X as a
part of A in X , and then an arbitrary D⊆Z \ #(C) as a part of A in Z . It is easy to
see that the number of such choices is equal to

N (G) =
∑

2|Z\#(C)| = 2|Z|
∑

2−|#(C)|;

where summing is over all subsets C ⊆X . This proves the lemma.

As a consequence, we have

N (Gn; k) = 2(
n
k+1 )T (In; k): (10)

Now we should evaluate T (In; k). We assume that n is big enough and 16k ¡n=2.
As can be easily checked, a set A∩X =B is connected relative to f if for any vertices
u; v ∈ A there exists a sequence w0; w1; : : : ; wm such that w0=u; wk=v; r(wi−1; wi)=2;
i = 1; : : : ; m. Let us check that the functional pair In;k is (�; �; q; c)-ordinary for � =
2; �= n− k; q=1; c=4. Note that |#(|{v})|= n− k for any v ∈ X . Hence �= n− k
and f({v})= 2−� (property (1) is checked). Note that, due to k ¡ (n− 1)=2, we have

|Xn;k |=
(n
k

)
¡ 2n622(n−k):

Hence property (2) holds for �=2. Further, we note that |#(A)∩#({v})|6|A| for any
A⊆Bnk and v ∈ Bnk . Therefore,

f(A ∪ {v}) = 2−|#(A∪{v})|6f(A)f({v})2|A|:
Hence, property (3) holds with q= 1.
Let us check property (4). We use the following assertion (see the proof of

Lemma 2:2 in [3]).

Lemma 4. Let G=(V ;E) be a graph; s the maximum degree of a vertex. Then; for
any v ∈ V ; the number of connected subsets A⊆V with |A|= a and u ∈ A does not
exceed (4s)a−1.

Now consider the graph G=(V ;E) with V =Bnk ; k¿1 and E= {(u; v): r(u; v)=2}.
It is clear that each vertex of G has a degree equal to k(n− k)¡�2. Using Lemma 4,
we obtain that for k¿1; n¿2, any v ∈ V , the number of connected sets A⊆V with
f(A ∪ {v})¿f(A)f({v}) is not more than

(1 + k(n− k))(4k(n− k))|A|−16(4�2)|A|:
Since �¿ 2 for big enough n, we obtain property (4) with c=4. Thus, we have checked
that In;k is a (�; n − k; 1; 4)-ordinary functional pair where � is 1 or 2 depending on
the value of k.
Let us prove that {In;k} is a 2-convergent sequence of functional pairs as n → ∞.

We have to make sure that

lim
n→∞

∑
A∈A2

f(A) = 0: (11)
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Note that from Lemma 4 it follows that

|Am(In;k)|¡ |Bnk |(4�2)m−16
(n
k

)
(2n)2m−2:

On the other hand, from properties (1) and (3) by induction it follows, that
f(A)62−|A|(�−(|A|−1)=2). Hence, for some constant c∑

2¡m6�

∑
A∈Am(In;k )

f(A)6
(n
k

) ∑
2¡m6�

(2n)2m−22−m(�−(m−1)=2)

6
(n
k

)
(2n)42−3�−1(1 + O(n42−�))6c

(n
k

)
n42−3n=2: (12)

Note that |#(A)|¿ |A|(n−k)=(k+1) for any A⊆Xn;k , and |#(A)|¿ |A|(n−k)=(s+1)
for any A⊆Xn;k with |A|6

(
n−k+s−1

s

)
(see [5, Lemma 17]). As a consequence,

we obtain

|#(A)|¿
(
n− k + 2

3

)
=
(
� + 2
3

)
= : g0

for all A⊆Xn;k with |A|¿
(
n−k+2
2

)
and

|#(A)|¿|A|�=3
for all A⊆Xn;k with |A|¿

(
n−k+2
2

)
=
(
�+2
2

)
.

Thus, putting
(
�+2
2

)
= h, we have∑

�¡m6h

∑
A∈Am(In;k )

f(A)6
(n
k

) ∑
�¡m6h

(2n)2m−22−m�=362−�
2=3+O(� log �): (13)

For an evaluation of the remaining part of sum (3) we need some new notions and
assertions. Let G = (X; Z ;E) be a bipartite graph, and A⊆X . Denote by [A] the set
v ∈ X : #(v)⊆#(A). Given a graph G = (X; Z ;E), a set A⊆X is called 2-connected if
for any two vertices u and v there exists a sequence w0; w1; : : : ; wm of elements in A
such that u=w0; v=wk; �(wi−1; wi)= 2; i=1; 2; : : : ; m. The family of all 2-connected
subsets of X will be denoted by A(X ). For integer g, and 0¡�¡ 1, we put

F(G; g; �) = {A ∈ A(X ): |@(A)| = g; |[A]|6g(1− �)}:

Theorem 3 (see [3]). Let G(X; Z ;E) be a bipartite graph with the following
properties:
(1) min |@({v})|= �;
(2) max |@({u}) ∩ @({u})|= q;
(3) There exist constants p; r¿1 ( not depending on �) such that

rmin
v∈Z

|@({v})|¿�¿max
v∈Z

|@({v})|¿ max
v∈X∪Z

|@({v})|=p:

Then for all large enough � and for all 1¿�¿�−2 log92 �; the following inequality
holds:

|F(G; g; �)|6|X |2g(1−�=(6 log2 �)): (14)
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Now we estimate the rest part of the sum (3). Taking into account that |@(A)|¿
|A|(n− k)=(k + 1)¿|A|(1− (1=�)), and using (14) with |X |= ( n

k

)
, we obtain∑

m¿h

∑
A∈Am(In; k )

f(A)6
∑
g¿g0

|F(Gn; k ; g; 1=�)|2−g

6
(n
k

) ∑
g¿g0

2−g=(6 log2 �)6c
(n
k

)
�22−g0=(6 log2 �)

6 2−�
2=36 log2 �+O(�): (15)

Now (12), (13) and (15) give (3). Thus we may conclude that the sequence {In;k}
is 2-convergent.
Let us obtain the asymptotics for N (Gn;k) by using Theorem 2. We have to calculate

�(In;k).

��(A1) =
∑
A∈A1

f�(A) =
∑
v∈Bnk

2−�|#({v})| =
(n
k

)
2−�(n−k);

�1(A2) =
∑
A∈A2

f(A) =
∑

u;v∈Bnk
r(u;v)=2

2−|#({u;v})| =
(n
k

)
k(n− k)2−2(n−k);

�1(A2) =
∑
A∈A2

∏
v∈A
f({v}) =

∑
u;v∈Bnk
r(u;v)=2

2−|#({u})|−|#({v})|

=
(n
k

)
k(n− k)2−2(n−k)−1 = 1

2
�1(A2):

Therefore, we obtain by Theorem 2

�(In;k) =
(n
k

)
(2−n+k + k(n− k)2−2(n−k) − 1)− 2−2(n−k)−1)

and

N (Gn;k) ∼ 2
(

n
(k+1)

)
exp

{(n
k

)
2−n+k(1 + k(n− k)2−n+k−1)

}
: (16)

Formula (16) gives the required result.
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