-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Elsevier - Publisher Connector

Available online at www.sciencedirect.com Gournal of
scnsucs@:nnscr@ MATHEMATICAL

ANALYSIS AND

ELSEVIER 3. Math. Anal. Appl. 204 (2004) 418-437 APPLICATIONS

www.elsevier.com/locate/jmaa

Some multiple hypergeometric transformations and
associated reduction formulas

Whei-Ching C. Chai,Kung-Yu Cher?, Chuan-Jen Chyahand
H.M. Srivastava*

2 Department of Mathematics, Tamkang University, Tamsui 25137, Taiwan, ROC
b Department of Mathematics and Statistics, University of Victoria,
Victoria, British Columbia V8W 3P4, Canada

Received 29 April 2003
Available online 24 April 2004
Submitted by K.A. Ames

Abstract

The main object of the present paper is to deriggous classes of doubbkeries identities and to
show how these general results would apply to yield some (known or new) reduction formulas for the
Appell, Kampé de Fériet, and Lauricella hypergeometric functions of several variables. A number of
closely-related linear generating functions for the classical Jacobi polynomials are also investigated.
0 2004 Elsevier Inc. All rights reserved.
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1. Introduction and definitions

As usual, we denote byF, a generalized hypergeometric function wgmumerator
andq denominator parameters, defined by [4, Chapter 4]

o1, ..., 0p;
qu(Oll,-.-,Olp§,3]_,.-.,,Bq§Z)=qu 4

181’""18(];
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o0

— Z ()n - .- (@p)n Z_n
. (,Bl)n~-~(:3q)n n!

(p.geNo; p<q+1; p<gandiz| <oo;
p=q+1landzl <1 p=g+1 |z|=1, andR(w) > 0), (1)

n=0

where @nd in what follow} (1), is the Pochhammer symbol (or thkiftedfactorial, since
(1), =n! for n € Ng) given (forx, v € C and in terms of the familiar gamma function) by

F()\+v)_{1 (v=0; A€ C\ {0},

D=5 T1h0+D . .tn—1) (v=nel; 1eC), @

No:=NU{0} (N:={1,2,3,...}),and

q 14
w = 2,3] —Zaj
j=1 j=1

(Bj¢Zg =2~ U{0}); Z~:={-1,-2,-3,..}1; j=1,....q). (3)
We also let
FZ;ﬁ (p,q,r,s,u,veNp)
denote a general (Kampé de Fériet's) double hgpemetric function defined by (cf., e.g.,
[9, Eqg. 1.3(28), p. 27]; see also [1, p. 150 et seq.])

o1, ...,0pl A1, ..., 0r; C1,...,Cy;
piriu
Fq:s;v X,y

,31,...,,3q1 bi,...,bg; di,...,dy;
;’=1(05j)l+m H;=1(aj)l H?=1(Cj)nz x_l y"

T T Bren Tt i [T 12 m!”

where, for convergence of the double hypergeometric series,

o0

(4)

p+r<qg+s+1 and p+u<g+v+1,

with equality only when|x| and |y| are appropriately constrained (see, for details, [9,
Eqg. 1.3(29), p. 27]).

The main object of this paper is first to praseeveral classes of double-series identities
and to show how these general results would apply to yield some (known or new) reduction
formulas for the Kampé de Fériet function defined by (4). We then consider a (presumably
new) reduction formula for the multivariable Lauricella functiﬁﬁ’) defined by (cf. [6,

p. 113]and [9, Eq. 1.4(4), p. 33]; see also [1, Eq. (4), p. 114))

Fgl)[a,bla conbuicsza, oo zal

my

00 mi
o Z (a)m1+~»+m,, (bl)ml cee (bn)m,, <1 Zn
(©)mqt-tmy m1! my!

ma,....m,=0

(max{|z1l,....lzal} <1 ¢ ¢ Zg), (5)
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so that, obviously,

FPla, B, B v: x, yl=: Fila, B, B’ v x, y]
(max{|x|, |yl} < 1), (6)

whereF; denotes the relatively more familiar Appell function of the first kind [1, p. 14]. We
also investigate several closely-relatecehin generating functions for the classical Jacobi

ponnomiaIsP,f“’ﬁ)(x) of order (or indices)e, 8) and degree in x, defined by (cf., e.g.,
[11, Chapter 4])

PP (x) :i(ztg <n4k-ﬁ) (x;1>k<x42rl)nk -

k=0

or, equivalently, by

1—
Pll(a-ﬂ)(x) = <n:a)2F1<—n,oc+ﬁ+n+1;oc+l; 2x) (8)

in terms of the Gauss hypergeometrig function defined by (1) with

p—1l=qg=1

2. Double-seriesidentities
We begin by recalling the following general double-series identity:

Lemma 1 (Buschman and Srivastava [3, Theorem 3, p. 43&){s2 (n)}  , be a bounded
sequence of complex numbers. Then

9]

3 Q0m 4 m) 0w D (W (0
m,n=0 m:. n:
— i Q(m +2n) A+ W m+2n M mn (Wmn (x + )™ (=xy)"
m,n=0 A+ Wmtn m! n!
(A +ué¢Zy), ©)

provided that each of the double series involved is absolutely convergent.

Upon replacinge andy in (9) by x/u« andy/u, respectively, if we letu| — oo, we
obtain the double-series identity given by

Lemma 2 (cf. Buschman and Srivastava [3, Eq. (2.13), p. 43Bbt {2(n)};2, be a
bounded sequence of complex numbers. Then
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S xm yn
D R0+ m)

m,n=0
o
= D 20m+2)Wmin

m,n=0

(x + y)’” (=xy)"
n!

: (10)

provided that each of the double series involved is absolutely convergent.

Lemma 2 would follow also as eonfluentcase of another double-series identity of
Buschman and Srivastava [3, Theorem 2, p. 437]:

9]

S 24y Dm0 X"

(W)m (V) m! n!

m,n=0
_y Win(v =1 D" Cx)
- méog(m e Wms2a W)y m! ! (véZg) (11)

upon replacing andy by vx andvy, respectively, and letting| — oo.
A further special case of the double-series identity (10) when—x yields the follow-
ing simpler form:

S XM (— x)n 2n
D 20+ 0n G — = Z 9(2n)<x>n : (12)
m,n=0 ! n=0 !

which was given earlier by Srivastava [7, Eq. (17), p. 297]. An interesting companion of
the double-series identity (10), whichasserted by Lemma 2, is contained in

Lemma 3. Let{$2(n)} 2, be a bounded sequence of complex numbers. Then

oo

Z Qm +n) (@)m+y2n x_mﬁ

! n!
om0 (¥)m+2n m! n!

= 3 @y B2 O TNy (13)

(¥)2m—+2n m!  n!

m,n=0

provided that each of the double series involved is absolutely convergent.

Proof. Denoting, for convenience, the first member of the assertion (18)byy), if we
set
m=N-n (0Zn<N; NeNp),

we readily obtain

S(x,y) = ZQ(N)(a)Nx—zF1< N,a+N;y+N;—%>. (14)
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Now we apply the following polynomial identity [4, Eq. 2.10(3) with= —n (n € Np),
p. 109]:

b)n 1
(b) (1—z)”2F1<—n,c—b;1—b—n; )
(©)n 1-z

(n € No) (15)

to the hypergeometric polynomial occurring in (14). We thus find eventually that

2F1(—=n,b;c;2) =

(@ 2N—m (Y — &) X™ (x + y)N—m
St = Z 2 ZO W m N —ml (19)

which, upon inversion of the order of summation, immediately yields the second member
of the assertion (13) by setting = m + n.
Alternatively, since (cf., e.g., [10, Eq. 1.4(3), p. 42])

—n,01,...,0p;
p+1Fy z
ﬂla RS ,3q§

—n,1—=pB1—n,....1=B,—n; . 4\p+
VR CIO TP { e =T (_qyp q]

- (,Bl)n e (,Bq)n Z

l-ar—n,....1-ap—n;
17)

where we have merely reversed the order of the terms of the hypergeometric polynomial

by appealing to the following simple consequence of the definition (2):

(=D, B _
()L)nfk—m (k—O, 1,...,71, UENO), (18)

it is readily seen from (14) that

S(x,y) = ZQ( )()2”—2 1( N,1—y —2N;1—a— 2N; —;>. (19)

Thus, by applying the following Pfaff-Kummer transformation [4, Eq. 2.1.4(22), p. 64]:

2F1(a,b;c;2)=1—2)"" 2F1(a, c—bio; — )

z—1
(largl—z)|Sm—e O<e<m; c¢Zg), (20)
instead of the polynomial identity (15), we find from (19) that
S N
S(x,y)=ZQ(N)(a)ZNMzFl(—N,V—a;l—a— . > (21)
v (¥)on  N! y

which would yield the second member of the assertion (13) just as we have already indi-
cated in connection with (16) abover
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Fory = —x, Lemma 3 immediately yields the following companion of the known re-
duction formula (12):

9]

Z Q(m+n) (a)m+2nx_m(_x)n

(V)m+2n m! n!

m,n=0

_ZQ( )(a)n(y O‘)nx

n'

(v ¢ Zg), (22)

which does not seem to have been recorded earlier.
In terms of generalized hypergeometric functions defined by (1), Lemmas 2 and 3 with

(pl)n cee (pp)n
(©Dn - (0g)n

can be reduced to the following hypergeometric forms:

2(n) = (n € No) (23)

p: Ll
Fo o0 X,y
O1,...,0q] —; —=;

_ i (om - p)m (M (x + "

m—0 ©@m ... (Uq)/n m!

At+m, A2 pr+m), ..., A2 pp+m);
“2p+1f2g —4P7xy |, (24)
A2 01+m), ..., A(2; 04 +m);

which, in the special case when= —x, yields the following known result [3, Eq. (3.3),
p. 439]:
opi L1 Pl Ppt A A

4 0:0 X, —Xx
01,...,04. —; —;

Ay A(2; 01), -0 A(2; pp);
=2p+1F2 4r=ax2? | (25)
A2, 01), ..., A(2;04);

where,and elsewhere in this papeA(N; 1) denotes the array df parameters

At+j—1

i=1,...,N; NeN);
N (J )
f: @m(oV)m - - - (pp)m x™ A atm), prtm,..., Pp 3

— F,
y p+2lg+2 y
ry @Im(@Dm - - (0g)m m! ARy 4+m), o1 +m,. O m;

_ i @m(y —a)m(Vm .- (Op)m x_m

W2m(©@Dm - - (Og)m m!

m=0
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A a+m), pr+m,...,pp+m;
p+2fg+2 x4y, (26)
A2y +m),o14+m, ..., 00 +m;

which, in the special case when= —x, yields the following (presumably new) reduction
formula:

(@m0 - (P X" {A(Z“+’")’Pl+mv~ﬂp +m; }
Z Fq+2 —X

2
VIm(@Dm - (0g)m m! A2y +m),o1+m,...,00 +m;

m=0

(27)

a’y_a’/)l,n-app; 1
—x2 .
4

= p+2Fy42
A(2;),01,...,04;

3. Further applicationsof Lemmas2 and 3
For
r=p and Q@)= 2
n

Lemma 2 yields the following special case:

(n € Np), (28)

9]

Z (a)ern(,B)m(,B)nﬁyn

1l
m.=0 (V)m-i—n m: n.

o]

_ Z @) mt20 (B man (x +}’)m (_x.V)n

(Y)m+2n m! n!

(29)

m,n=0

On the other hand, if we set

()= (B)n (neNo), (30)
we find from the assertion (13) of Lemma 3 that

e¢]

Z @ my2n (B man ﬂy_ﬂ

Vm+2n  m! n!

m,n=0

_ i (@420 (Bhmin(y — @ 2™ (x £ 3)"

(31)
m,n=0 (V)2m+2n m! n!
Thus, by combining the double-sesiidentities (29) and (31), we obtain
m,n=0 ()/)m-l-n m! n!
- i @m+20(Bmin (Y — Om (x + )" (x +y —xy)" (32)
(V) 2m+2n m! !

m,n=0
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or, equivalently,

oo

Fila, B, B;y; %, y]1=)

m=0

A2 o +m), B+m;
3P x4y—xy (33)

A2,y + 2m);

in terms of the Appell functiorF; defined by (6).
A direct proof of (33), based upon the following quadratic transformation [4, Eq. 2.11
(34), p. 113]:

(@Dm(B)m(y —m (x + )"
(Y)2m m!

_ 4z
2F1((1, b; a—b+ 1; Z) = (1+Z) 4 2F1<A(2; a); a—b+ 1; m), (34)

was attributed to the referee of their paper by Ismail and Pitman [5, Eq. (95), p. 979].
By setting
y:L (sothatx +y —xy =0),
x—1

we find from (33) that (cf. [5, Eq. (96), p. 979])

x 0[,}3,)/—0[; X2
Fl[a,ﬂ,ﬂ;y;x, 1}=3F2 ek (35)
T A2 y); D

whosefurther special cases when= 2« and wheny = 2« — 1 were actually proven and
applied by Ismail and Pitman [5] in their algebraic evaluations of some symmetric Euler
integrals related to Brownian variations.

Fory = —x, (33) reduces immediately to the following simple reduction formula:

A2, ), B;
x2 s

(36)
A2 y);
which indeed is contained, as a very spbzé case, in each of the known results (12) and
(25) (see also [10, Paragraph 1, p. 56]).

Next, for the multivariable Lauricella functioﬁl()”) defined by (5), we derive the fol-
lowing transformation formula:

Fila, B, B v; x, —xlst{

2n
F(D )[06,,31,---,,3;1,,31,---,,3;1;)/;xl,---,xn,yl,---,yn]

o0

. Z @) r+2m (Y — ) L (B ig+my - - - (Br)iy+m,
Ty =0 (¥)2L+2m
. ﬁ O+ )Y G+ —xy)™
lj! m]‘!

j=1
(yéZa;L:zll+---+ln;M:=m1+--'+mn;nEN) (37)
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or, equivalently,

2n
F(D )[06,,31,---,,3;1,,31,---,,3;1;)/;xl,---,xn,yl,---,yn]

_ i @)Ly =)L BD1y - Bu, H {(x,,+y,,)lf}

.
.., =0 (J/)ZL j=1 lj~
AZsa+ L) Br+11; ... Bu+lu;
-FZ:l
2 Zl?"'?zn
A2y +2L): ——; .. ;
(v ¢Zy; Li=lit-- 41y zji=xj+y; —xjy;; j=1,...,n), (38)

where the notation used for the generalized Lauricella functionvariables (occurring

on the right-hand side) is analogous to that in the two-variable case (4) (see, for details,
[9, Eq. 1.4(24), p. 38]).

Proof. By applying the definitions (5) and (6), we readily have

2n
F(D )[06,,31,---,,3;1,,31,---,,3;1;)/;xl,---,xn,yl,---,yn]

B i (@)L m* (B, Bz - - - (B, (Bm,
lp,m2,....l,,m,=0 ()’)L*+M*
n xlj y'."]'
Fi(a 4 L*+ M*, B1, B1s y + L* + M*; x1, 1) H{Z_/'mj' } (39)
j=2tn

where, for convenience,

L =L—-li=lb+---+1, and M* =M —mi=mo+---+m,.
Now, making use of (32) or (33) in (39), we obtain

2
Fé 1)[a7ﬁ17"'7ﬁn7ﬁlv"'7ﬁn;xls"'1xn7ylv"'7yn]
oo

_ Z (@142 (BD1+m (¥ — @) (x1+ y1)! (x1 + y1 — x1y1)™
iy (¥)21+2m n m!

.F[()2n72)[a+l+2m”82’...”3'1”32’.“”3’1;
Yy +204+2m;x2, ..o, Xn, Y2, - o+ Yul (40)

Finally, the desired transformation formula (37) would result upon iterating this process
to the other variable pairay, y2), ..., (xu, yn)-

Alternatively, since (32) is precisely the case- 1 of the transformation formula (37),
it is fairly straightforward to construct a proof of (37) by the principle of mathematical

induction o € N. Indeed, by assuming (37) to hold true for some fixed positive integer
we find from the definition (5) that
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2n+2
Fé )[as ﬁls ey ﬁn+lv ﬁlv . '«7,3n+l§ J/; X1, .. ':xn+l: yls ceey yn+l]

B AT VIR X41 Vel

= Wi I m!

’ngn)[a—i_l—i_msﬁlv"'7ﬁn7ﬁlv"'7ﬁn;y+l+m;xls"'1xn7ylv"‘7yl’l]

B i (@) 1tm (Bus D1 But D X1 Yot
= 3)itm I m!

oo

Z (@+1+m)pyom(y — o)L (BOu+my - - - Brdi+m,
(y +1+m)2p+2m

ly,my,....lIn,mp=0

. li[ { e+ vl (xj+yj —xjy)m } (41)

N N
[;! m;!

j=1

where we have also applied the transformation formula (37).
By rearranging the multiple series in (41) and using the definition (6), we get

2142
FL() a, Bls-wos But1, BLo ooy Butr s Vi X1, oo Xt s Y1 - v - Y]
B i (@) Lr2m (Y — )L BDirtmy - - Br)iy4m,
(¥)2L+2m

ly,m1,....[In,mp=0

. ﬁ { () + 3l G+ yj = xjy)™ }

.| N
[;! m !

j=1

i (a+ L+ 2M)ln+1+2m,,+1(ﬂn+1)l,,+1+m,,+1(y —o+ L)ln+1
(y + 2L + 2M)2ln+1+2mn+1

ln+1.mp41=0

(tn1 + Yntr D) Congd + Yngd — Xng1yns1) "™+t
lp41! Mp41!

: (42)

by means of the double-series identity (32).
Now we rearrange the multiple series in (42). We thus find from (42) that

2n+2
Fé +)[a:,Bl:u':,Bn+ly,31w~7,3n+l§J/;xl:'o':xn+l:y1m~7)’n+l]
_ i (@) ptaomt(y — @) pt (B 4my - - - Bt Dy tmpsn
(artromt

ly,ma,..ilyy1,mp1=0

+1 . .
1! m;!

j=1
(LT:=L+ln+l=ll+"'+ln+1;
M7 :=M+mn+1=m1+---+mn+1), (43)
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which is precisely the transformation formula (37) witmeplaced by: + 1 (n € N). This
evidently completes our alternative proof of (37) by the principle of mathematical induction
onneN. 0O

By setting

Xj

yj= (SOthatx]‘-i-yj—ijj:O)(j=1,...,n)

in (37), we obtain

(2n) X1 Xn
F o BB, B Vi X1, Xy, e
2 1
B i @y =o)L (B - .. (B, li[{[xj/(xj—lﬂf}
- N
l1,odn=0 (2L =1 !
(L:=l1+---+1), (44)
that is,
X1 X
FéZn)l:a,,BL._.,ﬂn,ﬁl,._.,ﬂn;y;xl,...,xn,x1_1,...,x ili|
n
= p2L.il Gy P x i (45)
2: 0.0 A —D T A - D

AR y) — 5 .

in terms of a generalized Lauricella functionsdnvariables, which occurs already in our
general result (38).
For

y =20 —1, y=20, and y=2a+1,

each of our results (44) and (45) yields the followfogther special cases:

Fézn)[a,ﬁl,...,ﬁn,ﬁl,...,,3n;2a—1;x1,...,xn,x1xi1,...,xnxilj|
:Fl()")[a—l,ﬁl,...,ﬁn;a—%;4(xf%_1),...,4(xj'%_1):|, (46)

Fézn)[a,ﬁl,...,ﬁn,ﬁl,...,,Bn;2a;x1,...,x,,,Xlxil,...,xnxil}
:Fl()")[a,ﬁl,...,ﬁn;a—i—%;4(xf%_ 1),...,4();’%_ 1)}, (47)

and
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X1 X
Fgﬂ)l:a,ﬂl,...,,3,1,,31,...,,3,1;20t+1;x1,...,x,1,Xl TS "1i|
_ " —
1 x?2 x2
(n) . . 1 n
=F B, ..., B —; s , 48
§ o it i g g (48)

respectively.
Furthermore, since (cf. [6, p. 148]; see also [1, p. 116])

F(Dn)[a,bla cebpicza, o Zal

=(1—z)™ .. A=z,)""F®|c— ,b1, ..., by ¢ “ s i ,
( 71) ( Zn) p |¢—a b1 n -1 o —1

(49)

the reduction formula (48) can easily be rewritten ireitgiivalentform (cf. Eq. (46)):

X X
Fézn) a+17ﬁ11"'7ﬁn7ﬁls"'7ﬁn;2a+1;xlv"'7xns ! LRI ) .
x1—1 x,—1
1 x2 x2
(n) 1 n
=F ; — , 50
D I:aa 181a 9 IBn o + 2 4()C]_— 1) 4(Xn _ 1)} ( )
which, when compared with (47), yields tf@lowing multiple hypergometric identity:
X X
Fézn) a+17ﬁ11"'7ﬁn7ﬁls"'7ﬁn;2a+1;xlv"'7xns L LERILL ) .
x1—1 x,—1
X1 X
:FL()Z") o, Bl By Bls s By 206 X1, .., Xy o —2 . (51)
x1—1 xp—1

In fact, by comparing (47) and (48), we similaobtain the following multiple hypergeo-
metric identity:

(2n) C Oy X1 Xn
F o, B, ..., Bu, Bl .., By 20 X1, .y X,
D [ B1 Bn, B1 Bn 1 n x1—1 x,,—li|
X1 X
:Fézn) aaﬂla"'aﬂnaﬂla"'aﬂn;za"_l;xl,-.-,x;g, g ooy n s
x1—1 x, —1

(52)

which, in view of (49), is the same as (51).

The special reduction formula (47) was derived earlier by Ismail and Pitman [5,
Eq. (21), p. 965], who also gave the sirapkases of the identities (50) and (51) when
n =2 (cf. [5, Egs. (93) and (94), p. 978)).

For adirect proof of the equivalent multiple hypezgmetric identities (51) and (52),
withoutusing such reduction formulas as (47), (48), and (50), we choose to make use of
the following recurrence relation for the Lauricella functiEﬁ’) defined by (5):
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(V_a)Fén)[anBls~~s,3n;7/+1§zlw~vzn]
=y F e, Bry oo, B Vi 20 - 20

—aFla+ 1 Br.., Buiy +Liza, ... zal, (53)

which can be derived fairly easily by appealing to the familiar result [4, Eq. 2.8(35),
p. 103]:

(c—a)2F1(a,b;c+1;2) =c2F1(a,b;c;z) —az2Fi(a+1,b;c+1; 7) (54)

for the Gauss hypergeometric function. The case? of (53) was indeed recorded by, for
example, Appell and Kampé de Fériet [1, p. 33].
Now, in view of (49), we find from (53) (witlx replaced by ) that

2
YE 0, By oy Bus 81s - os 803 V3 XL+ oy Xy V1o -5 V]

2
= = F (e, Bo s Bur1s - os 3 ¥ 4 L X0s ooy Xy VLo -+ Y

ta[[{a-xpPia—yp=}

j=1

2
'Fén)[y_avals"'15n7ﬁ17"'7ﬁn;y+1;

1 M n } (55)

D LRty Sy LRt |
where we have also made use of the obvious correspondence between the sets
{b1,...,by} and {z1,...,za}
in the definition (5).
Upon setting
Xj

)/:201, (Sj::ij and ijX'.— (j:]-s...yn)v
J

the recurrence relation (55) reducesmediately to the following form:

n X1 X
20{F(D ) o B, Bus By ooy B 20 X1, .1y Xy, 4
x1—1 x, —1
X1 X
=aF P @, 1, Bus Bro o B 20+ L X1, ., X, pp—L
x1—1 x,—1
X1 X
+0€Fl()2n) a, B, By Bl B 20+ 15 x1, ., X, o, —2
x1—1 x,—1
X1 X
=20F® o, B1, ..., Bu Bl - Bus 20+ L x1, .., X, U
x1—1 x, —1

(56)
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which evidently proves the multiple hypergastric identity (52). And, as we have al-
ready indicated above, (52) would yield the ltiple hypergeometric identity (51) by virtue
of (49). O
Lastly, the general transformation formula (37) or (38) with
yvi=—x; (=1....,n)

yields the following multivariable extension of (36):

2
Fé1)[057,317un,Bny,Bl,u.,,Bn;V;Xl,...,xn,—xl,...,—xn]
_— AZ0)r P15 Bus , )
= F55"% 22| (57)
A y) — 5 ooy —

We remark in passing that this last formula (57) was deduced, in a much more general
setting, by Srivastava [8, Eq. (26), p. 3083], who also proved many multiple-series identi-
ties including (for example) the following multivariable extension of Lemma 2 [8, Eq. (17),

p. 3082]:

o n Xy
j7i
3 9(L+M)]_[{(kj>z_/()\f>mjﬁm}
19,1, .., Ly 1y =0 j=1 AR
00 n lj nj
(xj + )7 (=xy)™
— Z .Q(L+2M)l_[{()\])lj+mj - l;y] ]y]!
Iy,mq,....1y,m,=0 j=1 g "
(Li=h+--+l M:=my+---+my), 9)

provided that each of the multiple series involved is absolutely convergent.

4. Linear generating functionsfor the Jacobi polynomials

One of the earliest known generating functions for the classical Jacobi polynomials
defined by (7) or (8) is the following linear generating function attributed to Carl Gustav
Jacob Jacobi (1804-1851):

o
Y PP =2 VPRI A -1+ R+ 1+ R) P
n=0
(R:=(1—2xt +15Y?). (59)

The followingmultiparameteextension of the generated sum in the classical result (59) is
an immediate consequence of the definition (8):

e¢]

Z ADn - Apln(a+ B+ D,

pa.B) n
(L)n - (g (o + D, " 2

n=0
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_ i A . Ap)i(a+ B+ 1) ﬁ
e ()i - (ug)t 1!

MAL. A+ LA a+B+14+1D);
“pr2Fg+1

2(x — 1t |, (60)
i+l pug Lo+l

which obviously corresponds to (59) when
p=qg=1 (Mm=a+1 p1=a+p+1).
The hypergeometric representation [10, Eq. 2.3(29), p. 111]:

(@.B) a+m-+n x+1 —a—p-m—n-1
Pm+n (x) = m-+n 2

-1
.2F1<a+m+n+1,a+,3+m+n+1;a+1;x_+1>
X

(m, n € Np), (61)

which follows readily from the definition (8) in conjunction with the Pfaff-Kummer trans-
formation (20) in itsequivalentform given below:

2Fi(a. b ciz) = (1—z)b2F1(c—a,b;C; < 1)
-
(largl—z)|Sm—e; O<e<m; c¢Zg), (62)

would lead us immediately to the followingxtendedlinear generating function [10,
Eq. 2.3(31), p. 111]:

i (m + n> (@+B+m+1), PEB) (1m
s n ()/ + 1)/1 mn

_fa+m\[(x+1 —a—pom=1
N m 2
2t x—li|

'F 1’ 1; 11 1;—1—
4[a+,3+m+ a+m+Lly+la+ Tl el

(Ix = 1Y2 4 126112 < |x + 1Y% m e No), (63)

whereF, denotes the Appell function of the fourth kind, defined by (cf. [1, p. 14]; see also
[10, Eq. 1.6(7), p. 53])

o0

F[ ,3 /. ]_ Z (a)m-l—n(/g)m-i-n ﬁy_ﬂ
A EY Y5 I PV m! 7l

m,n=0
(kY24 1y1Y2 < 2). (64)
More generally, in terms of the Kampé de Fériet function (4), it can be observed from
the hypergeometric representation (61) that
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> (") G Gl ey
= n (Mn - - (I’Ll])"

_(atm x+1 —oa—p-m-1
- m 2

a+pB+m+1a+m+1: Ay ooy Apy ——
F2: p;0
P 0:g+11
ca+B+m+Lu,..pug o+l
2t x-—1
x+1 x+1
(m € Np), (65)

which reduces to (63) when
p=qg=1 mu=a+B+m+1 p1=y+1). (66)
In a similar manner, since [cf. Eq. (61)]

+m+n 1—x —a—f—m—n—1
Pt () = (=)™ (ﬁ )( )
m+n 2

X —

(m,n € Np), (67)

which does indeed follow from (61) by virtue of the familiar relationship [11, Eq. (4.1.3),
p. 59]:

x+1
'2F1<,3+m+n+1,ot+/3+m+n+l;ﬂ+l; 1)

Pn(asﬂ)(_x) = (—1)nPn(ﬂ’a)(-x)s (68)

we obtain the following companion of the generating function (65):

3 (") OO

=\ on (1) ... (g
_(BHm\(1—x —e—p-m-1
o m 2
a+p+m+1L6+m+1: Alseeoshpy —;
F2 p;
0:g+1;1
ta+B+m4+Lug, . ng BHL
2t x+1
x—1x-1
(m € No), (69)

which, in the special case given by (66), yields a companion of the linear generating func-
tion (63) in the form given below:
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o0
1}’1 o
Z(m+n> (a+pB+m+1) PR ()
=0 n (7 + Dn

_(Bt+m\[(1l—x —a—f-m-1
-(%"))
2t x+1i|

Fila+B8+m+1,84+m+Ly+1,84+1 ——; ——
x—1 x-1

(Ix + 112 4+ 12012 < |x — 1% m € No). (70)

We now recall a very specialized case of a known family of linear generating functions
for the Jacobi polynomials [10, Eq. 2.6(31), p. 145; Problem 14¢ii), p. 168]:

oo
> Mp(aﬁ)(x)tn
: e+l B+l .kt — s —— L
= Fp+§i. %El). E(x — :I.)l‘7 E(x + 1)l
I’Ll7~~,uq 0[—|—]_; ﬁ—'—l;

n=0

(71)
Upon replacing(1/2)(x — L)t and (1/2)(x + 1)t simply by x andy, respectively, if we
compare the generating function (71) with the special cases of the results (65) and (69)
whenm = 0, we are leceventuallyto the following general hypergeometric transforma-
tions:

a+1, B8+ A1, Ay —; —;
p+2: 0.0 p ! P

F q: 11 X,y
M1, .oy Mg oo +1; B4 1
a+p+1
()
X
1, 1: M,y Ap; —
P2 atp+lp+ ! P (x —y)? y
"Tog+11 X T x
ca+B+Lu, . ug BHL
(72)
and
1, LA, ...,y —; —;;
P2 00 ot LA+l M p
q: 11 X,y
Ml .o g o+ 1 B4+ 15
a+p+1
()
y
1 1: AL, ooy Aps ;
.F2: p;0 atptloat ! b (y_x)Z x
0:¢g+11 y ay ’

ca+ B+, ng o+l
(73)
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wherex andy (and the various parameters involved) are so constrained that each member
of (72) and (73) exists.

In its further special case whem = 0, the familiar generating function (70) immedi-
ately yields

e¢]

Z (x+B8+D), P,Sa’ﬁ)(x)t"
n=0 (V+1)n
1—x\ ¥ A1 2t x+1
= Fala+B8+18+Ly+1,84+1 —,
2 x—1 x-1
(Ix + 112 4+ 1202 < |x — 11%2). (74)

Since (cf. [2, Example 20(ii), p. 102]; see also [10, Problem 20(ii), p. 92])
Fula,b;c,b;x,yl=1—w)*(A—v)*Fila,c—b,a—c+1; c; u,uv], (75)
whereF; denotes the Appell function of the first kind, defined by (6), and

u v
= = 7
Y= oa—y M= —aTaoaTy (76)
by setting
2t u x+1 v
=— =— 77
P S vy e S e ez g v (77
so that
x+Du?—2A+u+2r=0 (78)
and
_ (x+Du
V= 2t ’ (79)
we find that
1+t—R 1+t—R
u = xiﬁ—l and V= T, (80)

whereu = u(t) is so chosen that(0) = 0, R being given (as before) with (59). Thus,
by applying the transformation (75), the generating function (74) can be rewritten in the
following form:

S P pa) (yn
s (y + 1),

5 a+B+1
Z(m) F1|:05+,3+1’V—.3’05+,3—)/+1;

1+t—R u+t—RF}

: , 81
VYR T 26+ D (81)
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In precisely the same manner, by applying the transformation (75) thuttreer special
case of the known generating function (63) whenr= 0, we can deduce the following
equivalentform of (81):

i (@+B+Dn

G, e
n

n=0

2 Ol+/3+l
Z(m) Fl|:01+,3+173/—01,01+,3_3/+12

y+1

_ _ 2
t—1+R (t—1+R) } (62)

x—1 " 2(x—21r¢
which, in view of the relationship (68), is easily deducible from (81) by letting

x——x and t~ —t.

Each of the generating functions (81) and (82) can be shown to reduceywhent 3,
to the classical result (59). Thegjuivalentform (81) of thespecialcase of the familiar
generating functions (63) and (70) when= 0 was derived earlier by Wimp [12, Eq. (49),
p. 412].

The following pair of linear generating functions for the classical Jacobi polynomials
were proven recently by Ismail and Pitman [5, Theorem 2, p. 977]:

o0

Z (B)n P(ﬂl/2,1/2)< 2(y +z—yz2)? B 1)|: yz i|n
“(a+1/2, " y22=y)2-2) 2-»2-2)

(1 Y 1 < ﬁF - 20 83
= -5 -3 1o, B, B; 2a; v, ], (83)

whose generated series corresponds to that in (81) or (82) when

B 1 — B 1 and 1
= —— _ — — - .
27 o 21 7/ o 27

i (B+ Dn P(ﬂl/Z,l/Z)( 2(y +2z—y2)? _ 1)[ yz T
(@ +3/2, " yz2=y)2-72) 2-»2-2)
_(@+1/29[2-yR-2)ft!
B Ay +z—y2)p
AFila+ 1,8, B: 20+ 1, y, 2] — File, B, B; 205 y, 21}, (84)

whose generated series corresponds to that in (81) or (82) when
1 1 1
ﬁzi, C(f—),B—E, and y:a—i-é,

it being understood ieachcase that

2 _ 2
_ 2y+z—y2) 1 and f— ¥z

- =~ 7™ A — 85
T e-ne-2 2-y)2-2) (85)
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Finally, upon multiplying each membef the generating function (84) by+ z — yz,
if we set

1= (sothaty +z — yz=0),

we immediately arrive at thef@rementioned simpler case of the multiple hypergeometric
identity (51) whem = 2.
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