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Abstract 

In this study, in the purpose of providing a dynamic procedure for reliable travel time specification, the performance of a neural 
functional approximation method is analysed. The numerical analyses are carried out on the succeeding sections of a freeway 
segment inputting data obtained from microwave radar sensor units located successively at the cross-sections of a freeway 
segment of approximately 4 km. Measurements on traffic variables, i.e., vehicle counts, speed, and occupancy, for the reference 
time periods are processed. The structure of the employed radial basis function neural networks are configured considering the 
data of a three-lane freeway segment obtained by succeeding sensors located in side-fired position. Travel time measures 
approximated by the neural models are compared with the corresponding field measurements obtained by probe vehicle. Results 
prove neural model’s performance in representing spatiotemporal variation of flow dynamics as well as travel times. Adaptability 
of the proposed travel time specification procedure to real-time intelligent control systems is a possible future extension. 
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1. Introduction 

‘Travel time’ is an important performance criterion for the evaluation of transportation modes for urban trips and 
a major component for advanced travel information systems that provide timely and accurate information provision. 
Real-time traffic information, and accurately determining and predicting travel time data in particular, are important 
factors directly affecting dynamic route guidance systems viability. In the recent years, travel time measure has been 
a focal point in many studies within the frame of both traffic engineering and transportation planning. These studies 
have mainly concentrated on the assignment component of path choice models at macro level and on the 
specification of link-path flow characteristics for application solutions at micro level. The mutual point that each 
study’s objective possess is to determine travel times in a correct and realistic, alternatively in a reliable, manner. In 
this study, in the purpose of providing a dynamic procedure for reliable travel time specification, the performances 
of neural functional approximation methods are analysed. The innovation of the study is that with the incorporation 
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of radial basis function neural network method, travel time measure is mapped by sourcing fundamental roadside 
measurements at successive data collecting locations and is calibrated by actual probe vehicle measurements. 

In the succeeding section, a brief review on studies of travel time analysis explicitly considering neural network 
methods is provided following general procedures for obtaining travel times. The travel time specification problem 
formulation and the theoretical background of neural method applied are summarised in the third section. 
Information on data analysis within numerical implementations is provided in the fourth section. The conclusions 
drawn are presented together with the possible future extensions in the final section. 

2. Review on relevant literature 

Travel time is taken into account as a variable or performance measure in an extensive variety of application 
issues. Mainly, there are two methods for obtaining travel time: direct measurement, or estimation. 

Conventional methods of measuring travel time are extremely labour intensive and the data amount to be 
economically collected is very limited to specify network travel time behaviour. This gave rise to the progression on 
the relevant technologies for travel time collection automation ranging from automatic vehicle identification to 
video license plate matching (Boyce et al., 1993; Turner, 1995; Liu and Haines, 1996). Aside measuring travel time, 
a wide variety of methods within different approaches has been being used to specify travelling times on 
transportation networks (Van Lint, 2008). 

A number of different forecasting methods have been proposed for travel time forecasting including historic 
method, real-time method, time series analysis, and artificial neural networks (ANNs). Several methods of neural 
networks, i.e., multi-layer feed-forward neural networks (Armitage and Lo, 1994; Cheu, 1998; Park and Rilett, 
1999), spectral basis neural networks (Park et al., 1999; Rilett and Park, 2001), modular neural networks (Park and 
Rilett, 1998), state-space neural networks (Van Lint et al., 2002 and 2005; Van Lint, 2006), are employed to provide 
predictions on freeway travel times. A mixed structure type of neural network travel time prediction system having a 
model learning function using time-series data processing is proposed by Ohba et al. (1997). Jeong and Rilett (2004) 
developed a neural network method incorporated travel time prediction frame to predict bus arrival time using 
automatic vehicle location data. Wei and Lee (2007) proposed a neural network model that specifies a functional 
relation between real-time traffic data and the actual bus travel times by traffic data collected from intercity buses 
equipped with global positioning systems, vehicle detectors along the roads, and the incident database. Developing a 
method for spatiotemporal data failures of traffic detectors, Wen et al. (2005) presented an analytical travel time 
estimation model and a recurrent neural network with grey-models for real-time travel time prediction. In 
comparison to approaches of ANNs, real time, and historic, the use of support vector machines for the short-term 
prediction of travel time is found to be a feasible alternative by Vanajakshi and Rilett (2007) when the amount of 
data is less or noisy.  

3. Proposed travel time specification approach 

The proposed approach to specify travel times depends on a functional approximation, where measurements on 
traffic variables, i.e., vehicle counts, speed, and occupancy, are input and probe vehicle collected sectional travel 
times are targeted to be approximated. Specification of link travel times from link flow and occupancy data is 
discussed in several works, including, the explicit consideration of a network flow model (Boyce et al., 1993), 
sectional travel time estimation (Takahashi and Yamamoto, 1999), travel time specification on signalized arterials in 
real-time based on data commonly provided by loop detectors and the signal settings (Geroliminis and Skabardonis, 
2006), and arterial travel time estimation simultaneously by a virtual probe vehicle and archived traffic data (Liu and 
Ma, 2009). The model by Paterson and Rose (2008) draws on real-time speed, flow and occupancy data and is 
formulated to accommodate varying geometric conditions, the relative distribution of vehicles along the freeway, 
variations in speed limits, the impact of ramp flows and fixed or transient bottlenecks. 

In this study, data obtained by a series of succeeding remote traffic microwave sensors is processed to map travel 
times measured by a probe vehicle on sections bounded by these sensors. Travel time measures approximated by the 
neural models are compared with the corresponding field measurements obtained by the probe vehicle. 

 



Hilmi Berk Celikoglu / Procedia Social and Behavioral Sciences 20 (2011) 613–620 615 Hilmi Berk Celikoglu / Procedia – Social and Behavioral Sciences 00 (2011) 000–000  

3.1. Study area and data 

Field data is obtained from four successive remote traffic microwave sensor (RTMS) units all located in side-
fired position on a three-lane freeway approach of a Bosphorus strait crossing, on the Asian side of Istanbul. 
Measurements on traffic variables, i.e., long vehicle counts, n1(t), the rest vehicle counts, n2(t), speed, s(t), and 
occupancy, o(t), for the reference time period ‘t’ of three lanes labelled consecutively from 1 to 3 where lane#3 is 
adjacent to the median (Fig. 1). 
 

 Bosphorus strait 

crossing lane#1 
lane#2 
lane#3 

An upstream 

sensor 

A downstream 

sensor 
 

Figure 1 Location of successive RTMS units on schematic freeway approach to strait crossing. 

Each measurement on the variables of flow per lane is obtained within two minutes period at sensors during the 
period 06.00-12.00 a.m. of January 25th, 2008. The variations of total vehicle count, speed, and occupancy measures 
within two minutes period over the freeway section are respectively given in Fig. 2, Fig. 3, and Fig. 4. 

 

 

Figure 2 Spatiotemporal variation of total vehicle count measures obtained at succeeding RTMS units. 
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Figure 3 Spatiotemporal variation of speed measures obtained at succeeding RTMS units 

 

Figure 4 Spatiotemporal variation of occupancy measures obtained at succeeding RTMS units. 

3.2. Problem formulation and numerical analysis 

The success of radial basis function neural network (RBFNN) method in functional approximation is well 
documented in the relevant literature (Poggio and Girosi, 1989), which motivated us to evaluate its performance in 
freeway travel time mapping. In the following, the theory behind the RBFNN method and the analysis involving 
RBFNN are summarized.  

3.2.1. Radial basis function neural network method 
The radial basis function (RBF) neural network method, as artificial neural network, is made of three layers: a 

layer of input neurons feeding the feature vectors into the network; a hidden layer of RBF neurons, calculating the 
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outcome of the basis functions; and a layer of output neurons, calculating a linear combination of the basis functions 
(see Fig. 5, in which the structure of an RBFNN is shown). 

 

 

Figure 5 Structure of a radial basis function neural network. 

RBFNNs are generally used for function approximation, pattern recognition, and time series prediction problems. 
Such networks have the universal approximation property, arise naturally as regularized solutions of ill-posed 
problems, and are dealt well in the theory of interpolation (Poggio and Girosi, 1989). Their simple structure enables 
learning in stages, gives a reduction in the training time, and this has led to the application of such networks to many 
practical problems. The adjustable parameters of such networks are the centers (the location of basis functions), ‘cj’, 
the width of the receptive fields (the spread), ‘j’ the shape of the receptive field and the linear output weights. An 
RBFNN is a feed-forward network (Poggio and Girosi, 1989) with a single layer of hidden units, ‘x’, that are fully 
connected to the linear output units. Eq. 1 shows the output units, ‘j(x)’ form a linear combination of the basis (or 
kernel) functions, ‘K’, computed by the hidden layer nodes. 

Each hidden unit output j is obtained by calculating the closeness of the input to a n-dimensional parameter 
vector cj associated with the jth hidden unit. K is a positive radially symmetric function (kernel) with a unique 
maximum at its centre cj, dropping off rapidly to zero away from the centre. Activations of such hidden units 
decrease monotonically with the distance from a central point or prototype (local) and are identical for inputs that lie 
at a fixed radial distance from the centre. 

Assume that a function f: RnR1 is to be approximated with an RBF network, whose structure is given below. 
Let xRn be the input vector, (x, cj, j) be the jth function with centre cjRn, and width j, w=(w1, w2, …, wM)RM 
be the vector of linear output weights and M be the number of basis function used. We concatenate the M centres 
cjRn, and the widths j to get c=(c1, c2, …, cM)RnM and =(1, 2, …, M)RM, respectively. The output of the 
network for xRn and RM is shown in Eq. 2. 
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Now, let (xi, yi): i=1, 2, …, N be a set of training pairs and y=(y1, y2, …, yN)T the desired output vector, in which 
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3.2.2. Radial basis function neural networks involved analysis 
RBFNN travel time specification process consists of two steps, respectively the training and testing step. The 

prediction problem is transformed into a minimum norm problem: the search for an RBFNN to map travel time 
specific to each section bounded by the succeeding sensors on the freeway segment, that minimizes the Euclidean 
distance, P(UIk)–NN(UIk), where  UIk and Yk are the actual values vector series (obtained by the four succeeding 
sensors), UI=[n11,1(t), n11,2(t), n11,3(t), n21,1(t), n21,2(t), n21,3(t), s1,1(t), s1,2(t), s1,3(t), o1,1(t), o1,2(t), o1,3(t), n12,1(t), 
n12,2(t), n12,3(t), n22,1(t), n22,2(t), n22,3(t), s2,1(t), s2,2(t), s2,3(t), o2,1(t), o2,2(t), o2,3(t), n13,1(t), n13,2(t), n13,3(t), n23,1(t), 
n23,2(t), n23,3(t), s3,1(t), s3,2(t), s3,3(t), o3,1(t), o3,2(t), o3,3(t), n14,1(t), n14,2(t), n14,3(t), n24,1(t), n24,2(t), n24,3(t), s4,1(t), 
s4,2(t), s4,3(t), o4,1(t), o4,2(t), o4,3(t)] is the input vector of NN for all four lanes, and Yk+1=P(UIk). With RBFNN 
method, the solution to the minimum norm problem involves a number of steps. The first one is the choice of the 
model inputs, and the second step is the attainment of parameters that minimize the norm given above. In order to 
obtain an approximation to time-varying density variable of each lane, the input variables are selected on purpose to 
accurately represent the flow state variation within the section bounded with succeeding sensors. Each of the long 
vehicle counts n1ij(t), the rest vehicle counts n2ij(t), speed measurements sij(t), and occupancy measurements oij(t) is 
selected as an input node, where i is the sensor label, i=1,2,3,4 and j is the counter for lane number, j=1,2,3. 
Therefore, the input layer of the neural network configuration consists of 48 nodes and the three output layer nodes 
represent the travel times specific to each section bounded by four succeeding sensors. 

Since the success of an NN approximator depends heavily on the availability of a good subset of training data, 
data partitioning for the NN approximator is carried out considering explicitly the error term computations in all 
available partitions. The iterative structure of the training process needs a threshold value to stop learning; 
performance criteria for varying RBFNN configurations require convergence to some selected error term targets. 
One SSE value is targeted for RBFNN training processes. During the training stage the first half of the data set, 
three hours’ 2 minutes interval based collected portion, out of 180 values were analyzed, the last 90, the data of the 
succeeding three hours, were then used to examine the performance of the testing phase. The optimum number of 
training pairs has been selected considering the minima existing after the plot of MSE terms obtained by scaled 
training pairs. Following the training period, the networks are applied to the testing data and RBFNN performance is 
evaluated with the selected statistical criteria. The training vectors formed the initial centers of the Gaussian RBFs. 
The initial process of the training procedure was the determination of the hidden layer besides the number of nodes 
in the input layer, providing best training results. Because the second step is largely a trial-and-error process, and 
runs involving RBFNNs with hidden layer node were more than 47, any sizeable improvement in prediction 
accuracy is not observed. The selected number of radial basis functions for the single hidden layer was 48. The 
optimum spread parameter has been selected as 0.29, after the trials with the selected hidden layer node number. In 
the training process, 96 iterations are found sufficient with respect to the minimum SSE term obtained. 

3.2.3. Simulation results 
To represent the deviation of RBFNN mappings on section based travel times from section based probe vehicle 

measured travel times, the terms of the root mean squared percent error (RMSPE) and the coefficient of 
determination (R2) are calculated to evaluate statistical performance and shown in Table 1. 

Table 1 Performance Criteria for Each Lane 

 R2 RMSPE (%) 

Section#1 0.856 11.04 

Section #2 0.844 14.22 

Section #3 0.828 16.29 

 
The deviations of results from measurements, the RBFNN mapped travel times are plotted with the 

corresponding probe vehicle collected values are represented with the square of the correlation coefficient given in 
Table 1 for section#1, section#2, and section#3. In both periods including the minima and the maxima of the field 
data, the configured RBFNN provided pretty close estimates that is supported with the statistical performance 
criteria presented in Table 1. The results point out that the function approximation by RBFNN is close to the original 
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one. Efficiency of neural networks can be attributed to the capability of neural networks to capture the nonlinear 
dynamics and generalize the structure of the whole data set. During the mapping of travel time measure from the 
input vehicle count, speed, and occupancy variables, the nonlinear relationship of traffic flow variables and traversal 
time along the sections bounded by successive sensors on the freeway segment are modelled more appropriately 
with utilizing nonlinear transfer functions in the nodes of the hidden layer of neural network configuration. 

4. Conclusions 

Neural network estimating method, whose theoretical background is quite different, is able to provide accurate 
travel time measures consistent with the spatiotemporal nature of this performance variable. Considering the 
simulation trials and calculated statistical performance criteria, it is seen that approximating with radial basis 
functions leads to significantly considerable predictions. This is due to RBF’s flexibility to adapt to nonlinear traffic 
flow relationships. Following the process of the non-linearity in the neurons of hidden layer, the linear filtering is 
applied by the summing up nodes in the output layer. 

Neural networks have a distributed processing structure in which each individual processing unit or the weighted 
connection between two units is responsible for one small part of the input-output mapping system. Therefore, each 
component has no more than a marginal influence with respect to the complete solution. As a result, the neural 
mechanism will still function and generate reasonable mappings where travel time measure is being perceived as a 
crucial performance evaluation criterion in the analysis of transportation systems. The adaptation of neural network 
methods to real-time estimation tools in the purpose of specifying appropriate measures for information 
dissemination and traffic management is the main future research direction in dynamic network traffic modeling. 
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