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Neuropeptides are found in manymammalian CNS neurons where they play key roles in modulating neuronal
activity. In contrast to amino acid transmitter release at the synapse, neuropeptide release is not restricted to
the synaptic specialization, and after release, a neuropeptide may diffuse some distance to exert its action
through a G protein-coupled receptor. Some neuropeptides such as hypocretin/orexin are synthesized
only in single regions of the brain, and the neurons releasing these peptides probably have similar functional
roles. Other peptides such as neuropeptide Y (NPY) are synthesized throughout the brain, and neurons that
synthesize the peptide in one region have no anatomical or functional connection with NPY neurons in other
brain regions. Here, I review converging data revealing a complex interaction between slow-acting neuromo-
dulator peptides and fast-acting amino acid transmitters in the control of energy homeostasis, drug addic-
tion, mood and motivation, sleep-wake states, and neuroendocrine regulation.
Just as there are multiple perceptions for the proverbial blind

men as to what an elephant is, there are numerous perspectives

one can adopt to view neuropeptide modulation in the CNS.

Here, I take the view that neuropeptide modulation in the CNS

is inextricably linked with fast amino acid GABA and glutamate

signaling. Many other viable perspectives exist and are not

mutually exclusive. I have used a few examples of peptide

secretion and actions which may be representative of many

brain regions not discussed herein; many of the examples

used here are from the hypothalamus, the part of the brain

where neuropeptides have been most thoroughly studied.

Many important neuropeptides are not included in the review.

Although the focus here is on neuropeptides, some of the mech-

anisms of release and many of the mechanisms of response to

neuropeptides may generalize to other neuromodulators in the

brain, including the catecholamines, serotonin, adenosine, en-

docannabinoids, and neurotrophic factors. Neuropeptides can

exert direct effects on neuronal physiology within seconds to

minutes, and can also modulate gene expression over the

course of hours to days; the focus here is on the direct neuro-

physiological actions.

The nomenclature of neuropeptides can initially be confusing.

Names of CNS neuropeptides often give a historical perspec-

tive indicating what the peptide-pioneers initially discovered

as the putative function. Since many neuropeptides were

discovered in the context of regulation of hormone release,

neuropeptide names may bear that functional link. True to its

name, somatostatin released into the portal blood supply of

the median eminence from nearby hypothalamic neurons can

decrease growth hormone secretion from the pituitary gland;

on the other hand, the somatostatin-synthesizing neurons in

the cortex and hippocampus have no functional relation to

hormone regulation. The same is true for thyrotropin-releasing

hormone in thalamic neurons, and vasopressin- and gastrin-

releasing peptide in circadian clock neurons of the suprachias-

matic nucleus where the neuropeptide names have no bearing

on their local function.
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Where Do Peptides Act?
Despite strong evidence showing substantive functional roles for

many neuropeptides, at the cellular level a number of mysteries

remain. Even seemingly straightforward questions can be

complicated, such as: how far from a neuronal neuropeptide

release site does a peptide act? For the amino acid neurotrans-

mitters GABA, glycine, and glutamate, release occurs to a large

degree at a presynaptic active zone, the transmitter diffuses

a few tens of nanometers, activates receptors on the postsyn-

aptic neuron, and then the transmitter is rapidly degraded or

transported intracellularly. Amino acid transmitters act rapidly

at ionotropic receptors and at very discrete and spatially adja-

cent synaptic sites. Neuropeptides, in contrast, may be released

from many additional release sites not restricted to the synaptic

specialization, raising the question of where they act. For

example, in classic work on the frog sympathetic ganglia, a

gonadotropin-releasing hormone (GnRH)-like peptide was

released by preganglion axons and acted on cells some microns

away from the release site (Jan and Jan, 1982). Even in the case

of nonsynaptic release, a neuropeptide could still act on cells

that are postsynaptic to the axon that releases it. For instance,

GABAergic neuropeptide Y (NPY) cells of the arcuate nucleus

make synaptic contact with other nearby arcuate nucleus

neurons that synthesize proopiomelanocortins (POMC); NPY

hyperpolarizes the POMC neurons (Cowley et al., 2001), and

therefore even though NPY may not be released synaptically, it

can still exert an inhibitory effect on the cell postsynaptic to its

parent axon.

A second possibility that has received considerable attention

is that the peptide can diffuse long distances to act far from

the release site. Very long distance signaling has been found

for a number of neuroactive peptides/proteins. For instance, lep-

tin from adipose tissue, ghrelin from the stomach, and insulin

from the pancreas are released a long distance from the brain

but act on receptors within the CNS as signals of energy homeo-

stasis. The blood brain barrier may prohibit entrance into the

brain for many blood borne peptides; on the other hand, some
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regions of the brain such as the median eminence/arcuate

nucleus may maintain a weak blood brain barrier which permits

blood borne signals to enter the brain. Enhanced transport

mechanisms may also exist for facilitating movement of some

peptides into the brain. Long-distance signaling within the brain

has been called volume transmission, and there is a substantial

body of literature addressing this (Fuxe et al., 2005, 2007; Jans-

son et al., 2002). Consistent with long distance diffusion, neuro-

peptide receptors aided by G protein amplification tend to be

sensitive to low nanomolar concentrations of peptide; this

compares to the substantially less sensitive ionotropic amino

acid receptors that respond to micromolar quantities of GABA

or glutamate. Furthermore, some peptides have been suggested

to maintain a long extracellular half-life (Ludwig and Leng, 2006),

thereby maintaining activity during the temporal window

required for diffusion.

In many parts of the brain, the expression patterns of peptide-

containing processes and the homologous peptide receptors

overlap, consistent with a local action of the neuropeptide. But

in a large number of CNS loci, the anatomical expression of a

particular peptide and its receptors may be in completely

different regions of the brain, as noted in the extensive review

of such anatomical mismatches by Herkenham (1987). This

peptide-receptor mismatch could be simply a nonfunctional

throwback to some partial preservation of an interaction that

was important in the evolutionary past but is no longer relevant.

Alternately, for peptides such as oxytocin, there may be massive

release due to the simultaneous activation of a majority of

oxytocin neurons within the brain; this can raise the extracellular

oxytocin in the area of the supraoptic nucleus to a level 100-fold

greater than circulating oxytocin (Ludwig and Leng, 2006), allow-

ing diffusion of a higher concentration of peptide to activate

oxytocin receptors at more distant sites than would be possible

with asynchronous firing.

Arguing against long distance release and response as

a general rule is the fact that a number of neuropeptides, for

instance, NPY, dynorphin, or somatostatin, are synthesized

and released by many unrelated groups of neurons in different

regions of the brain. Any specific role of the peptide relevant to

the releasing neuron would be negated if the same peptide

from other brain regions was diffusing long distances. Further-

more, peptidases actively break down peptides extracellularly,

reducing the effective distance an active peptide may diffuse.

Depending on the size, presence of disulfide bonds which

increase peptide half-life, amidation, and chemical confirmation

of the peptide, peptide half-lives can vary.

Administration of a particular peptide or other modulator into

a receptor-rich region of the brain lacking in that particular

peptide can generate very selective functional responses, sug-

gesting a functional plausibility to volume transmission. How-

ever, neuropeptide receptors simply respond to peptide, and

even if the response is specific for a particular brain region or

circuit, it may be simply a response of selective circuit activation

or inhibition that may not normally occur. A more convincing

strategy to show that long distance neuropeptide diffusion may

play a functional role would be the use of a receptor antagonist

in a region lacking specific peptidergic inputs to show the oppo-

site effect of peptide injection; but even the receptor antagonist
strategy can be complicated, as some receptor antagonists may

act as inverse agonists, reducing a constitutively active receptor

to a level below a normal partially-active state.

For the majority of axons in the CNS that release neuropep-

tides, I favor a third local diffusionhypothesis- that neuropeptides

releasedbymost neuronsact locally on cells near the releasesite,

with a distance of action of a few microns. Thus, a peptide’s

action would be on its synaptic partners (even if the peptide is

not released at the presynaptic specialization) and on immedi-

ately adjacent cells. In part this perspective is based on the low

frequency of dense core vesicles in most CNS axons and the

hours it would take to replenish released peptides from sites of

synthesis in the cell body, making it difficult to achieve a sub-

stantial extracellular concentration of neuropeptide needed for

a long-distance effect. In this context, the relatively slow replen-

ishment of neuropeptide modulators may differ from catechol-

amine neuromodulators that can be synthesized rapidly within

axon terminals to support ongoing release. Furthermore, as

determinedwith ultrastructural analysis, a complex systemof as-

trocytic processes surrounds many axodendritic synaptic com-

plexes and tends to attenuate long-distance transmitter diffusion

from many release sites (Figure 1; Peters et al., 1991), thereby

impeding actions of peptides at far-away targets, and maintain-

ing a higher local extracellular concentration of the peptide.

Peters et al. credit Ramon y Cajal with favoring the concept that

a central function for gliawas isolation of neuronalmicrodomains.

That peptides released by most neurons may act within a few

microns of the release site does not negate the fact that some

peptides can be released in large quantities and can act at longer

distances. This may be the exception rather than the rule. For

instance, considering the multiple subtypes of highly specialized

NPY or somatostatin interneurons in the hippocampus or cortex,

coupled with the multiple peptide responses reported in nearby

cells and the highly specialized functions of different nearby

interneurons, often with restricted functional microdomains

(Freund and Buzsáki, 1996; Bacci et al., 2002; Klausberger

et al., 2003), it seems most likely that released peptides here

act primarily on nearby receptive partners.

Consistent with the local diffusion perspective are findings

related to peptides such as pigment dispersing factor (PDF)

which plays a key role in regulating circadian rhythms of inverte-

brates (Im and Taghert, 2010; Zhang et al., 2010). Although cells

that release PDF project to several regions of the Drosophila

brain, the response of the releasing cells to PDF appears to be

critical for some aspects of circadian function. Secreted PDF

acts on PDF autoreceptors expressed by the releasing lateral-

ventral pacemaker neurons to regulate the time of day during

which behavioral activity occurs (Choi et al., 2012; Taghert and

Nitabach, 2012, this issue of Neuron).

G Protein-Coupled Receptors
Most neuropeptides act by binding to a seven-transmembrane

domain G protein-coupled receptor (GPCR). Many hundreds of

these receptors have been identified and their normal ligand is

known; the ligands for a number of orphan GPCRs have not yet

been identified (see Civelli, 2012, this issue of Neuron). Binding

to the GPCR induces a conformational change in the receptor,

leading to activation of intracellular G proteins. Many G proteins
Neuron 76, October 4, 2012 ª2012 Elsevier Inc. 99



Figure 1. Astrocytes Isolate Synaptic Complexes
(A) Astrocytic processes (Ast.Proc.) surround presynaptic axons in contact
with central dendrite (DEN). Short arrows indicate SIG, silver intensified im-
munogold, long arrow showsDCV, dense core vesicle. Horizontal arrows show
astrocytic process surrounding synaptic complex. From van den Pol (1988).
(B) Three boutons contact a central dendrite (DEN). Two GABA boutons are
labeledwith immunogold, a thirdboutonmakesanasymmetrical synapse (A.S.)
typical of glutamate synapses. The synaptic complex is surrounded by several
layers of astrocytic processes (Ast.Proc.), indicated by horizontal arrows.
Width of micrograph, (A) 1.1 mm, (B) 1 mm.
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exist in an inactive heterotrimeric form consisting of Ga, Gb, and

Gg. Activation results in an exchange of GDP for GTP at the G

protein’s a subunit and the dissociation of the G proteins from

the GPCR. Peptide signaling is then amplified by the induction

of multiple intracellular signaling pathways that may involve ad-

enylyl cyclase, cAMP, MAPK/ERK, PKA, and phosphorylation

of a number of target proteins. Monomeric G proteins may also

play a role in modulating some ion channels and actions of

peptides (Murray and O’Connor, 2004; Vögler et al., 2008; Tha-

pliyal et al., 2008), and multiple G protein/effectors have been

described for some neuropeptides, for instance GnRH (Gardner

and Pawson, 2009). The actions of neuropeptides onGPCRs can

also be modulated at the receptor or effector level; for instance,

members of the RGS (regulator of G protein signaling) family of

proteins can accelerate activation or deactivation of G proteins

and may alter receptor-effector coupling (Chuang et al., 1998;

Doupnik et al., 2004; Labouèbe et al., 2007; Xie and Martemya-

nov, 2011). The literature on GPCRs is too voluminous to

examine here, but has been addressed in some recent reviews

(Rosenbaum et al., 2009; Hazell et al., 2012).

Peptide receptors are found heterogeneously distributed

throughout the brain, and can be expressed on cell bodies,

dendrites, and axon terminals. Some peptides, for instance

NPY, activate multiple different receptors expressed by target

neurons, whereas others appear to act primarily on a single

receptor, for instance kisspeptin acts primarily on GPR54. Our

understanding of peptide receptor subcellular localization has

lagged behind that of amino acid receptor localization, in part

due to questionable specificity of some peptide receptor anti-

sera. Perhaps the clearest picture that emerges of a class of

neuronal GPCRs is for metabotropic glutamate receptors

(mGluRs). These function similarly to neuropeptide GPCRs but

are activated by glutamate and can act in an excitatory or inhib-

itory manner. Subcellular localization of mGluRs may provide

some insight into the potential localization of neuropeptide

GPCRs. Eight different mGluRs have been identified and, inter-

estingly, are expressed in different regions of different neurons.

mGluR7, for instance, is often found at the presynaptic active

zone (Schoepp, 2001) and mGluR4, -7a, and -8a are found on

the presynaptic active zone of inhibitory axons, and only those

innervating other GABA interneurons but not those innervating

excitatory pyramidal cells (Kogo et al., 2004). mGluR1a is found

on the postsynaptic membrane at the periphery of the synapse

active zone (Baude et al., 1993); other mGluRs tend to be either

pre- or postsynaptic, depending on the expressing neuron and

mGluR subtype (Bradley et al., 1996). Future experiments on

the ultrastructural localization of neuropeptide receptors may

show similar sites of expression at specific regions of the plasma

membrane.

Which Neurons Contain Neuropeptides?
The classic view that neuropeptide-containing neurons repre-

sented an unusual type of neuron is giving way to the perspective

that many, perhaps most neurons in the brain, probably contain

some neuropeptide(s) or other neuromodulator in addition to

fast-acting amino acid neurotransmitters. In an examination of

individual sections containing synaptic boutons with electron

microscopy, with the boutons fixed to preserve the dense core
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of vesicles, some boutons appeared to contain only clear vesi-

cles, others contained clear and DCVs. However, serial ultrathin

section reconstruction of GABA-immunogold-labeled presyn-

aptic boutons from the paraventricular nucleus demonstrated

that every bouton contained at least a few dense core vesicles,

suggesting that in addition to a fast amino acid transmitter,

most if not all GABAergic axons here also contained some neu-

romodulator (Decavel and van den Pol, 1990). Release and

actions of these neuromodulators remains to be demonstrated.

Furthermore, because the axons studied contained GABAwhich

is not found inmagnocellular neurons, the profiles could not arise

from the local oxytocin or vasopressin neurosecretory cells.

Similarly, presynaptic boutons showing no immunogold GABA

labeling, many of which were probably glutamatergic, also

showed a similar frequency of DCVs in boutons, interspersed

with small clear vesicles. A complication to the detection of

DCVs with electron microscopy is that the dense core can be

lost by suboptimal fixation pH, duration, chemistry, and osmotic

pressure (Morris and Cannata, 1973), complicating detection in

some studies and biasing results toward a false-negative lack

of detectable DCVs.

A related question is whether all peptidergic axons also

contain a fast amino acid transmitter. Most evidence, including

that based on immunocytochemistry, calcium digital imaging,

and electrophysiology supports the perspective that the great

majority of peptidergic cells also employ fast amino acid trans-

mitters (van den Pol, 1991, 2003; van den Pol et al., 1990; van

den Pol and Trombley, 1993; Freund and Buzsáki, 1996).

Whereas hypothalamic neurons have long been recognized as

utilizing a large number of peptides, other regions of the brain are

now being seen as not substantively different in this regard. For

instance, in the hippocampus, a region with a rich history in the

study of fast GABA and glutamate transmission, a plethora of

neuropeptides are synthesized, particularly by GABAergic in-

hibitory interneurons, including neuropeptide Y, somatostatin,

vasoactive intestinal polypeptide, cholecystokinin, dynorphin,

enkephalin, neurokinin B, and substance P (Acsády et al., 1996,

2000; Billova et al., 2007; Antonucci et al., 2012; Dun et al.,

1994; Bering et al., 1997; Freund and Buzsáki, 1996). Hippo-

campal pyramidal cells, often used as a primary model for

the study of glutamatergic neurons, are reported to express

peptides, for instancecholecystokinin (Wyethet al., 2012), partic-

ularly inmodels of brain disease such as epilepsy. Froman evolu-

tionary perspective, peptide synthesis in invertebrates may give

us clues as to the parallel in vertebrates. In Aplysia, every identi-

fied motorneuron was found to contain one or more of a number

of different peptide modulators (Church and Lloyd, 1991).

Neuropeptide Release
Scientists have a keen insight into the temporal sequence and

many of the molecules involved in the release of fast neurotrans-

mitters at presynaptic specializations (Südhof, 2012). Release of

neuropeptides, mostly from nonsynaptic sites, has received

considerably less attention than fast transmitter release; neuro-

peptide release from dense core vesicles (DCVs) may require

a unique set of proteins that regulate transport and release

(Sieburth et al., 2005, 2007). Mammalian neuropeptide release

has been most thoroughly investigated in the neurohypophysis
where axons arising frommagnocellular neurons of the hypotha-

lamic paraventricular and supraoptic nuclei converge to release

vasopressin or oxytocin into the vascular system. Vasopressin

plays a key role in water homeostasis and water reabsorption

in the kidney, and oxytocin acts to evoke milk release during

lactation. The neurohypophysis provides a good model to study

release, as it contains a high density of large axon terminals filled

with large (180–200 nm diameter) dense core neurosecretory

vesicles, providing a relatively high and measurable amount of

peptide release. Classical work here has shown that the amount

of neuropeptide released per spike increases with spike fre-

quency up to a point (Dreifuss et al., 1971; Gainer et al., 1986)

and that spike bursts followed by intervals of silence are partic-

ularly effective at releasing oxytocin or vasopressin (Dutton and

Dyball, 1979; Bicknell and Leng, 1981; Cazalis et al., 1985). A

mechanism that has been reported to underlie this enhanced-

release phenomenon is the increase in cytoplasmic calcium in

axon terminals induced by spike bursts which may be a key to

the enhanced probability of DCV exocytosis (Bondy et al.,

1987; Jackson et al., 1991; Muschol and Salzberg, 2000).

Although the neurohypophysis provides a useful model for

studying neuropeptide release, there are some serious differ-

ences between peptide release from large neurohypophyseal

boutons filled with large neurosecretory vesicles and peptide

release from the more common small axon terminals that may

possess medium size (100 nm diameter) neuropeptide-contain-

ing DCVs; large DCVs have been estimated to contain 60,000

(Dreifuss, 1975) or 85,000 (Nordmann and Morris, 1984) mole-

cules of oxytocin or vasopressin. The volume of the medium

size DCVs in most neurons is roughly about 1/8 of the volume

of the large DCV inmagnocellular neurons, suggesting a similarly

reduced peptide content (Figure 2). Most axons that release

neuropeptides contain only a small number of DCVs that show

no preferential localization near presynaptic specializations, in

contrast to glutamate- or GABA-containing small clear vesicles

that tend to congregate in the active zone near the synaptic

specialization (Figures 2 and 3). Unlike the small clear vesicles

that can be refilledwith amino acid transmitter by vesicular trans-

porters locally within the axonal bouton, neuropeptides are

synthesized on the rough endoplasmic reticulum, and loaded

into DCVs that are generated in the Golgi apparatus of the cell

body, and DCVs must be transported down long thin axons for

release at sites distant from the cell body. The relatively small

number of DCVs in axon terminals of most neurons suggests

that neuropeptide release from boutons in the CNS is under

considerably different spatial and temporal constraints than

release from the neurohypophysis. If the small number of

DCVs in a single CNS bouton undergo exocytosis, it may be at

least several hours before replenishment.

Invertebrate neurons have proven useful for the study of

vesicle transport and release (Church et al., 1993; Whim and

Lloyd, 1992). Recent imaging evidence in invertebrate neurons

suggests that neuropeptide-containing DCVs are transported

in a seemingly inefficient manner, and shuttle back and forth

between the cell body and distal axon terminal. These DCVs

move in an anterograde direction onmicrotubules with themotor

kinesin-3 (Barkus et al., 2008), and then switch to dynein for

a ride in the retrograde direction back to the axon initial segment
Neuron 76, October 4, 2012 ª2012 Elsevier Inc. 101



Figure 2. Two Axons Make Symmetrical-Type
Synaptic Contact with a Magnocellular Neuron
The presynaptic axons contain a few dense core vesicles
(DCV, arrowheads) and many small clear synaptic vesicles
(SV). In the postsynaptic neuron, a large dense core vesicle
(LDCV) is shown by long arrow. Width of micrograph, 4 mm.
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where the direction again may be reversed, with only a minority

of DCVs moving into boutons during each trip (Wong et al.,

2012). In mammalian trigeminal ganglion neurons in vitro,

neuronal stimulation reduced anterograde velocity of DCVs,

and increased DCV pausing. As determined with pHluorin,

DCV membrane fusion and release occurred throughout the

axon and in axonal growth cones (Sobota et al., 2010).

A question that often arises when confronted with a peptide-

immunoreactive axon in apparent contact with another cell is

whether the axon makes a synapse with its putative partner,

theoretically therefore increasing the potential role of the

peptide. But maybe it is irrelevant if the immunoreactive axon

makes that synapse if peptides are released at nonsynaptic sites

and generally diffuse a few microns to activate nearby cells.

Why is peptide release difficult to study? Much of what we

know about fast transmitter release arises from the electrophys-

iological response to the released transmitter. Glutamate and

GABA both generate a very rapid ms response at the postsyn-

aptic specialization that can be easily detected as a shift in

voltage or current recorded from the postsynaptic neuron. In

contrast to the fast amino acid transmitters, as noted above,

the amount of neuropeptide released by a single bouton in the

CNS may be small, but even more importantly, the response of

receptive cells is relatively slow, on the order of many seconds

to minutes, making it difficult to correlate peptide release with

a response, and difficult to use quantal analysis of single or

multiple exocytotic events. Additionally, the rise time of a gluta-

mate- or GABA- mediated synaptic event is relatively fast, facil-

itating the segregation of individual events, whereas the rise time

for a neuromodulator is much slower. Finally, whereas a single

spike may release GABA or glutamate, peptide release may

require a higher level of activity, further confounding the study

of stimulus-response relationships. Capacitance recordings

have proven useful to study fusion of large DCVs and small
102 Neuron 76, October 4, 2012 ª2012 Elsevier Inc.
clear vesicles in magnocellular axon terminals of

isolated neurohypophyses (Klyachko and Jackson,

2002) and in isolated magnocellular neuron cell

bodies (de Kock et al., 2003).

Peptides can be genetically labeled with a fluo-

rescent reporter such as GFP and examined micro-

scopically, assuming controls are used to ensure

that the reporter does not alter peptide transport

and release (Lang et al., 1997; Burke et al., 1997).

Release of fast transmitters has been studied with

lipophilic dyes such as FM1-43 to detect dye inter-

nalization upon vesicle fusion (Ryan and Smith,

1995) and with a number of interesting genetically

encoded agents, for instance pHluorin, a GFP

variant with pH sensitivity (Pan and Ryan, 2012;

Ariel and Ryan, 2010; Kim and Ryan, 2010), but
these approaches have been used only to a limited degree in

the study of peptide release from boutons in the CNS (e.g., Fuen-

zalida et al., 2011).

One promising approach in the mammalian CNS is the use of

the invertebrate neuropeptide FMRF that directly opens an ion

channel resulting in an inward Na+ current, independent of G

protein coupling (Lingueglia et al., 1995). The FMRF peptide

and its receptor can be expressed in mammalian cells to study

fast responses to released peptide (Whim and Moss, 2001).

This FMRF approach has been employed to study neuropeptide

release from secretory endocrine cells, including pancreatic beta

cells (Whim, 2011) and adrenal chromaffin cells where co-

release of neuropeptide and catecholamines from single vesicles

was reported (Whim, 2006).

Another dimension of neuropeptide release is whether it is

constitutive (ongoing) or actively regulated. Ongoing release

may result in desensitization of receptors, and a decrease in

response amplitude, or it may result in a chronically active

receptor. Different responses have been found with slow and

fast release of brain derived neurotrophic factor (BDNF). Acute

activation by BDNF of the TrkB receptor resulted in developing

hippocampal neuron neurite elongation, whereas sustained acti-

vation was more likely to initiate neurite branching, and the two

modes of release also differentially regulated expression of

Homer1 and Arc (Ji et al., 2010).

Dendritic Release of Neuropeptides
Peptides may be released locally by the somatodendritic com-

plex. Based on ultrastructural analysis of omega membrane-

fusion/release figures in fixed mammalian supraoptic nucleus

after high K+ or calcium ionophore A23187 stimulation, sugges-

tive evidence of neuropeptide exocytosis was found occasion-

ally at the presynaptic and perisynaptic membrane, but more

often independent of synaptic specializations, and was found



Figure 3. Comparison of Fast Amino Acid Synaptic Transmission (Left) and Slower Neuropeptide Transmission (Right)
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in the cell body, dendrites, axonal boutons, and axon shafts

(Morris and Pow, 1991). Neuropeptide release from the somato-

dendritic complex of magnocellular neurons may provide a

unique insight into release mechanisms and peptide signaling

in general. Again, the neurosecretory cells of the supraoptic

nucleus of the hypothalamus (Figure 4) provide a model system

in which to study dendritic release. The model is aided by

the high level of neuropeptide synthesized by magnocellular

neurons, the presence of a large number of large peptide-

containing DCVs in the dendrites, and key to the interpretation

of many of the results, the probable absence of local axon

terminals originating from magnocellular neurosecretory cells.

Magnocellular axons project primarily to non-synaptic terminals

in the neurohypophysis. In the paraventricular nucleus but not in

the supraoptic nucleus, parvocellular neurons also synthesize

oxytocin and vasopressin; axons from these parvocellular

neurons do not target the neurohypophysis, but instead make

synaptic contact with other CNS neurons in the brain and spinal

cord (Hosoya and Matsushita, 1979; Sawchenko and Swanson,

1982; Swanson and Kuypers, 1980).

Increases in action potential frequency generally enhance

release of neuropeptides from both axons and dendrites. A key

ion in release of both fast amino acid transmitters and peptides

is calcium; peptide release may require a greater increase in

cytoplasmic calcium, and possibly greater neuronal activity,

than needed for amino acid secretion (Tallent, 2008). Depolariza-

tion of the membrane potential activates voltage-gated calcium
channels, leading to calcium influx through the plasma

membrane, and initiation of vesicle release. Several lines of evi-

dence suggest the intriguing possibility that dendritic release

may be regulated in a manner independent from axonal release

under some circumstances. In part, differences in release may

be dependent on different sets of ion channels in axons and

dendrites. For instance, different calcium channels may underlie

dynorphin release from hippocampal dendrites and axons;

activation of L-type calcium channels enhanced release from

dendrites, but not axons (Simmons et al., 1995). Depolariza-

tion-mediated oxytocin release from supraoptic neuron den-

drites was dependent primarily on N-type calcium channels

and to a lesser extent, P/Q channels; other calcium channels

played no substantive role in mature oxytocin neurons (Tobin

et al., 2011; Hirasawa et al., 2001). In parallel, calcium channel-

independent mechanisms differ between axons and cell body;

the endoplasmic reticulum plays a role in calcium regulation/

peptide release from the oxytocin cell body but does not appear

to play a substantive role in the axon terminal. Differences

between axon terminals and cell bodies may also be found in

systems that reduce calcium, including mitochondria, plasma

membrane calcium pumps, and sodium/calcium exchangers

(Dayanithi et al., 2012). Finally, ATP coreleased from magnocel-

lular neurons exerts different feedback effects on axon terminals

and cell bodies, potentially differentially regulating peptide

release, in part due to different sets of ATP receptors on axons

and cell bodies (Lemos et al., 2012).
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Figure 4. Micrograph Showing the Oxytocin Neurons of the
Hypothalamic Supraoptic Nucleus
Width of micrograph, 900 mm.
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Calcium can also be released into the cytoplasm from intracel-

lular stores, particularly the endoplasmic reticulum. Oxytocin,

or agents such as thapsigargin that induce calcium release

from intracellular stores into the cytoplasm, can directly evoke

dendritic release of oxytocin or vasopressin independent of

action potentials (Lambert et al., 1994; Ludwig et al., 2002).

Release of intracellular calcium can also prime the system for

enhanced release upon subsequent increases in electrical

activity (Ludwig et al., 2002; Ludwig and Leng, 2006). Oxytocin

receptor activation induces phospholipase C resulting in

production of IP3 and subsequent release of calcium from the

endoplasmic reticulum. This priming enhances the subsequent

release of oxytocin, potentially related to actin-dependent move-

ment of peptide-containing granules toward the plasma

membrane (Tobin and Ludwig, 2007; Leng et al., 2008). Priming

of oxytocin-laden DCVs, in part by movement of the DCVs to

a position closer to the plasma membrane, allows a substantial

amplification of oxytocin release with subsequent electrical

activity. Interestingly, priming with thapsigargin can increase

the K+-mediated depolarization-induced oxytocin release for

an extended period of 90 min (Ludwig et al., 2002). Priming of

DCV release has been studied outside the brain, particularly in

pituitary cells that synthesize luteinizing hormone; axonal release

of GnRH from preoptic neurons into the portal blood supply

of the median eminence primes the luteinizing hormone cells

by multiple mechanisms to show an enhanced release in re-

sponse to subsequent GnRH stimulation (Leng et al., 2008;

Fink, 1995).

Differential expression of proteins involved in exocytosis in

dendrites and axon terminals may also account for differences

in release. In magnocellular axon terminals in the neurohypoph-

ysis, VAMP-2, SNAP-25, and syntaxin-1 are found near oxytocin

and vasopressin-containing dense core vesicles; in contrast, the

dendrites of the same cell type contain syntaxin-1, but SNAP-25,

VAMP-2 and synaptotagmin-1 show no colocalization with

oxytocin or vasopressin (Tobin et al., 2012). Synthesis of neuro-

peptides generally occurs in the cell body, but has also been re-

ported in dendrites. Dendritic synthesis of neuromodulators

such as BDNF has been suggested as playing a critical role in

the development of cortical dendritic spines (Kaneko et al.,

2012), and in responses of hypothalamic neurons to leptin to

control energy homeostasis (Liao et al., 2012).

What function would a dendritically released neuropeptide

play? The most probable role would be that the neuropeptide

acts to signal other nearby neurons to either increase or
104 Neuron 76, October 4, 2012 ª2012 Elsevier Inc.
decrease activity. In the olfactory bulb, most of the neurons,

including mitral, periglomerular, and granule cells possess

dendrites that release either GABA or glutamate at presynaptic

specializations (Shepherd et al., 2004). Many of the presynaptic

dendrites are organized in a reciprocal manner; for instance,

mitral cell dendritic release of glutamate activates a presynaptic

granule cell dendrite that releases GABA back onto the mitral

cell, resulting in feedback inhibition. In contrast, most dendrites

in the brain are not presynaptic to other cells, and dendritic

release of peptides appears to be independent of synaptic

specializations. Nonsynaptic release of oxytocin or vasopressin

could serve to recruit or inhibit neighboring cells, or to synchro-

nize activity. Oxytocin receptors are expressed by oxytocin

neurons (Freund-Mercier et al., 1994), and vasopressin recep-

tors by vasopressin cells (Hurbin et al., 2002). During lactation,

oxytocin is released in an orchestrated burst where many or

most oxytocin neurons fire rapidly for a brief period of about

a second (Armstrong and Hatton, 2006; Leng et al., 2008). Inter-

mittent bursts of oxytocin release may prevent oxytocin recep-

tors in the mammary gland from desensitizing if oxytocin levels

were to remain at statically raised levels. The burst of oxytocin

potentially appears to be dependent on dendritic release of

oxytocin that primes the cells for subsequent massive oxytocin

release induced by an increase in spike frequency, as described

above.

Dendritically released peptides can act to initiate retrograde

signals to modulate subsequent release of fast amino acid

neurotransmitters from local axons. Oxytocin released by mag-

nocellular cell bodies and dendrites reduces presynaptic gluta-

mate and GABA release; although this was initially thought to

be mediated by presynaptic peptide receptors, it appears

more likely that oxytocin release activates receptors on oxytocin

cells, resulting in release of an endocannabinoid that diffuses in

a retrograde direction to activate CB1 receptors on presynaptic

axons and thereby reducing fast transmitter release (Kombian

et al., 1997, 2002; Hirasawa et al., 2001, 2004; Leng et al.,

2008). Oxytocin release appears to be obligatory to achieve

this presynaptic inhibition after depolarization of oxytocin

neurons (Hirasawa et al., 2004). Blockade of synaptic activity

transiently isolates oxytocin cells from external influences,

potentially amplifying local cellular interactions. Here, the modu-

latory peptide that activates endocannabinoid secretion is

released from dendrites to inhibit nearby presynaptic axons;

a key feature of endocannabinoid modulation in many brain

regions is release from the postsynaptic neuron and retrograde

diffusion to modulate fast transmitter release from a presynaptic

axon, resulting in either short or long-lasting attenuation of GABA

or glutamate release by depression of presynaptic calcium,

increase in potassium conductance, or direct inhibition of vesicle

fusion (Lovinger, 2008). In vasopressin neurons, depolarization-

induced release of endocannabinoids also attenuated presyn-

aptic GABA synaptic activity by a calcium-dependent mecha-

nism; in addition, induced release of vasopressin reduced

IPSC frequency by a second cannabinoid-independent mecha-

nism (Wang and Armstrong, 2012).

Neurons in the preoptic/septal area synthesize GnRH. These

neuronsmay also release peptide from their dendrites to orches-

trate activity of other nearby GnRH neurons. Studies on fetal



Figure 5. Whole-Cell Recording of GABA-Mediated Synaptic
Currents Showing TRH Increases Frequency
TRH substantially increased the frequency of the IPSCs recorded in
GABAergic MCH neurons, which recovered after peptide washout. The
GABAA receptor antagonist bicuculline (BIC) blocked the synaptic currents.
TRH had no effect on miniature PSCs. Recordings were done in the presence
of AP5 and CNQX to block responses to synaptically released glutamate. The
recording pipette contained a high concentration of Cl�, resulting in GABA-
mediated inward currents. From Zhang and van den Pol (2012).
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primate GnRH neurons found FM1-43 labeling increased in cell

body and dendrites with increased activity, and suggested co-

localization of FM1-43 with GnRH immunoreactivity (Fuenzalida

et al., 2011); further corroboration with imaging of mature neuron

somatodendritic release from live GnRH cells would comple-

ment the histology.

The magnocellular neurosecretory neurons provide a good

model in which to study dendritic release of peptides, but as

with axonal release, these cells contain a substantially greater

number of peptide-containing DCVs, probably by a couple of

orders of magnitude, than other peptide- releasing neurons

that do not maintain a prominent projection to the median

eminence or neurohypophysis. That other neurons with more

modest expression of peptides follow the same model of

dendritic release is possible but merits further exploration.

Neuropeptide Modulation of GABA and Glutamate
Synaptic Actions
Most fast synaptic activity in the brain is due to synaptic release

of excitatory glutamate or inhibitory GABA or glycine. Modulation

of fast amino acid synaptic activity is a key target of CNS neuro-

peptides. Classically, signaling in regions of the brain such as the

hypothalamus involved in homeostatic regulation have been

seen as being based on direct peptidergic actions. A number

of early reviews on the transmitters of the hypothalamus either

ignored GABA and glutamate or included only a brief mention

of them. In contrast, signaling in higher regions of the brain

such as the hippocampus and cortex was seen primarily as

being based on GABA and glutamate transmission, with less

consideration of neuropeptide modulators. This dichotomy has

shown a strong convergence in recent years, with a greater

appreciation of fast transmitters in the more vegetative regions

of the brain, and more inclusion of neuropeptide modulation in

higher brain regions. Although peptide action in the CNS is not
restricted to modulation of fast synaptic activity, many actions

of peptides do alter GABA or glutamate signaling at post- or

presynaptic sites. For instance, Figure 5 shows an electrophys-

iological example of an excitatory peptide, TRH, that enhanced

the activity of local presynaptic GABA neurons, resulting in an

increased inhibition in GABAergic MCH neurons.

That peptides can play key roles in CNS function is shown in

experiments where genes coding for peptides were deleted.

Knocking out the POMC peptides resulted in an increase in

food intake and obesity, consistent with the view that these cells

play an anorexigenic role in energy homeostasis (Yaswen et al.,

1999); injections of alpha MSH agonists reversed the obesity.

Knockout of the MC4 receptor also results in obesity in rodents

(Huszar et al., 1997). In parallel, severe human obesity can be

caused by mutations in genes coding for POMC or its melano-

cortin receptors (Hager et al., 1998; Yeo et al., 2000; Krude

et al., 2003; Mencarelli et al., 2012).

An intriguing example of the importance of amino acid trans-

mitters in cells considered as primarily peptidergic is shown by

recent work on the inhibitory NPY/AgRP neuron. These cells

play a key orexigenic role in food intake. As noted above, injec-

tions of either NPY or AgRP into the hypothalamic area increase

food intake (Clark et al., 1984; Woods et al., 1998; Marsh et al.,

1998). Selective activation of the NPY/AgRP neuron with

DREADD (designer receptors exclusively activated by designer

drugs; Rogan and Roth, 2011) receptors increased feeding and

reduced energy expenditure (Krashes et al., 2011). Hunger and

ghrelin evoke a long-lasting increase in glutamatergic activity

to the AgRP neurons, and leptin reverses the increased activity

suggesting an on/off activation of glutamate input to AgRP

neurons is important in regulating activity and energy homeo-

stasis (Yang et al., 2011). In genetic knockout mice, various

neuroactive substances have been deleted from the NPY/

AgRP neuron. Surprisingly, the loss of NPY or its receptor, or

AgRP did not evoke a substantive change in feeding phenotype

(Palmiter et al., 1998; Qian et al., 2002; Erickson et al., 1996).

However, selective loss of AgRP/NPY neurons in the adult led

to a cessation of feeding and death (Luquet et al., 2005; Gropp

et al., 2005), suggesting that NPY and AgRP, while important

modulators of food intake, are only part of the transmitter puzzle

regulating energy homeostasis, and that other substances

released by the AgRP/NPY neurons are critical for survival, as

examined below.

The other piece of the transmitter puzzle synthesized by

AgRP/NPY neurons is GABA. Loss of GABA input to the parabra-

chial nucleus (PBN) appears to be essential for the severe drop in

food intake and death that results from ablation of the AgRP/NPY

neuron. Increasing GABA receptor activation in the PBN (Wu

et al., 2009), or reducing excitatory input to the PBN from the

nucleus of the solitary tract (Wu et al., 2012) both enhanced

food intake and survival. Suppression of glutamate excitation

in the PBN reversed starvation caused by AgRP/NPY neuron

ablation, and increased food intake in otherwise normal mice

(Wu et al., 2012). Together these data suggest that peptidergic

signaling in the AgRP/NPY cells plays a modulatory role in

food intake, but that the fast amino acid transmitter plays a key

role in some aspects of the function of these cells that cannot

be ignored.
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Figure 6. Presynaptic Neuropeptide Modulation of Fast Amino Acid
Transmitter Release
(A) A schematic representation of two axons both in synaptic contact with
a common dendrite.
(B) Release of neuropeptide from the bouton on the left diffuses laterally to the
other axon and enhances release of the fast amino acid transmitter.
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AgRP/NPY neurons also project to the paraventricular

nucleus; in a complex series of experiments based in part on

selective optogenetic activation and inactivation, AgRP/NPY

axonal projections to oxytocin neurons were found to be critical

for stimulation of feeding elicited from activation of AgRP/NPY

cells. Both NPY and GABA inhibition of paraventricular oxytocin

cells contributed to the initiation of feeding (Atasoy et al., 2012);

the role of the GABA projection from the AgRP/NPY neuron to

the PBN was interpreted in the context of visceral malaise.

Another independent line of work has shown that knocking out

glutamate neurotransmission from SF1 neurons of the hypotha-

lamic ventromedial nucleus disturbs glucose regulation and

causes mice to suffer from hypoglycemia during fasting and to

have defective responses to insulin-induced hypoglycemia

(Tong et al., 2007).

Modulation of GABA and Glutamate Release by
Neuropeptides
One substantial mechanism underlying neuropeptide modifica-

tion of neuronal activity is the modulation of neurotransmitter

release by direct peptide actions on the axon terminal (Miller,

1998; Willis, 2006). Some peptides, for instance NPY (Colmers

et al., 1988), somatostatin (López-Huerta et al., 2012; Tallent

and Siggins, 1997), and dynorphin, tend to reduce transmitter

release, whereas others such as hypocretin (van den Pol et al.,

1998) or glucagon-like peptide 1 (Acuna-Goycolea and van

den Pol, 2004) enhance release probability. Neuropeptide recep-

tors are found on both glutamate and GABA axon terminals

(Figure 6). In some regions of the brain, presynaptic modulation

has been suggested as the primary or only role of some neuro-

peptides. NPY, for instance, acts to a large degree by inhibiting
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neurotransmitter release from excitatory CA3 neurons in the

hippocampus; NPY had no detectable effect on either the active

or passive membrane properties of CA3 pyramidal neuron cell

bodies but reduced release of glutamate from axons of these

cells that terminated on CA1 pyramidal cells by a mechanism

based on reduction of calcium influx into the axon terminal

(Colmers et al., 1988). In the dentate gyrus, NPYY2 receptors ex-

pressed on axon terminals inhibited glutamate or GABA release,

and NPY Y1 receptors on granule cells mediated a cellular

inhibition (Sperk et al., 2007). Insight into a potential function of

hippocampal NPY is provided by NPY gene knockout (KO)

mice which maintained normal electrophysiological activity in

the hippocampus but showed poor recovery after induction of

limbic seizures with the glutamate agonist kainate, which caused

death in the majority of NPY-KO mice compared with little death

in normal mice treated with similar doses of kainate (Baraban

et al., 1997). Similarly, NPY Y5-receptor KO mice were also

more sensitive to kainate-induced seizures (Marsh et al.,

1999a). Together these data support the view that NPY may

function as an endogenous anticonvulsant, in part by attenuating

glutamate release.

In contrast to its presynaptic actions onCA3 axons, NPY acted

primarily on cellular Y1 receptors to inhibit basolateral amygdala

neurons by suppressing a hyperpolarization-activated depola-

rizing Ih current that is a mixed cation current (Giesbrecht

et al., 2010).

Activation of presynaptic axonal peptide receptors can alter

transmitter release in a number of ways: alter voltage-gated

calcium channels, change potassium channel conductance,

change the phosphorylation state of a channel or channel-

related protein, or alter the actions of proteins involved in vesicle

movement or membrane fusion. As examined above, calcium

plays a key role in transmitter/neuropeptide release, irrespective

of the release site. Activation of voltage-gated calcium channels

increases cytoplasmic calcium by influx from the extracellular

space and enhances neuropeptide release. Calcium release

from intracellular stores can also enhance neuropeptide release

(Shakiryanova et al., 2011), and can potentially be achieved in

the absence of membrane potential depolarization (Ludwig and

Leng, 2006).

Many examples of peptides that alter GABA or glutamate

release presynaptically by modulation of cytoplasmic calcium

exist. For instance, MCH reduces calcium influx through L, N,

and P/Q type calcium channels and presynaptically reduces

release of glutamate and GABA (Gao and van den Pol, 2001,

2002). In the suprachiasmatic nucleus (SCN), nociceptin (orpha-

nin FQ) acts presynaptically to reduce glutamate release from

the retinohypothalamic tract by a mechanism based on attenua-

tion of N-type calcium currents, and to a lesser degree P/Q type

calcium currents; because the retinal ganglion cells have been

eliminated by brain slice preparation, the peptide actions could

not have been on the glutamatergic cell body (Gompf et al.,

2005). Similarly, nociceptin acts presynaptically to reduce

GABA release in the central amygdala (Roberto and Siggins,

2006). Excitatory hippocampal mossy fibers release dynorphin,

which results in heterosynaptic inhibition of glutamate release

from other hippocampal mossy fibers, and inhibits hippocampal

long-term potentiation (LTP) (Weisskopf et al., 1993) and is



Figure 7. NPY Inhibits Glutamatergic Hypocretin Cells by Multiple
Mechanisms
NPY acts on Y1 postsynaptic receptors to inhibit the hypocretin cell, and acts
on Y2 presynaptic receptors to attenuate release of GABA and glutamate.
Different actions of NPY are shown by the red arrows, with a downward arrow
indicating a decrease, and upward arrow an increase. These NPY axons also
contain GABA. Based on Fu et al. (2004) and Horvath et al. (1999). NPY
probably has similar effect on many of its target neurons, including the POMC
cell (Cowley et al., 2001), although the subset of NPY receptors expressed in
cell bodies or terminals may differ from cell to cell.
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dependent on calcium regulation, but not on a specific L, N, or

P calcium channel (Castillo et al., 1996). The long duration of

the dynorphin-induced effect on LTP was suggested to be due

to slow dynorphin clearance from the extracellular space.

Peptide release from an axon can potentially feed back on

the releasing axon to depress or enhance release of fast amino

acid transmitters. Mu opioid neuropeptides are released by

POMC neurons, and these peptides reduce release of fast amino

acid transmitters from POMC axons (Dicken et al., 2012).

Peptides released at a particular location can act at multiple

pre- and postsynaptic sites to modulate the activity of multiple

effectors. NPY acts pre- and postsynaptically to inhibit hypocre-

tin neurons and the axons that terminate on POMC neurons

(Figure 7; Fu et al., 2004). Hypocretin-2 enhances glutamate

release by presynaptic actions in the ventral tegmental area, a

region of the brain involved in reward and motivation, and also

potentiates NMDA receptor actions in the postsynaptic cell

through activation of protein kinase C (Borgland et al., 2008).

Peptides can modulate a number of different channels

or transporters that regulate neuronal activity and spike proba-

bility, including sodium channels, nonselective cation channels,

sodium-calcium exchangers, and voltage-dependent calcium

channels. Many inhibitory neuropeptides reduce GABA or gluta-

mate release by activating G protein-coupled inwardly rectifying

K+ (GIRK) channels, also called Kir3 channels. GIRK channels

have become increasingly recognized as playing important roles
in both normal brain processes, and in disease states (Lüscher

and Slesinger, 2010). Different GIRK channels arise from the het-

eromeric assembly of different subunits (Luján et al., 2009); after

Gi/Go activation, Gb and Gg bind to the GIRK channel, resulting

in hyperpolarization and inhibition. GPCR kinases can block

GPCR function by phosphorylation-mediated internalization of

the receptor; recent evidence suggests that the GPCR kinases

can also directly and rapidly inactivate GIRK channels by

competitively binding Gb and Gg subunits, thereby reducing

GIRK channel activity (Raveh et al., 2010). Neuropeptides that

inhibit neuronal activity by activating GIRK channels include

NPY, somatostatin, opioid neuropeptides including dynorphin

and met-enkephalin and others (Nakatsuka et al., 2008;

Nassirpour et al., 2010; Li and van den Pol, 2008). On the other

hand, excitatory neuropeptides such as substance P (Koike-

Tani et al., 2005) and hypocretin (Hoang et al., 2003) also act

on GIRK channels, but inhibit the GIRK current to increase

neuronal activity.

Coupling of receptors to ion channels may be different in

different processes of the same cell. For instance, mu opioid

receptors that respond to met-enkephalin and other related

opioid peptides often show fast desensitization of GIRK currents

(Williams et al., 2001). Mu opioid receptor responses desensitize

rapidly in the POMC cell body; in contrast, mu receptor

responses are resistant to desensitization in the context of

reducing GABA release from presynaptic axon terminals

synapsing with the recorded cell (Pennock et al., 2012).

Role of Colocalized Neuropeptides with Similar
or Opposing Neuronal Actions
Many neurons contain multiple neuropeptides (Hökfelt et al.,

1986, 1990; Skofitsch et al., 1985; Zupanc, 1996). For example,

neurons of the hypothalamic arcuate nucleus that utilize the

catecholamine neuromodulator dopamine to inhibit prolactin

release from the adenohypophysis also employ the amino acid

transmitter GABA, and additionally synthesize a number of

different neuropeptides including neurotensin, galanin, growth

hormone releasing factor (GRF), met-enkephalin, leu-enkeph-

alin, and dynorphin (Everitt et al., 1986). Single cells utilizing

GABA and dopamine also contained galanin and either GRF or

neurotensin; whether single dopamine cells contain all the

peptides listed here remains to be determined. Synthesis of

multiple neuroactive agents is not restricted to the hypothal-

amus. Single hippocampal interneurons synthesize GABA, NPY,

and somatostatin, all with inhibitory actions. Neuropeptides are

sequestered in DCVs, whereas the fast amino acid transmitters

are found in small clear vesicles. Although we generally assume

that peptides cosynthesized by a neuron are also stored and

released from the same DCVs, there is limited evidence that

different DCVs in a single neuron may contain different concen-

trations of multiple peptides (Zupanc, 1996). For instance, vaso-

pressin and galanin have been reported to show differential

expression in different DCVs in the same cell (Landry et al.,

2003). Outside the brain, cells of the anterior pituitary synthesize

both luteinizing hormone and follicle cell stimulating hormone,

and there is evidence for differential regulation of synthesis

and release (Fink, 1995). One clear manner in which different

peptides can be released differentially by the same neuron is
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Figure 8. Dynorphin Attenuates Voltage-Gated Calcium Current
A command depolarization of a glutamatergic hypocretin neuron caused
a calcium influx (a). Dynorphin reduced the calcium current (b), which recov-
ered after peptide washout. Cd2+ completely blocked the current, consistent
with it being calcium-mediated. From Li and van den Pol (2006).
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by differential regulation of synthesis. Peptides coded by

different genes have different regulatory elements and respond

to different sets of transcription factors. Therefore, differential

synthesis, potentially in response to neuromodulators that alter

transcription of different genes selectively, may allow a change

in the proportion of released peptides over time.

Multiple Peptides with Similar Actions in Single Neurons

In some neurons, multiple active peptides are cleaved from the

same precursor. One example of this is proopiomelanocortin

which is cleaved by peptidases into a number of potentially

neuroactive peptides including beta-endorphin, a-MSH, g-MSH,

corticotropin, and others. POMC cells may also synthesize

galanin-like peptide and cocaine and amphetamine related tran-

script (CART); all of these peptides may modulate food intake

(Elmquist, 2001; Gundlach, 2002).

Colocalization of peptides with related functions, but with

independent synthetic pathways is also not uncommon.

Neurons in the hypothalamic arcuate nucleus that synthesize

NPY and AgRP are a good example of this. NPY exerts direct

inhibitory actions through a number of NPY receptors. AgRP is

thought to act in a less direct inhibitory manner, by blocking

the excitatory actions of POMC derived a-MSH on the MC4mel-

anocortin receptors (Cone, 2005), although actions of AgRP

independent of the MC4 receptor have also been described

(Marsh et al., 1999; Fu and van den Pol, 2008). Intrahypothalamic

application of either NPY or AgRP increases food intake, indi-

cating that both peptides play a positive role in energy homeo-

stasis (Schwartz et al., 2000; Seeley and Woods, 2003). Use of

multiple neuroactive peptides could enhance the response of

target cells expressing the multiple relevant receptors. Alter-

nately, one peptide could activate homotypic receptors on one

cell, and the second could activate relevant receptors on

a different target cell. Cosynthesized peptides are probably

also co-released.

Another mechanism of peptide collaboration is based on

competition for peptidases. For instance, the actions of sub-

stance P on EPSCs in the parabrachial nucleus were enhanced

by calcitonin gene related peptide (CGRP) by a mechanism
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based on CGRP-mediated attenuation of the activity of extracel-

lular peptidases that inactivate substance P, apparently by

competition for the peptidases (Saleh et al., 1996). Furthermore,

use of the peptidase inhibitor phosphoramidon increased the

amplitude of the substance P effect by about ten-fold, suggest-

ing a normally rapid breakdown of substance P. The expression

and release of peptidases is another dimension of the regulation

of the half-life of neuropeptides that merits consideration relating

to the range of efficacy of peptide actions.

Opposing Peptides in Single Cells

From different precursor proteins, neurons may also synthesize

neuropeptides that can exert opposing actions at the cellular

level. Dynorphin is an opioid neuropeptide which acts at kappa

Gi/Go-coupled opioid receptors, leading to cellular inhibition

(Chavkin et al., 1982) by presynaptic inhibition, activation of K+

currents, or attenuation of voltage-gated calcium channels. An

electrophysiological example of dynorphin attenuation of cal-

ciumcurrent is shown in Figure 8. A number of different excitatory

neurons release this inhibitory peptide. Dynorphin is colocalized

with excitatory vasopressin in magnocellular neurosecretory

neurons, with excitatory hypocretin/orexin neurons in the lateral

hypothalamus, with excitatory kisspeptin and neurokinin B in

the arcuate nucleus (Goodman et al., 2007) and in glutamatergic

granule cells in the hippocampus (Simmons et al., 1995).

Hypothalamic hypocretin neurons are critical for cognitive

arousal and normal sleep and wake cycles in mammals, and

they also play a role in drug addiction. In humans, the loss of

hypocretin neurons results in the neurological syndrome narco-

lepsy, characterized by excessive day-time sleepiness (Burgess

and Scammell, 2012; Chemelli et al., 1999; Lin et al., 1999). In the

hypocretin-dynorphin neuron, both peptides are synthesized by

the same neurons in rodents and humans (Chou et al., 2001;

Crocker et al., 2005) and released, probably simultaneously (Li

and van den Pol, 2006), from long axons that terminate in a large

number of regions of the brain and spinal cord (Peyron et al.,

1998; van den Pol, 1999). Receptors for hypocretin (Sakurai

et al., 1998) and dynorphin (DePaoli et al., 1994) are expressed

widely through the CNS. Hypocretin plays an excitatory role

(de Lecea et al., 1998; van den Pol et al., 1998) through Gq

coupled receptors (Sakurai et al., 1998). In hypocretin-receptive

neurons, hypocretin depolarizes the membrane potential,

increases spike frequency, increases intracellular calcium, and

increases GABA or glutamate release presynaptically (van den

Pol et al., 1998, 2002; Li et al., 2002).Whywould a neuron release

neuromodulators of opposing actions? There are a number of

possibilities. One possibility is that at the site of release, cells

may express receptors for only one of the peptides, and there-

fore respond to only that peptide. Peptides with opposing

actions can also act synergistically. Hypocretin evokes a direct

excitation of arcuate nucleus NPY cells; dynorphin inhibits

GABA release onto NPY cells by acting on presynaptic opioid

receptors thereby reducing synaptic inhibition and facilitating

the excitatory direct actions of hypocretin (Li and van den Pol,

2006). Thus, the opposing peptides released from the same

axon act on different cells to synergistically increase activity of

one of the responding cells.

Differential desensitization could also play a role in the

response to opposing peptides in responding cells expressing



Figure 9. Inhibitory Dynorphin and Excitatory Hypocretin Are
Synthesized and Released Together but Evoke Opposing Actions
Serial application of dynorphin evokes an outward current (green) with an
amplitude that desensitizes and decreases substantially with repeated expo-
sure. Serial application of hypocretin evokes an inward current (red) with only
modest desensitization. Combined application of dynorphin + hypocretin
(orange) gives an initial outward current, then little current, and then an inward
current. Based on Li and van den Pol (2006).
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both receptor types. The initial effect, or effect of low level

release, may favor one peptide, whereas more protracted

release, or a high level release, may ultimately favor the other

peptide. Repeated application of dynorphin to voltage-clamped

melanin concentrating hormone (MCH) cells resulted in substan-

tially attenuated second and third outward (inhibitory) currents;

in contrast, repeated application of hypocretin showed substan-

tially less attenuation of its evoked inward currents (Figure 9).

Repeated coapplication of dynorphin + hypocretin therefore re-

sulted in an initial outward (hyperpolarizing) current but shifted to

an inward current (depolarizing) with repeated coapplication (Li

and van den Pol, 2006). Thus, in this example, low levels of cor-

elease might favor a modest inhibition, whereas high levels of

corelease may ultimately favor excitation. A related possibility

is that two opposing peptides could act with different time

courses either due to different latencies or durations of action,

and therefore one peptide may truncate the effect of the other

primarily during the overlap of the two time courses. Here, I focus

on two opposing neuroactive substances; however, many cells

contain more. For instance, a recent paper found that channelr-

hodopsin-evoked glutamate release from hypocretin cells was

critical for controlling the activity of postsynaptic histamine neu-

rons (Schöne et al., 2012).

Another role for opposing peptide signaling would be in

feedback regulation of release of peptides from the same or

neighboring release sites. In vasopressin neurosecretory cells,
dynorphin is coreleased with vasopressin locally by the somato-

dendritic complex and serves a key role in feedback inhibition of

vasopressin cells (Brown and Bourque, 2004; Brown et al.,

2004), in part by inhibition of plateau potentials required for spike

bursts. In most brain regions, vasopressin acts via a Gq receptor

to excite neurons (Raggenbass, 2008). However, in vasopressin

neurons, vasopressin has been reported to exert a rapid inhibi-

tory action, whereas dynorphin shows a slower inhibitory action

resulting in a gradual inhibition during successive spikes of

a burst. Dynorphin expression is increased during periods of

dehydration and so continues to provide a feedback inhibition

even while spike frequency is increased to counter dehydration

effects by increasing vasopressin release (Scott et al., 2009).

Dynorphin also reduces transmitter release from presynaptic

glutamate axons (Iremonger and Bains, 2009). The dual effect

of direct inhibition of release from the parent cell or its similar

neighbors, and presynaptic reduction in excitatory transmitter

stimulation, serve a similar role allowing dynorphin to depress

activity by multiple converging mechanisms. Actions of dynor-

phin in attenuating hippocampal mossy fiber glutamate release

are discussed above.

Kisspeptin is synthesized by cells of themedial hypothalamus,

and the peptide modulates the activity of GnRH neurons and

regulates reproduction and onset of puberty (Kauffman et al.,

2007; Han et al., 2005). Mutations of the GPR54, the kisspeptin

receptor, block puberty and cause infertility in rodents and hu-

mans (Dungan et al., 2006; Smith and Clarke, 2007). Dynorphin

and neurokinin B colocalize with kisspeptin in many mammals

(Goodman et al., 2007); dynorphin is proposed to act back on

the releasing kisspeptin neurons to synchronize and shape

pulsatile release patterns of kisspeptin (Navarro et al., 2009; Wa-

kabayashi et al., 2010).

Astrocytes and Peptides
Although we generally think of neuroactive peptides as being

synthesized by and exerting effects on neurons, the focus of

this review, glial cells may also employ neuropeptide signaling

and express receptors for neuromodulators in the CNS (Azmitia

et al., 1996; Kimelberg, 1988; Tasker et al., 2012). For instance,

one class of olfactory ensheathing glia that accompanies the

olfactory nerve from the olfactory mucosa into the olfactory

bulb shows very high levels of NPY expression (Ubink et al.,

1994; Ubink and Hökfelt, 2000); NPY may act here as a trophic

factor to promote olfactory receptor neuron maturation and

survival (Doyle et al., 2012). Schwann cell precursors also

express NPY, and this expression is lost during postnatal

development (Ubink and Hökfelt, 2000). NPY may also be

released by astrocytes. Ramamoorthy and Whim (2008) em-

ployed NPY-bound red fluorescent protein to show glutamate-

agonist mediated NPY secretion from cortical astrocytes.

Astrocytes in many brain regions express functionally active

vasopressin receptors (Brinton et al., 1998; Jurzak et al., 1995;

Kozniewska and Romaniuk, 2008). Peptide-responsive astro-

cytes can show fairly rapid activity-dependent structural plas-

ticity which may allow a further dimension of modulation of

neuropeptide actions and diffusion (Miyata et al., 2001; Theodo-

sis et al., 2008), including potential selective restriction of

peptide diffusion from a release site. For instance, during periods
Neuron 76, October 4, 2012 ª2012 Elsevier Inc. 109
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of dehydration or lactation, astrocytic processes may retract to

reduce segregation of synaptic complexes in the paraventricular

and supraoptic nuclei, thereby increasing neuron to neuron

membrane apposition, and potentially enhancing diffusion of

neuropeptides away from release sites (Hatton et al., 1984; Oliet

et al., 2004; Tasker et al., 2012).

Conclusion
At the cellular level, peptides enhance or attenuate neuronal

activity by modulating the activity of a number of different ion

channels, and by increasing or decreasing GABA or glutamate

release by direct actions on peptide receptors on presynaptic

axons. There are many unanswered, or even unaddressed,

questions relating to peptide release and response throughout

the brain. A key question relates to the release and response

to neuropeptides in the majority of neurons that synthesize

moderate or small amounts of peptide; do these cells follow

in the footsteps of the magnocellular neurosecretory neurons

that synthesize large amounts of peptide and have been the

subject of intense scrutiny? Or do the neurons that synthesize

substantially more modest amounts of neuropeptide possess

a different subset of defining features of release and induced

response?

With many neurons containing fast transmitters in addition to

one (or more) slower neuromodulator peptides, many questions

arise as to the relative role and contribution of the different

neuroactive substances in single cell types, both froma perspec-

tive of ion channel regulation, and from a more global view of the

neuron’s general functional assignment in the brain. Where

a particular neuropeptide acts relative to its release site, both

at the cellular and subcellular peptide receptor level, is another

important question that, although difficult to address, will

provide a critical link to understand the role of neuropeptides

at a functional level.
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Fuxe, K., Dahlström, A., Höistad, M., Marcellino, D., Jansson, A., Rivera, A.,
Diaz-Cabiale, Z., Jacobsen, K., Tinner-Staines, B., Hagman, B., et al. (2007).
From the Golgi-Cajal mapping to the transmitter-based characterization of
the neuronal networks leading to two modes of brain communication: wiring
and volume transmission. Brain Res. Brain Res. Rev. 55, 17–54.

Gainer, H., Wolfe, S.A., Jr., Obaid, A.L., and Salzberg, B.M. (1986). Action
potentials and frequency-dependent secretion in themouse neurohypophysis.
Neuroendocrinology 43, 557–563.

Gao, X.B., and van den Pol, A.N. (2001). Melanin concentrating hormone
depresses synaptic activity of glutamate and GABA neurons from rat lateral
hypothalamus. J. Physiol. 533, 237–252.

Gao, X.B., and van den Pol, A.N. (2002). Melanin-concentrating hormone
depresses L-, N-, and P/Q-type voltage-dependent calcium channels in rat
lateral hypothalamic neurons. J. Physiol. 542, 273–286.

Gardner, S., and Pawson, A.J. (2009). Emerging targets of the GnRH receptor:
novel interactions with Wnt signalling mediators. Neuroendocrinology 89,
241–251.

Giesbrecht, C.J., Mackay, J.P., Silveira, H.B., Urban, J.H., and Colmers, W.F.
(2010). Countervailing modulation of Ih by neuropeptide Y and corticotrophin-
releasing factor in basolateral amygdala as a possible mechanism for their
effects on stress-related behaviors. J. Neurosci. 30, 16970–16982.
Neuron 76, October 4, 2012 ª2012 Elsevier Inc. 111



Neuron

Review
Gompf, H.S., Moldavan, M.G., Irwin, R.P., and Allen, C.N. (2005). Nociceptin/
orphanin FQ (N/OFQ) inhibits excitatory and inhibitory synaptic signaling in the
suprachiasmatic nucleus (SCN). Neuroscience 132, 955–965.

Goodman, R.L., Lehman, M.N., Smith, J.T., Coolen, L.M., de Oliveira, C.V.,
Jafarzadehshirazi, M.R., Pereira, A., Iqbal, J., Caraty, A., Ciofi, P., and Clarke,
I.J. (2007). Kisspeptin neurons in the arcuate nucleus of the ewe express both
dynorphin A and neurokinin B. Endocrinology 148, 5752–5760.

Gropp, E., Shanabrough, M., Borok, E., Xu, A.W., Janoschek, R., Buch, T.,
Plum, L., Balthasar, N., Hampel, B., Waisman, A., et al. (2005). Agouti-related
peptide-expressing neurons are mandatory for feeding. Nat. Neurosci. 8,
1289–1291.

Gundlach, A.L. (2002). Galanin/GALP and galanin receptors: role in central
control of feeding, body weight/obesity and reproduction? Eur. J. Pharmacol.
440, 255–268.

Hager, J., Dina, C., Francke, S., Dubois, S., Houari, M., Vatin, V., Vaillant, E.,
Lorentz, N., Basdevant, A., Clement, K., et al. (1998). A genome-wide scan
for human obesity genes reveals a major susceptibility locus on chromosome
10. Nat. Genet. 20, 304–308.

Han, S.K., Gottsch, M.L., Lee, K.J., Popa, S.M., Smith, J.T., Jakawich, S.K.,
Clifton, D.K., Steiner, R.A., and Herbison, A.E. (2005). Activation of gonado-
tropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch
for the onset of puberty. J. Neurosci. 25, 11349–11356.

Hatton, G.I., Perlmutter, L.S., Salm, A.K., and Tweedle, C.D. (1984). Dynamic
neuronal-glial interactions in hypothalamus and pituitary: implications for
control of hormone synthesis and release. Peptides 5 (Suppl 1 ), 121–138.

Hazell, G.G., Hindmarch, C.C., Pope, G.R., Roper, J.A., Lightman, S.L.,
Murphy, D., O’Carroll, A.M., and Lolait, S.J. (2012). G protein-coupled recep-
tors in the hypothalamic paraventricular and supraoptic nuclei—serpentine
gateways to neuroendocrine homeostasis. Front. Neuroendocrinol. 33, 45–66.

Herkenham, M. (1987). Mismatches between neurotransmitter and receptor
localizations in brain: observations and implications. Neuroscience 23, 1–38.

Hirasawa, M., Kombian, S.B., and Pittman, Q.J. (2001). Oxytocin retrogradely
inhibits evoked, but not miniature, EPSCs in the rat supraoptic nucleus: role of
N- and P/Q-type calcium channels. J. Physiol. 532, 595–607.

Hirasawa, M., Schwab, Y., Natah, S., Hillard, C.J., Mackie, K., Sharkey, K.A.,
and Pittman, Q.J. (2004). Dendritically released transmitters cooperate via
autocrine and retrograde actions to inhibit afferent excitation in rat brain. J.
Physiol. 559, 611–624.

Hoang, Q.V., Bajic, D., Yanagisawa, M., Nakajima, S., and Nakajima, Y. (2003).
Effects of orexin (hypocretin) on GIRK channels. J. Neurophysiol. 90, 693–702.

Hökfelt, T., Holets, V.R., Staines, W., Meister, B., Melander, T., Schalling, M.,
Schultzberg, M., Freedman, J., Björklund, H., Olson, L., et al. (1986). Coexis-
tence of neuronal messengers—an overview. Prog. Brain Res. 68, 33–70.

Hökfelt, T., Meister, B., Villar, M.J., Ceccatelli, S., Corts, R., Schalling, M., and
Everitt, B. (1990). Colocalization of messenger substances with special refer-
ence to the hypothalamic arcuate and paraventricular nuclei. Prog. Clin. Biol.
Res. 342, 257–264.

Horvath, T.L., Diano, S., and van den Pol, A.N. (1999). Synaptic interaction
between hypocretin (orexin) and neuropeptide Y cells in the rodent and
primate hypothalamus: a novel circuit implicated in metabolic and endocrine
regulations. J. Neurosci. 19, 1072–1087.

Hosoya, Y., and Matsushita, M. (1979). Identification and distribution of the
spinal and hypophyseal projection neurons in the paraventricular nucleus of
the rat. A light and electronmicroscopic study with the horseradish peroxidase
method. Exp. Brain Res. 35, 315–331.

Hurbin, A., Orcel, H., Alonso, G., Moos, F., and Rabié, A. (2002). The
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